
HAL Id: hal-01561690
https://laas.hal.science/hal-01561690

Submitted on 13 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic Guidance Techniques for the Exploration of
Small Celestial Bodies

Francesco Capolupo, Thierry Simeon, Jean-Claude Berges

To cite this version:
Francesco Capolupo, Thierry Simeon, Jean-Claude Berges. Heuristic Guidance Techniques for the
Exploration of Small Celestial Bodies. The 20th World Congress of the International Federation of
Automatic Control (IFAC 2017), Jul 2017, Toulouse, France. 6p. �hal-01561690�

https://laas.hal.science/hal-01561690
https://hal.archives-ouvertes.fr


Heuristic Guidance Techniques for the
Exploration of Small Celestial Bodies

Francesco Capolupo ∗ Thierry Simeon ∗∗

Jean-Claude Berges ∗∗∗

∗ Airbus Defence and Space, 31400 Toulouse, France (e-mail:
francesco.capolupo@airbus.com)
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Abstract: Sampling Based Motion Planning (SBMP) techniques are widely used in robotics to
plan feasible trajectories of a vehicle/robot evolving in a complex and constrained environment.
Algorithms such as Rapidly Exploring Random Trees (RRT) and Sampling Based Model
Predictive Optimization (SBMPO) allow for an efficient exploration of the state space, and the
construction of a feasible sequence of maneuvers and trajectories that respect the kynodynamic
and path constraints of the system. Proximity operations around small bodies are characterized
by complex dynamics and constraints that can be easily and autonomously handled by motion
planning techniques. This paper presents two motion planning algorithms designed to solve
two different guidance problems: the landing on a small body and its observation. The
mission scenarios considered to test the algorithms are the landing of Rosetta on the comet
67P/Churyumov-Gerasimenko and the observation of Didymain in the Didymos binary asteroid
system. To conclude, the applicability of SBMP techniques to small body proximity operations
are discussed. In particular, the advantages of implementing SBMP algorithms to solve complex
high-level planning problems or to guide a spacecraft in a cluttered environment are highlighted.

Keywords: Guidance Navigation and Control of Vehicles, Space Exploration and
Transportation, Autonomous Systems, Trajectory and Path Planning, Mission Planning and
Decision Making

1. INTRODUCTION

Motion planning constitutes a very active research domain
within the robotics community. Sampling Based Motion
Planning (SBMP) algorithms were introduced in the ’90
(Kavraki et al. (1996)) to overcome the computational
complexity of the motion planning problem. The idea
behind SBMP is to replace the explicit representation of
the configuration space occupied by obstacles by a random
sampling of the obstacle-free space, and the construction
of admissible paths between samples.

The use of Sampling Based Motion Planning techniques for
small bodies proximity operations was recently proposed
by Pavone et al. (2014) as an effective way to deal with
these challenging mission phases. Future space exploration
missions will require an unprecedented level of autonomy.
This need is driven by the communication delays between
the ground and the spacecraft, as well as by the dynamical
complexity of the explored environments. Future guidance
and control solutions will also have to deal with stringent
collision avoidance constraints, that considerably compli-
cate the task of trajectory design and GNC engineers. This
paper shows how complex guidance problems, such as the
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landing on a small body and its complete observation,
can be efficiently solved with SBMP algorithms. In par-
ticular, two reference mission scenarios were considered
to benchmark motion sampling techniques: the landing
of Rosetta on the comet 67P/Churyumov-Gerasimenko
and the observation of Didymain in the Didymos binary
asteroid system. These two examples represent two very
different guidance problems.

The case of Rosetta is an example of a typical constrained
optimal control problem. The complex shape of the comet
causes the resulting parameter optimization problem to be
a hard to solve non-convex and non-smooth optimization
problem. It will be shown how SBMP algorithms can solve
this type of transfer problems without any difficulty.

The Didymos scenario is an example of ”high-level” mis-
sion where the spacecraft is supposed to autonomously
plan its trajectory in order to complete a scientific goal. No
predefined waypoints are specified by mission analysts, so
that the algorithm must be able to find the optimal path
that fulfills a high-level task such as the observation of
the entire surface of an asteroid. As it will be discussed
in the following sections, SBMP algorithms are able to
handle high-level objectives, and therefore can be success-
fully used for this type of autonomous trajectory planning
problems.



2. SMALL BODY LANDING

2.1 The Guidance Problem

The guidance problem of the small body landing scenario
(i.e. Rosetta landing on the 67P/Churyumov-Gerasimenko
comet, in our case) consists in bringing a lander from an
initial state to a desired landing site, while minimizing
the propellant consumption. The simplified translational
dynamics of a spacecraft in the vicinity of the comet,
written in the comet body fixed reference frame is given
by

r̈ = −2ω × ṙ− ω × ω × r + g67P/V + u (1)

where r is the spacecraft position vector with respect to the
comet’s center of mass, ω is the angular rotation vector of
the comet (supposed constant), g67P/V is its gravitational
attraction on the vehicle, and u is the control acceleration
vector. The nonlinear dynamical system represented by
Equation 1 can be written in a more general form as a
non-linear first order autonomous system

ẋ = f (x,u)

Mathematically, the landing problem can be translated
into a constrained trajectory optimization problem (or
optimal control problem)

minimize
u(t),x(t),tf

J =

∫ tf

t0

‖u‖ dt

subject to ẋ = f (x,u)
x (t0) = x0

x (tf ) = xf

t0 < tf ≤ tf,max

x ∈ Xfree

umin ≤ u ≤ umax

(2)

where collision avoidance constraints are taken into ac-
count by defining a collision free state subspace Xfree.
The collision free subspace is mainly determined by the
shape of the small body, and the presence of regions
to be avoided, such as out-gassing cones. An irregularly
shaped body like 67P leads to a non-convex domain Xfree.
Control authority limits are also taken into account, with
the introduction of upper and lower control bounds, umax

and umin. There exist several numerical methods to solve
the optimal control problem of Equation 2 (e.g. direct
and indirect shooting and collocation methods). Neverthe-
less, the translation of the non-convex obstacle avoidance
constraint into a nonlinear non-smooth function reduces
the robustness of classic optimization methods and sig-
nificantly increases the computational time. In addition,
classic methods require an initial guess for both state and
control profiles, and can only converge to a local optimal
solution in the vicinity of the initial guess. To overcome
these limitations, a new landing guidance algorithm is
proposed. The new algorithm, described in detail in the
following section, is based on motion planning techniques
that are commonly used in robotics.

2.2 The Algorithm

The optimal Rapidly Exploring Random Tree algorithm
(RRT*) was chosen to solve the landing guidance problem.
RRT* was introduced by Karaman and Frazzoli (2011)
to optimally solve motion planning problems in robotics.

RRT* is a sampling-based motion planning algorithm de-
signed to efficiently search non-convex, high-dimensional
spaces by randomly building a space-filling tree. The tree
consists of a set of vertices V (states) and edges E (trajec-
tories connecting states), and is constructed incrementally
from samples drawn randomly in the state space. The
tree is rooted at the initial state and the exploration is
performed until the goal is reached. Trajectories connect-
ing state samples are computed by a local unconstrained
optimization algorithm called the steering method.

As well explained by Karaman and Frazzoli (2011), the
first step of the algorithm is to randomly sample a state
vector xrand (i.e. position and velocity) from the open sub-
space Xfree. The sampleOpenSpace function is designed
to return the target state instead of a random one in a
certain number of cases, as specified by the user (typically
1 to 10% of cases). The nearest function is then called to
provide the closest node xnearest in V to xrand. Next, the
steering method is used to find a trajectory Γnew connecting
xnearest to xrand. As the steering method might not be able
to exactly reach xrand, a new node xnew close to xrand is
obtained (in our case, xnew = xrand). If Γnew respects all
the constraints of the problem, then a set of near (within
a radius γ) neighbors Vnear are evaluated using the near
function. Next RRT* calls chooseParent to find a candi-
date for a parent node to xnew. The function chooseParent
returns the node in the set Vnear that reaches xnew with
minimum cost and respecting all the constraints, and it
adds it to the search tree. The algorithm then tries to
”rewire” the nodes in Vnear by calling the rewire function.
If the feasible path that connects xnew to the near node
xnear reaches xnear with cost less than that of its current
parent, then xnear is rewired to xnew by connecting xrand
and xnear.

Algorithm 1 RRT*

1: V ← {xinit}
2: E ← ∅
3: xsol ← ∅
4: for i = 1, . . . , n do
5: xrand ← sampleOpenSpace (Vtarget)
6: xnearest ← nearest ((V,E) , xrand)
7: xnew ← steer (xnearest, xrand, Vtarget)
8: if constraintsRespected (Γnew) then
9: Vnear ← near ((V,E) , xnew, γ)

10: (V,E)← chooseParent (xnew, Vnear, Vtarget)
11: (V,E)← rewire (xnew, (V,E) , Vnear, Vtarget)
12: xsol ← checkTargetReached (xnew, xsol, Vtarget)
13: end if
14: end for
15: return xsol

The algorithm can be easily adapted to kinodynamic mo-
tion planning problems, i.e. problems having differential
constraints such as ẋ = f (x,u), provided that an appro-
priate steering method can be designed (Karaman and
Frazzoli (2011)). As the steering method is repeatedly
called during the execution of the algorithm, it must be
fast enough to allow for reasonable execution times. In
order to guarantee the optimality of the solution, the
steering method must connect two arbitrary states by a
local optimal trajectory. Unfortunately, no analytic opti-
mal solution exists to connect two states of the system



Algorithm 2 RRT*: chooseParent

1: ΓnewBest = Γnew

2: for i = 1, . . . , nnear do
3: xnear ← Vnear,i

4: xnewTest ← steer (xnear, xnew, Vtarget)
5: if xnewTest == xnew then
6: if costToCome (xnewTest) < costToCome (xnew)

then
7: if constraintsRespected (ΓnewTest) then
8: ΓnewBest = ΓnewTest

9: end if
10: end if
11: end if
12: end for
13: V ← V ∪ {xnew}
14: E ← E ∪ {ΓnewBest}
15: return (V,E)

Algorithm 3 RRT*: rewire

1: for i = 1, . . . , nnear do
2: xnear ← Vnear,i

3: xrw ← steer (xnew, xnear, Vtarget)
4: if xrw == xnear then
5: if costToCome (xrw) < costToCome (xnear)

then
6: if constraintsRespected (Γrw) then
7: E ← E\ {Γnear}
8: E ← E ∪ {Γrw}
9: end if

10: end if
11: end if
12: end for
13: return (V,E)

described by the Equation 1, not even for the uncon-
strained case. Nevertheless, a good (and extremely fast)
approximation of the local optimal trajectory can be found
with a polynomial guidance algorithm.

The polynomial guidance algorithm, proposed by Ploen
et al. (2006) for a Mars landing scenario and direct
descendant of the Apollo guidance law, analytically solves
the fixed horizon two-point boundary value problem of a
double integrator

r̈ = a

by supposing that the total acceleration profile of the
vehicle a (t) can be approximated by a polynomial function
of the N -th order

a (t) = c0 + c1t+ c2t
2 + . . .+ cN t

N = Φa (t)C

ṙ (t) = ṙ0 + Φv (t)C

r (t) = r0 + ṙ0t+ Φp (t)C

where

Φv (t) =

∫ t

0

Φa (t) dt Φp (t) =

∫ t

0

Φv (t) dt

The boundary conditions in terms of position, velocity
and total acceleration, are then translated into an over-
determined linear equality constraint for C

Fig. 1. Descent trajectory on 67P.

 Φa (0)
Φa (tf )
Φv (tf )
Φp (tf )



c0

c1

c2

...
cN

 =

 r̈0

r̈f
ṙf − ṙ0

rf − r0 − ṙ0tf

⇒ AC = b (3)

The remaining degrees of freedom in C can be chosen to
minimize the total acceleration energy

Ja =

∫ tf

0

aTadt = CT

∫ tf

0

ΦT
a ΦadtC = CTSC (4)

The problem given by Equations 3 and 4 is a linearly
constrained weighted least norm problem for C, whose
solution is given by

C = S−1AT
(
AS−1AT

)−1
b

Once the total acceleration and the optimal trajectory
have been computed, the control acceleration profile u (t)
can be found as

u (t) = a (t) + 2ω × ṙ + ω × ω × r−∇U67P (r)

The optimal transfer time tf can be determined by a line
search optimization that minimizes the J functional as
defined in Equation 2 (optimal, but slower solution), or
drawn randomly by the steering function (non optimal,
fastest solution).

2.3 Simulation Results

The RRT* landing algorithm was tested on a Rosetta-
like landing scenario. The complex shape of 67P allows
for a challenging benchmark of the proposed guidance
law. The landing site was chosen to be between the two
comet’s lobes, in a hardly accessible region of the surface.
Therefore, collision avoidance constraints drive the design
of a feasible descent trajectory.

In simulations, the initial spacecraft state was chosen equal
to r0 = (−3.5, 0, 3) km and ṙ0 = (0, 0, 0) m/s, and the
landing site was chosen equal to rf = (−0.5, 0, 0.4) km
and ṙf = (0, 0,−0.1) m/s. The control force was limited
to 10 N, and the vehicle mass was taken equal to 1500 kg.



Fig. 2. Solution cost versus number of iterations.

Figure 1 shows an example of result provided by the
algorithm. The solid black trajectory represents the op-
timal trajectory found within the prescribed number of
iterations, the solid grey trajectories are the edges between
sampled states, while rewired edges are displayed in ma-
genta. The dotted contour represents the boundary of the
search space: the definition of such a boundary allows for
the translation of the complex shape of the comet into an
arbitrarily complex polyhedron; it also limits the compu-
tational burden by limiting the state sampling domain. In
this figure, we recognize the behavior of RRT* search: the
algorithm tries to connect the randomly sampled states
of the search space, until it finds a feasible trajectory
that respects all the imposed constraints. The continuous
search for optimal connections between nodes allows refin-
ing the tree during the iterations, so that the algorithm can
converge towards an optimal solution. Figure 2 shows the
cost of the solution found by the algorithm as a function
of the number of iterations, for a test campaign of 100
simulations. Each run is represented by a grey line. The
grey dots at the beginning of each line represent the cost
of the first feasible trajectory found. The solid black line
is the mean over the ensemble of 100 simulations. The
maximum solution cost (i.e. the first solution cost) was
considered for the computation of the ensemble mean for
simulations not having found a feasible solution yet.

It is worth noticing that a very limited number of iterations
are necessary to compute a first feasible trajectory. The
majority of the starting points are found in less than 100
iterations. Moreover, the solution cost quickly drops and
reaches ”reasonable values” (i.e. around 4 m/s) in about
200 iterations. On a common PC workstation (Intel Core
i3 @3.30 Ghz, 8Gb of RAM) the time needed to perform
100 iterations is less than 10 seconds. This means that
feasible solutions are found within 10 seconds from the
beginning of the run, and ”reasonably optimal” solutions
are provided in less than 20 seconds.

Direct optimization techniques (direct collocation and
multiple shooting) were also used to solve the same prob-
lem. The results were first used to validate SBMP algo-
rithms, and then compared to motion planning solutions.
The Matlab fmincon solver was used to solve the non-
linear programming problem (NLP) obtained from the
transcription of the optimal control problem of Equation 2.
Despite the local optimality of classic direct optimization

techniques, the best solution cost obtained with direct
optimization is of 3.10 m/s, and is therefore comparable
to the lowest cost of 2.98 m/s obtained by the RRT*
algorithm. Nevertheless, the mean computational time for
direct optimization to solve the problem, starting from a
linear state and null control initial guess, is of about 5
minutes. In addition, classic optimization is very sensitive
to the choice of transcription parameters: an incautious
transcription parametrization might severely affect the
possibility for the NLP solver to converge towards a local
optimal solution.

On the other hand, RRT* appears to be very robust, as it
can quickly provide a feasible solution without the need of
an initial guess. Moreover, the list of parameters directly
linked to the motion planning algorithm is limited to a
neighboring radius γ and a target aim percentage. Motion
planning algorithms are not ready yet to be run on-board
a spacecraft processor, mainly because of their compu-
tational load. However, their robustness and rapidity, if
compared to classic trajectory optimization techniques,
as well as their ability to autonomously handle almost
any kind of constraint, represent some very interesting
features that upcoming autonomous exploration missions
might soon require.

3. SMALL BODY OBSERVATION

3.1 The Guidance Problem

This second mission scenario is directly inspired by the
NASA/ESA Asteroid Impact and Deflection Assessment
(AIDA) mission. The spacecraft has to observe and map
the complete surface of Didymain, the largest body of the
Didymos binary asteroid system. The observation trajec-
tory shall ensure a satisfactory illumination of the observed
scene, and must avoid any collision with Didymain and its
small moon, Didymoon.

The spacecraft dynamics in the Didymain Local Verti-
cal/Local Horizontal (LVLH) reference frame is given by

r̈ =− ω̇ × r− 2ω × ṙ− ω × ω × r + . . .

+ gS/V + gD/V + gM/V − gM/D − gS/D + u
(5)

where ω is the Didymain orbital angular rate, gX/Y is
the gravitational attraction of X on Y , and subscripts are
defined as follows: V for the vehicle, D for Didymain, M
for Didymoon and S for the Sun. In the LVLH frame,
the Sun direction is a constant vector aligned along the y
axis. In this scenario, the control input corresponds to a
series of impulsive commands, so that at the instant when
the command is delivered, ti, the spacecraft velocity is
instantaneously modified

∆v (ti) =

∫ t+
i

t−
i

udt

ṙ
(
t+i
)

= ṙ
(
t−i
)

+ ∆v (ti)

t+i − t
−
i → 0

This approximation is valid if the level of thrust available
on-board the spacecraft allows for very short maneuvers.

In order to quantify the time spent by the spacecraft
in observing a certain region of the asteroid’s surface,
an observation model was introduced. The model, shown



Fig. 3. Surface observation model.

in Figure 3, approximates the surface of the body by
an icosahedron with 80 triangular faces. The i-th face
is observable if the vector connecting the asteroid’s cen-
ter of mass and the spacecraft (relative position vector)
passes through it. The i-th face is considered to be well
illuminated only if the angle between the sun direction
and the normal to the face (illumination angle) is less or
equal to 45◦ (illumination cone). This means that each
face can be observed if and only if the spacecraft passes
over the face and, at the same time, the illumination angle
is within the prescribed illumination cone. Because of the
direction of the spinning axis of Didymain with respect
to the ecliptic, the polar regions (20 faces in total) are
never sufficiently well illuminated by the Sun, therefore,
they are considered to be unobservable. The observation
is considered complete once each observable face (nf = 60
faces in total) has been observed for at least Tobs,min = 20
minutes, i.e. when the mission completion percentage Mc,
defined as

Mc =
1

nfTobs,min

nf∑
i=1

min (Tobs,min, Tobs,i)

reaches 100%.

The translation of the observation problem into an optimal
control problem is not straightforward. The high level
objective of ”observing the entire surface of the body”
may be either transcribed as an optimization objective or
as an isoperimetric constraint. The next section shows how
such a high level planning goal can be easily handled by
sampling based motion planning techniques.

3.2 The Algorithm

The algorithm proposed to solve the observation prob-
lem is a Sampling Based Model Predictive Optimization
(SBMPO) algorithm, inspired by the work of Surovik and
Scheeres (2014), Komendera et al. (2012) and Dunlap et al.
(2008).

The basic idea behind the algorithm is to build, for each
command constituting the maneuver sequence, a 3D map
that associates an observation score C to each point of the
admissible command space V (i.e. the set of maneuvers
that respect ∆v = ‖∆v‖2 ≤ ∆vmax). The score is
computed by propagating each sampled command and by
analyzing the resulting trajectory Γ (t). The observation
score is defined by

Algorithm 4 SBMPO

1: Mc ← ∅
2: i = 1
3: while Mc < 100 do
4: for j = 1, . . . , nmesh do
5: if j == 1 then
6: ∆V ← initMesh (∆vmax, n0,∆v)
7: C ← ∅
8: else
9: ∆V ← refineMesh (∆V,C,∆vmax, n∆v)

10: end if
11: for k = 1, . . . , n∆v do
12: Γk ← propagateTrajectory (∆vk, [ti; ti+1])
13: Ck ← computeScore (Γk)
14: end for
15: end for
16: ∆vopt (ti) ,Mc ← computeOptimalMan (C,∆V )
17: i++
18: end while

C (Γ) =

∫ ti+1

ti

ε

|1− d (t) /ddes|+ ε
dt+ wt∆Tobs (6)

where d (t) = ‖r (t)‖ is the distance of the spacecraft from
the observed body, ddes is a desired distance set by the
user, ∆Tobs is the additional observation time that can be
obtained by following the trajectory Γ, ε is a desired decay
rate, and wt is a weighting factor. C is set to zero if the
trajectory does not respect the imposed path constraints
(i.e. collision avoidance or escape). The ∆Tobs is also set
to zero if the observed face has been observed for longer
than Tobs,max: this allows for a more uniform observation
of all faces.

Let’s suppose that at the time ti a new maneuver ∆v (ti)
shall be computed. The first step of the algorithm is to call
the initMesh function to uniformly drawn n0,∆v maneuver
samples in V. These samples, ∆V , are numerically prop-
agated through the system and the resulting trajectories
and scores are computed. Once this first mapping C (∆v)
is complete, a refinement heuristic is called (refineMesh
function), in order to bias the next ∆v sampling towards
the most interesting region of the command space. The
observation score, the observation score gradient and the
level of exploration of a certain region in V are the three
criteria used to heuristically quantify this interest, as pro-
posed by Surovik and Scheeres (2014). The propagation,
analysis, and refinement procedure is repeated (for the
same maneuver ∆v (ti)) nmesh times. Next, a planner is
called to compute the optimal maneuver among all the
maneuvers sampled by the algorithm and to be potentially
executed at time ti. The planner takes into account both
the observation score Cq of the q-th maneuver of the
ensemble, and its fuel consumption ∆vq (ti), so that its
planning score Pq is given by

Pq =
wcCq

max [C1, C2, . . . ]
+

(
1− ∆vq

max [∆v1,∆v2, . . . ]

)
where wc is an appropriate weighting factor. The optimal
maneuver to be executed by the spacecraft at time ti,
∆vopt (ti), is then selected as the one with the high-
est planning score. Once the maneuver is executed, and
the spacecraft reaches the next maneuvering point ti+1,
the entire procedure is repeated for the computation of



Fig. 4. Example of observation trajectory and performance.

∆vopt (ti+1). New maneuvers are added to the sequence
until Mc = 100%.

3.3 Simulation Results

Figure 4 shows an example of solution of the observation
problem. The trajectory followed by the spacecraft is
represented in the left plot by a solid black line . Red
dots interconnecting trajectory arcs correspond to the
maneuver points, while the dashed black line represents
the orbit of Didymoon around Didymain. It is worth
noticing that the majority of the trajectory develops
between the Sun and Dydimain, and that the ”pericenters”
of observation arcs are placed at night. This means that
the algorithm is trying to maximize the time spent in
good illumination conditions, by passing very rapidly
through the shadow cone of the asteroid. The second plot
(middle) shows the observation time for each observable
face representing the surface. At mission completion, the
accumulated observation time for each face is above the
minimum required observation time Tobs, min. Very few
faces are observed for a period of time longer than Tobs,max,
as required. The third plot (right) graphically represent
the observation time of each face: brighter faces are the
most observed ones, while black faces correspond to the
unobservable ones.

This example highlights perhaps the most important fea-
ture of SBMPO algorithms: given as input an high-level
scientific task (defined by an appropriate mission score),
the algorithm was perfectly able to plan the spacecraft
trajectory, compute maneuvers and ensure the completion
of the task, while respecting all the input and state con-
straints, without any further intervention of the user.

4. CONCLUSIONS

Motion planning algorithms represent an interesting com-
plementary approach to classic spacecraft trajectory opti-
mization techniques. Their ability to solve complex plan-
ning problems while fulfilling an ”high-level” mission ob-
jective (e.g. a scientific task that cannot be directly trans-
lated into state waypoints or a predefined trajectory to
be followed) is an extremely useful feature. SBMP solu-
tions are perfectly adapted to solve the next generation

of guidance problems, such as the autonomous landing on
a small celestial body, its observation and mapping, as
well as the assembly of large space structures by smaller
assembler cooperative vehicles, the inspection of a space
station, or the capture of a rapidly spinning large debris.
These complex high-level missions, often characterized by
a cluttered environment that is difficultly handled by clas-
sic optimization methods, represent the ideal application
domain for SBMP techniques.

Even if the possibility to run these algorithms on-board a
space vehicle has yet to be proven, the use of motion plan-
ning solutions appears to be an important step towards
the design and on-board implementation of autonomous
guidance and mission planning laws.
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