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Cooperative Aerial Transportation without Communication:
the Role of Internal Force for Pose Regulation

Marco Tognon1, Chiara Gabellieri1†, Lucia Pallottino2, and Antonio Franchi1

Abstract— This paper considers the study of cooperative
transportation of a cable-suspended load with two aerial robots
and without explicit communication. The role of the internal
force for the asymptotic stability of the beam-position/beam-
attitude equilibria is analyzed in depth and explained thor-
oughly. Using a nonlinear Lyapunov-based approach, we prove
that that if a non-zero internal force is chosen then asymp-
totic stabilization of any desired beam-position/beam-attitude
configuration can be achieved by using a decentralized and
communication-less master-slave admittance controller. If, con-
versely, a zero internal force is chosen, as done in the majority of
the state-of-the-art algorithms, the attitude of the beam is not
controllable without communication. Non-zero internal force
can be interpreted then as a fundamental factor that enables
the use of cables as implicit communication means between
the two aerial vehicles in replacement of the explicit ones. The
theoretical findings are validated through numerical simulations
with added noise and realistic uncertainty.

I. INTRODUCTION

Over the last decade UAVs (Unmanned Aerial Vehicles)
have risen the interest of a larger and larger audience for
their wide application domain. Recently, aerial physical in-
teraction, using aerial manipulators [1] or exploiting physical
links as cables [2], has become a very popular topic. One
very interesting and applicative problem is the manipulation
of an object. For this task, UAVs are very suited but usually
small and characterized by a limited payload capacity [3],
[4]. A cooperative approach allows to lift larger and heavier
loads, providing a safer and less expensive solution w.r.t. the
deployment of a single but more powerful aerial robot.

Many works have targeted the problem of cooperative load
manipulation, proposing different methods and solutions.
In [5], [6] cooperative aerial transportation of a rigid and
elastic object is considered, respectively. In [7]–[9] the same
problem is addressed using aerial vehicles with a robotic arm.
Aerial manipulation via cables is a particularly interesting
solution to the problem since it permits to reduce the
couplings between load and the robot attitude dynamics.
Examples of cooperative aerial manipulation using cables are
studied in [10]–[13]. All these examples rely on a centralized
and model-based control strategies. However, a decentralized
algorithm, as the one in [14], is more scalable w.r.t. the
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number of robots and more robust to the failure of an agent.
Another example, in [15] the possibility of using a swarm
of UAVs to grasp an object as a flying hand is discussed.

Explicit communication in decentralized algorithms is the
major bottle-neck. Communication delays and packet loss
can affect the performances but even the stability of the
controlled systems. Limiting the need for explicit commu-
nication allows to reduce the complexity and to make the
algorithm more scalable. In [16] the authors proposed one
of the first decentralized leader-follower algorithm without
explicit communication, for objects transportation performed
by mobile ground robots. The problem of transportation of a
cable suspended beam-like load by two aerial robots has been
addressed in [17]. Here a master-slave (i.e, leader-follower)
paradigm without explicit communication is exploited. In
particular, the horizontal position of the slave robot is con-
trolled with an admittance filter, trying to keep the cable
always vertical (zero internal force). A similar approach has
been proposed in [18] but relying on a visual feedback.
However, those methods do not deal with the load pose
control and do not provide formal stability proofs.

For the same system, we propose a decentralized algorithm
relying only on implicit communication. Our algorithm uses
a master-slave architecture, where both robots are controlled
with an admittance filter, to make the master and the overall
system more compliant to external disturbances. One of main
contributions of our paper is the constructive and intuitive
method to chose the controller input to stabilize the load in
a desired pose (both position and orientation), provided that
the load parameters are known. We show that those constant
input are parametrized by the internal force of the load.
A formal characterization of the equilibria and the relative
stability, given a certain desired internal force, is provided.

The paper is organized as follows. In Sec. II we derive the
model. In Sec. III we present the control strategy, the equilib-
ria and stability analysis. Simulation results and conclusive
discussions are presented in Sec. IV and V, respectively.

II. MODELING

The considered system and its major variables are shown
in Fig. 1. The beam-like load to be manipulated is modeled
as a rigid body with mass mL ∈ R>0 and a positive def-
inite inertia matrix JL ∈ R3×3. We define the frame FL =
{OL,xL,yL,zL} rigidly attached to the load, where OL is the
the load center of mass (CoM). Furthermore, we define an
inertial frame FW = {OW ,xW ,yW ,zW} with zW oriented in
the opposite direction of the gravity vector. The configuration
of the load is then described by the position and orientationof
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Fig. 1: Representation of the system and its major variables. For the
frame axes, the RGB convention is used, where the red, green, and
blues arrow represent the x, y, and z axes of the frame respectively.

FL with respect to FW , i.e., by the vector1 WpL ∈ R3 and
the rotation matrix WRL ∈ SO(3), respectively. Its dynamics
is given by the Newton-Euler equations

mLp̈L =−mLge3 +fe

ṘL = S(ωL)RL

JLω̇L =−S(ωL)JLωL +τe−ωT
LBLωL,

where, ωL ∈ R3 is the angular velocity of FL w.r.t. FW
expressed in FL, S(?) is the operator such that S(x)y =
x× y, g is the gravitational constant, ei is the canonical
unit vector with a 1 in the i-th entry, fe and τe ∈ R3 are
the sum of external forces and moments acting on the load,
respectively, and the positive definite matrix BL ∈R3×3 is a
damping factor modeling the energy dissipation phenomena.

The load is transported by two aerial robots by means
of two cables, one for each robot. We denote with Ai the
attachment point of the i-th cable to the i-th robot, with i =
1,2, and we define the frame FRi = {Ai,xRi,yRi,zRi} rigidly
attached to the robot and centered in the attachment point.
The i-th robot configuration is described by the position and
orientation of FRi with respect to FW , denoted by the vector
pRi ∈R3, and the rotation matrix RRi ∈ SO(3), respectively.
We assume that the aerial robot can track any C2 trajectory
with negligible error in the domain of interest, independently
from external disturbances. Indeed, with the recent robust
controllers and disturbance observers for aerial vehicles, one
can obtain very precise motions, even in the presence of
external disturbances. Moreover, if the used robot has a
multi-directional thrust, as, e.g., the one presented in [19],
then this assumption is exactly met thanks to its ability to
compensate any external force almost instantaneously. The
closed loop translational dynamics of the robot subject to
the position controller is then assumed as the one of a
double integrator: p̈Ri = uRi, where uRi is a virtual input
to be designed. At this stage it might seem that we are
assuming a controller and an actuation system that can make
the platform ‘infinitely stiff’ w.r.t. the force produced by the
cable. However, as it will be clear in the following, this is
not true in practice. In fact, we shall re-introduce a compliant
behavior by suitably designing the input uRi to adapt to the
force produced by the cable on the robot. This is a common
paradigm in interaction control.

The other end of the i-th cable is attached to the load at the
anchoring point Bi described by the vector Lbi ∈R3 denoting

1The left superscript indicates the reference frame. From now on, FW is
considered as reference frame when the superscript is omitted.

its position with respect to FL. The position of Bi in FW is
then expressed by bi = pL +RL

Lbi.
Assumption 1. The two anchoring points are placed such that
the load CoM coincides with their middle point, i.e., Lb1 =
−Lb2. This assumption is rather easy to meet in practice,
even for a load with non uniformly distributed mass.

In order to simplify the following discussion we assume,
without loss of generality, that xL is aligned with the
line passing through the two anchoring points and pointing
toward the first one. By doing so it results Lb1 = [‖Lb1‖ 0 0]T .

Cable-to-robot and cable-to-load connections are done in
such a way that no rotational constraints are present. Hence,
we can model them as passive and massless rotational joints.

We model the i-th cable as a unilateral spring along
its principal direction, characterized by a constant elastic
coefficient ki ∈R>0, a constant nominal length denoted by l0i
and a negligible mass and inertia w.r.t. the ones of the robots
and of the load. The attitude of the cable is described by the
normalized vector, ni = li/‖li‖, where li = pRi− bi. Given
a certain elongation ‖li‖ of the cable, the latter produces a
force acting on the load at Bi equal to:

fi = tini where ti =

{
ki(‖li‖− l0i) if ‖li‖− l0i > 0
0 otherwise

,

(1)

ti ∈ R≥0 denotes the tension along the cable and it is given
by the simplified Hooke’s law. When the tension is zero
the cable is considered slack. However, as usually done in
the related literature, we assume that the controller and the
gravity force always maintain the cables taut, at least in the
domain of interest.2 The force produced at the other hand of
the cable, namely on the i-th robot at Ai, is equal to −fi.

Considering the forces that robots and load exchange by
means of the cables, the dynamics of the full system is:

v̇R = uR

v̇L =M−1
L (−cL(qL)−gL +G(qL)f) ,

(2)

where qR = [pT
R1 p

T
R2]

T , qL = (pL,RL), vR = [ṗT
R1 ṗ

T
R2]

T ,
vL = [ṗT

L ω
T
L ]

T , uR = [uT
R1 u

T
R2]

T , f = [fT
1 fT

2 ]
T , ML =

diag(mLI3,JL), gL = [−mLgeT
3 0]T and

cL =

[
0

S(ωL)JLωL

]
G=

[
I3 I3

S(Lb1)R
T
L S(Lb2)R

T
L

]
.

Control problem
In this work we aim to: 1) stabilize the load at a desired

configuration, q̄L = (p̄L,R̄L); 2) preserve the stability of the
load during its transportation.

Assuming a perfect knowledge of the dynamic model of
the system, and a perfect state estimation, one could use
a centralized control approach as the ones in [10], [11].
Those methods are heavily model based, hence are not robust
to model uncertainties. We shall instead provide a method
that preserve the stability even with an inaccurate model.
Furthermore, we are interested in solving the mentioned

2We are not interested here in ‘fancy’ acrobatic motions of the load but
rather on designing a decentralized and communicationless control law that
can be employed in realistic scenarios.
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Fig. 2: Schematic representation of the overall system including
both physical and control blocks.

objectives using a decentralized approach without explicit
communication between the robots and relying on a minimal
sensorial setup.

III. CONTROL DESIGN AND EQUILIBRIA

To achieve the control objectives of Sec. II we propose
the use of an admittance filter for both robots, i.e., setting:

uRi =M
−1
Ai (−BAiṗRi−KAipRi−fi +πAi) , (3)

where the tree positive definite matrices MAi,BAi,KAi ∈
R3×3 are the virtual inertia of the robot, the virtual damping,
and the stiffness of a virtual spring attached to the robot, and
πAi ∈ R3 is an additional input parameter. Notice that (3)
requires only local information, i.e., the local state of the
robot (pRi, ṗRi), and the force applied by the cable fi. The
first can be retrieved with standard on-board sensors for
aerial vehicles, while the second can be directly measured
by an on-board force sensor or estimated by a model-based
observer as done in [17], [19]. Therefore, the control method
is decentraized and does not require explicit communication.
Indeed each robot uses only local measurement without
the need of direct communication with the other agent. A
schematic representation of the overall control strategy is
shown in Fig. 2.

Combining equations (2) and (3) we can write the closed
loop system dynamics as

v̇ = m(q,v,πA) =

[
M−1

A (−BAṗR−KApR−f+πA)

M−1
L (−cL(vL)−gL+Gf)

]
(4)

with q = (qR,qL), v = [vT
R vT

L ]
T , πA = [πT

A1 π
T
A2]

T , and
f = [fT

1 fT
2 ]

T where fi is given in (1), and is a function
of the state. Furthermore MA = diag(MA1,MA2), BA =
diag(BA1,BA2) and KA = diag(KA1,KA2).

In order to coordinate the motions of the robots in a
decentralized way we propose a master-slave approach. In
this way only one robot, namely the designated master, will
have an active control of the system. On the other hand, the
slave will passively follow the master partially compensating
the weight of the load and contributing to preserve the
stability of the system. Choosing robot 1 as master and
robot 2 as slave we simply set KA1 6= 0, KA2 = 0 to obtain
the sought master-slave paradigm.

We say that q is an equilibrium configuration if ∃ πA s.t.

0= m(q,0,πA), (5)
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Fig. 3: Relation between the equilibria and forcing control input.
The relations between the left and middle sets and the one between
the middle and right sets represent equilibria direct and inverse
problems, respectively.

i.e, if the corresponding zero-velocity state (q,0) is a forced
equilibrium for the system (4) for a certain forcing input
πA. We say that an equilibrium configuration q is stable,
unstable, or asymptotically stable if (q,0) is stable, unstable,
or asymptotically stable, respectively.

In the following parts of this Section we shall prove
that for any desired load configuration q̄L there exists a set
ΠA(q̄L)⊂ R6 such that for any πA ∈ ΠA(q̄L) one can com-
pute a q̄R, depending q̄L and πA, that makes q̄= [q̄T

L q̄
T
R ]

T an
asymptotically stable equilibrium with πA as forcing input.
Furthermore, we shall also give the analytic expression of
ΠA(q̄L) and the fundamental guidelines on how to choose
πA ∈ΠA(q̄L).

As we shall see, a key role in all the following analyses
is played by the load internal force, defined as

tL := 1
2f

T [I3 −I3
]T
RLe1 =: 1

2f
TrL. (6)

For the particular choice of rL, we have that if tL > 0 the
internal force is a tension (the work of the internal force
is positive if the distance between the anchoring points
increases) while if tL < 0 the internal force is a compression
(viceversa, the work is positive if the distance decreases).

A. Equilibrium Configurations of the Closed Loop System

We firstly carefully analyze and characterize the relation
between equilibrium configurations, from now on simply
called equilibria, and the forcing input πA. In particular, in
the following we study:
• which is the set of inputs (and corresponding robot

positions) that equilibrates a desired q̄L (theorem 1);
• which is the set of equilibria if the particular input

chosen in the aforementioned set is applied on the
system (theorem 2).

These two problems are referred to as the equilibria di-
rect problem and equilibria inverse problem, respectively.
A schematic representation of the results described in the
theorems is given in Fig. 3.

Theorem 1 (equilibria direct problem). Consider the closed
loop system (4) and assume that the load is at a given desired
configuration qL = q̄L = (p̄L,R̄L). For each internal force
tL ∈ R, there exists a unique constant value for the forcing
input πA = π̄A (and a unique position of the robots qR = q̄R)
such that q̄ = (q̄L, q̄R) is an equilibrium of the system.



In particular π̄A and q̄R = [p̄T
R1 p̄

T
R2]

T are given by

π̄A(q̄L, tL) =KAq̄R + f̄ (7)

p̄Ri(q̄L, tL) = p̄L + R̄L
Lbi +

(‖f̄i‖
ki

+ l0i

)
f̄i

‖f̄i‖
, i = 1,2,

(8)

where

f̄(q̄L, tL) =
[
f̄1
f̄2

]
=

mLg
2

[
I3
I3

]
e3 + tL

[
I3
−I3

]
R̄Le1. (9)

Proof. The desired load configuration q̄L can be equilibrated
if it exists at least a q̄R and a πA such that:

m(q̄,0,πA,0) = 0. (10)

Consider the last six rows of (10). We must find the f
resolving

Gf = gL. (11)

G is not invertible since rank(G) = 5, therefore we have
to verify that a solution for (11) exists. Expanding (11) we
obtain

f1 +f2 =−mLge3 (12)

S(Lb1)R̄
T
Lf1 +S(

Lb2)R̄
T
Lf2 = 0. (13)

Then, substituting in (13) the f1 obtained from (12) we have

2S(Lb1)R̄
T
Lf2 =−S(Lb1)R̄

T
L mLge3, (14)

which has always at least the solution f2 = mLge3/2. There-
fore, all the solutions of (11) can be written as

f̄ =G†gL +rLtL, (15)

where G† = 1/2[I3 I3]
T is the pseudo inverse of G, rL ∈R6

is a vector in ker(G), and tL ∈R is any value. We computed
rL from (12) and (13) putting the right hand side equal to
zero, obtaining after some algebra rL =

[
I3 −I3

]T
R̄Le1, as

in the definition (6). Therefore, equation (15) can be rewritten
as (9). The expression of p̄Ri in (8) is computed using (1)
and the kinematics of the system. Notice that (8) is singular
when f̄i = 0 for some i. However this can always be avoided
properly choosing tL.

Lastly, from the first six rows of (10) we have that q̄L is
equilibrated if πA = π̄A, where π̄A is defined as in (7).

Remark 1. Based on Theorem 1 we can define a set
ΠA(q̄L) = {πA ∈R6 : πA = π̄A(q̄L, tL) for tL ∈R} which has
dimension 1, since it is parametrized by the scalar tL ∈ R.
This set is depicted as a curve in the middle set of Fig. 3.
Remark 2. The expression (9) of the cable forces that equi-
librate the system is split in two parts. The first, i.e., G†gL,
compensates the gravity force and the second generates
internal forces that, for the system under consideration, are
always along the direction (b1−b2).
Remark 3. Theorem 1 and its constructive proofs, give an
intuitive method for choosing the forcing input πA given a
desired load configuration q̄L to equilibrate. In particular one
has only to choose the value of the internal force tL. We shall

show that is always preferable to choose tL > 0 to obtain an
asymptotically stable equilibrium.

Once tL is chosen and the input πA = π̄A(tL, q̄L) is applied
to the system, it is not in general granted that (q̄L, q̄R) is the
only equilibrium of the closed loop system (4). The following
results will show how many other equilibria exist and which
is their nature.

Theorem 2 (equilibria inverse problem). Given tL ∈ R and
the corresponding π̄A ∈ ΠA(q̄L) computed as in (7), the
equilibria of the system (4), when the input πA = π̄A(tL, q̄L) is
applied, are all and only the ones described by the following
conditions

tLRLe1× R̄Le1 = 0

pR1 = p̄R1

pL = pR1−RL
Lb1−

(‖f̄1‖
k1

+ l01

)
f̄1

‖f̄1‖
=

= p̄L +(R̄L−RL)
Lb1

pR2 = pL +RL
Lb2 +

(‖f̄2‖
k2

+ l02

)
f̄2

‖f̄2‖
.

(16)

We denote with Q(tL, q̄L) the set of configurations respect-
ing (16).

Proof. Given tL ∈R, and π̄A ∈ΠA(q̄L), a configuration q is
an equilibrium if m(q,0, π̄A,0) = 0. The first six rows are
KAqR +f− π̄A = 0. Then, from (7) we have that

f =KA(q̄R−qR)+ f̄ . (17)

Multiplying both sides of (17) byG and using (11) we obtain

GKA(q̄R−qR)+Gf̄ = gL. (18)

Then, using KA2 = 0, and the expression of f̄ in (9), we get[
KA1eR1

S(Lb1)RLKA1eR1

]
+

[
mLge3

2S(Lb2)R
T
L R̄Le1tL

]
=

[
mLge3

0

]
, (19)

where eRi = (p̄Ri−pRi). The top row of (19) implies that
eR1 = 0, hence pR1 = p̄R1. Replacing eR1 = 0 in the bottom
part of (19) we obtain

S(Lb2)R
T
L R̄Le1tL = 0⇔ Lb2×RT

L R̄Le1tL = 0

⇔ RLe1× R̄Le1tL = 0.
(20)

Finally we can retrieve the remaining components of the
equilibrium configuration, namely pL and pR2, using (1) and
the system kinematics.

Remark 4. If tL = 0 the conditions in (20) hold for all
possible load attitudes RL ∈ SO(3). This means that the set
of equilibria with no internal force, i.e., Q(0, q̄L), contains
all the RL ∈ SO(3) and the qR, pL are computed from RL
using (16). Figure 4 illustrates some of these equilibria.

For tL 6= 0, it is required that RLe1 is parallel to
R̄Le1. This can be obtained with RL = RL(k,φ) =
R̄LRzL(kπ)RxL(φ), where k = 0,1, φ ∈ [0,2π], and RzL(·)
and RxL(·) are the rotations about zL and xL, respec-
tively. Considering that Lb1 is parallel to xL we have that
RzL(kπ)RxL(φ)

Lb1 is either equal to Lb1 if k= 0 or to−Lb1
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Fig. 5: 2D representation of two equilibria for tL 6= 0. On the left
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if k = 1. Therefore, using (16), we obtain either pL = p̄L if
k = 0 or pL = p̄L +2b1 if k = 1.

Fig. 5 provides a simplified representations of the two
different sets of equilibria for k = 0 and k = 1, formally
defined as follows:

•Q+(tL, q̄L) = {q ∈Q(tL, q̄L)|RL =RL(0,φ)∀φ},
•Q−(tL, q̄L) = {q ∈Q(tL, q̄L)|RL =RL(1,φ)∀φ}.
Notice that Q(0, q̄L) is parametrized by an element in

SO(3) (any RL ∈ SO(3) is allowed), while and Q+(tL, q̄L),
Q−(tL, q̄L), for tL 6= 0, are parametrized by an element in
SO(1) (RL(0,φ) and RL(1,φ), for any φ ∈ [0,2π[, respec-
tively). In particular for all cases, the load rotation about
xL can be any. This because the robots can not apply any
moment along xL, and the corresponding rotation results
uncontrollable. Practically this is not an issue since the
orientation of a beam about xL is usually not of interest
and it is anyway passively stabilized by the structure.

At the end of this section we can conclude that choosing
tL 6= 0 (equilibrium with vertical cables) is the worse option
because any orientation of the load is contained in the equi-
librium set for this choice. Furthermore, the load equilibrium
positions are free to move on sphere of radius ‖Lb1‖ centered
on B1. Contrarily, tL 6= 0 is a much better choice, in fact in
this case, a part from the rotation about the xL axis, there are
only two distinct equilibria, in one it is exactly qL = q̄L, as
expected, and in the other one the load orientation is parallel
to the one in q̄L but position is reflected w.r.t. B1.

B. Stability of the Equilibria

In this section we shall analyze the stability of the equi-
libria discovered in Sec. III-A. Firstly we define x= (q,v)

as the state of the system, x̄= (q̄,0) the desired equilibrium
state, and the following sets (subspaces of the state space)
that are related to the previous sets of equilibria:
• X (tL, q̄L) = {x : q ∈Q(tL, q̄L), v = 0}
• X (0, q̄L) = {x : q ∈Q(0, q̄L), v = 0}
• X +(tL, q̄L) = {x : q ∈Q+(tL, q̄L), v = 0}
• X −(tL, q̄L) = {x : q ∈Q−(tL, q̄L), v = 0}

Theorem 3. Let us consider a desired load configuration q̄L
and the autonomous system (4) and let the constant forcing
input πA be chosen in ΠA(q̄L) corresponding to a certain
internal force tL, then the following holds:
• tL > 0⇒ X +(tL, q̄L) is locally asymptotically stable;
• tL > 0⇒ X −(tL, q̄L) is unstable;
• X (0, q̄L) is locally asymptotically stable;
• tL < 0⇒ X +(tL, q̄L) is unstable;
• tL < 0⇒ X −(tL, q̄L) is locally asymptotically stable.

Proof. Let us consider the following Lyapunov candidate:

V (x) =
1
2
(vT

RMAvR +e
T
RKAeR +v

T
LMLvL+

+ k1(‖l1‖− l01)
2− lT1 f̄1 + k2(‖l2‖− l02)

2)+

− lT2 f̄2 + tL(1− (R̄Le1)
TRLe1)+V0,

(21)

where V0 ∈ R≥0. V (x) is a lower bounded, continuously
differentiable function in the domain of interest. In order to
see that V (x) is lower bounded it is sufficient to show that the
terms ki(‖li‖− l0i)

2− lTi f̄i, for i = 1,2, are lower bounded,
since all the others are clearly lower bounded. This can be
demonstrated by defining a= 2f̄i/ki and observing that :

(‖li‖− l0i)
2−aT li = ‖li‖2−2‖li‖l0i + l2

0i−aT li

≥ ‖li‖2−2‖li‖l0i−‖a‖‖li‖
≥ ‖li‖2− (2l0i−‖a‖)‖li‖.

Therefore (21) is lower bounded. If tL ≥ 0, then we can
choose the term V0 such that V (x)≥ 0 and V (x̄) = 0. Notice
that V (x) is only positive semi definite. Indeed, V (x) = 0
for all x ∈X (0, q̄L) and x ∈X +(tL, q̄L) with tL > 0.

Let us now compute the time derivative of (21):

V̇ (x) = vT
RMAv̇R +v

T
LMLv̇L +eRKAvR+

+ k1(‖l1‖− l01)
lT1
‖l1‖

l̇1 + k2(‖l2‖− l02)
lT2
‖l2‖

l̇2+

+ f̄T
1 l̇1 + f̄

T
2 l̇2− tLeT

1 R̄
T
L ṘLe1.

(22)

Replacing (4), (1) and (9) in (22) we obtain

V̇ = vT
RMAv̇R +v

T
LMLv̇L +eRKAvR+

+(f1− tLR̄Le1−mLge3/2)T (ṗR1− ṗL− ṘL
Lb1)+

+(f2 + tLR̄Le1−mLge3/2)T (ṗR2− ṗL− ṘL
Lb2)+

− tLeT
1 R̄

T
L ṘLe1

=−vR
TBAvR +vR

TuA−ωT
LBLωL,

(23)

that for uA = 0 becomes V̇ (x) = −vR
TBAvR−ωT

LBLωL,
that is clearly negative semidefinite. In particular V̇ (x) = 0
for all x ∈ E {x : vR = 0, ωL = 0}



Since V (x) is only positive semidefinite, to prove the
asymptotic stability we rely on the LaSalle’s invariance
principle [20]. Let us define a positively invariant set Ωα =
{x : V (x)≤ α with α ∈ R>0}. By construction Ωα is com-
pact since (21) is radially unbounded and Ω0 is compact
(Ω0 =X (0, q̄L) and Ω0 =X +(tL, q̄L) for tL = 0 and tL > 0,
respectively, are both compact sets). Then we need to find
the largest invariant set M in E = {x ∈Ωα | V̇ (x) = 0}. A
trajectory x(t) belongs identically to E if

V̇ (x(t))≡ 0⇔
{
vR(t)≡ 0

ωL(t)≡ 0
⇔ m(q(t),0,πA) = 0

for all t ∈R>0. Therefore x has to be an equilibrium, and for
Theorem 2 we have that V̇ (x(t)) ≡ 0⇔ x(t) ∈X (tL, q̄L).
Thus we obtain M = Ωα ∩X (tL, q̄L).

For tL > 0, it is easy to see that for a sufficiently small α ,
X +(tL, q̄L) ⊆ Ωα but X −(tL, q̄L)∩Ωα = ∅. This because
V (x) = 0 for x ∈ X +(tL, q̄L), while V (x) > 0 for x ∈
X −(tL, q̄L). This comes from the fact that in (21), for x ∈
X −(tL, q̄L), the term tL(1−(R̄Le1)

TRLe1) = 2tL. Therefore
M = X +(tL, q̄L). All conditions of LaSalle’s principle are
satisfied and X +(tL, q̄L) is locally asymptotically stable.

On the other hand, for tL = 0 we have that X (tL, q̄L)⊆Ωα

for every sufficiently small α . Therefore M = X (tL, q̄L)
and, as before, we can conclude that X (tL, q̄L) is locally
asymptotically stable for the LaSalle’s invariance principle.

Now, let us investigate the stability for tL < 0. As before,
with an opportune choice of V0, we have that V (x) = 0
for x ∈ X +(tL, q̄L). However X +(tL, q̄L) is a set of ac-
cumulation for the points where V (x)< 0. Indeed, consider
v = 0, pR1 = p̄R1, RL such that (R̄Le1)

TRLe1 = 1−ε , with
ε > 0 arbitrarily small, pL and pR2 as in (16). Under this
conditions, we have that V (x) = tL(1− (R̄Le1)

TRLe1) =
tLε < 0. Then, V̇ (x)< 0 in a neighborhood of X +(tL, q̄L).
All conditions of Chetaev’s theorem [20] are satisfied, and
we can conclude that X +(tL, q̄L) is an unstable set.

Finally, to study the stability of X −(tL, q̄L) for tL 6= 0,
one can always find another desired load configuration q̄′L
for which, choosing t ′L = −tL and the corresponding π′A ∈
ΠA(q̄

′
L), we have X +(t ′L, q̄L) = X −(tL, q̄L). Assuming tL >

0, we have that t ′L < 0 and X +(t ′L, q̄L) is unstable. Therefore
X −(tL, q̄L) is unstable too. A similar reasoning can be done
to prove that X −(tL, q̄L) is locally asymptotically stable for
tL < 0.

IV. NUMERICAL VALIDATION

In this section we shall describe the results of several
numerical simulations validating the proposed method and
all the presented theoretical concepts and results.

We tested the method in a more realistic scenario. Indeed,
we replaced the simplified linear robot dynamics of Sec. II,
with the proper nonlinear dynamics of a quadrotor-like
vehicle together with a geometric position controller. All
the system parameters are reported in Tab. I, together with
the admittance controller gains for both robots. A smaller
apparent inertia of the slave is chosen to make the slave
more sensitive to external forces, and thus more reactive.

System Parameters Controller Gains
i = 1 i = 2 i = 1 i = 2

mRi [Kg] 1.02 0.993 MAi 3I3 0.5I3

JRi [Kg ·m2] 0.015I3 0.015I3 BAi 18I3 1.3I3

l0i [m] 1 1 KAi 15I3 0

ki [N/m] 20 20 Desired Load Pose
Lbi [m] [0.433 0 0] [−0.433 0 0] p̄L = [0.3 0.3 0.2]T [m]

mL = 0.900 [Kg], JLx = 0.112 [Kg ·m2] φ̄ = 0, θ̄ = π/8 [rad]
JLy = 5.681, JLz = 5.681 [Kg ·m2] ψ̄ = π/7 [rad]

TABLE I: Parameters used in the simulations.

Let us consider the desired equilibrium q̄ = (p̄L,R̄L),
whose value are in Tab. I, where (φ̄ , θ̄ , ψ̄) are the Euler
angles that parametrize R̄L. We performed several simula-
tions with πA ∈ ΠA(q̄L) computed as in (7) for the cases
1) tL1 = 1.5 [N]> 0, 2) tL2 = 0 [N], 3) tL3 =−1 [N]< 0,

We first initialized the system in different initial configu-
rations and we let the system evolve.
1) For tL = tL1, the system always converges to a state

belonging to X +(tL, q̄L), independently from the initial
state, validating the asymptotic stability of X +(tL, q̄L)
when tL > 0. In Fig. 6 we show the evolution of the system
starting from two different initial state.

2) For tL2, the system final state belongs to X (0, q̄L). The
final attitude of the load depends on the initial state;

3) For tL3, the system never converges to X +(tL, q̄L) even
initializing it very close. This is due to the instability of
X +(tL, q̄L) when tL < 0.

In another set of simulations the master forcing input
is chosen such that the master follows a simple smooth
polynomial trajectory from an initial position to p̄R1.

For both tL = tL1 and tL = tL2 the system remains stable
during the master maneuver, showing only small-amplitude
damped oscillations. Once the input becomes constant, the
master stops and the system converges to q̄ for tL = tL1.
For tL = tL2, instead the final load attitude depends on the
particular motion of the master, and it is general different
from q̄.

Plots for cases 2) and 3) and the last dynamic case are not
reported here due to space limitation. Some representative
simulations however available in the attached video.

V. CONCLUSIONS

This work deals with the cooperative transportation of a
cable-suspended load performed by two aerial vehicles. The
proposed master-slave architecture exploits an admittance
controller in order to coordinate the robots in a decentralized
fashion but with implicit communication only, using the
cable forces. The stability of the static equilibria has been
studied highlighting the role played by the internal force.
In the future it would be interesting to test the method on a
real platform and to extend the theoretical analysis to a more
general load.
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