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Interval Kalman filter enhanced by
positive definite upper bounds

Tuan Anh Tran , Carine Jauberthie, Francgoise Le Gall,
Louise Travé-Massuyes

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract: A method based on the interval Kalman filter for discrete uncertain linear systems
is presented. The system under consideration is subject to bounded parameter uncertainties
not only in the state and observation matrices, but also in the covariance matrices of Gaussian
noises. The gain matrix provided by the filter is optimized to give a minimal upper bound on
the state estimation error covariance for all admissible uncertainties. The state estimation is
then determined by using interval analysis in order to enclose the set of all possible solutions
with respect to the classical Kalman filtering structure.

Keywords: Uncertain linear systems, Kalman filter, Interval analysis, Gaussian noise,

Covariance matrices.

1. INTRODUCTION

Extending the Kalman filter technique for uncertain linear
systems is an active research topic that attracts increasing
interest. For instance, a joint Zonotopic and Gaussian
Kalman filter has been proposed in Combastel [2015]
for discrete-time linear time-varying systems excited by
Gaussian noises and bounded disturbances represented
by zonotopes. The method minimizes a multi-objective
optimization criterion which represents the compromise
between the size of the zonotopic part and the covari-
ance of the Gaussian distribution. Regarding to parameter
uncertainties, several results have been derived on the
design of optimal robust Kalman filters for discrete time-
varying systems subject to norm-bounded uncertainties,
for instance Zhe and Zheng [2006], Mohamed and Naha-
vandi [2012]. The optimality of these methods is based
on finding an upper bound on the estimation error co-
variance for any acceptable modeling uncertainties and
then to minimize the proposed upper bound. However,
this approach may be conservative when there exist too
many uncertainties in the system. Another possibility is
to consider the model matrices (including the covariance
matrices of Gaussian noises) as intervals containing all
admissible values of parameters. A drawback of this ap-
proach is the singularity problem which may appear in
interval matrix inversion. In Chen et al. [1997], the clas-
sical Kalman filter (Kalman [1960]) has been extended to
this type of uncertain systems. The authors propose to
bypass the singularity problem by using the upper bound
of the interval matrix to be inverted. This method leads
to a solution that is not guaranteed, i.e. the solution set
may not include all the classical Kalman filter solutions
consistent with the bounded uncertainties represented in
the system. In Xiong et al. [2013], an improved interval
Kalman filter (ilKF) has been proposed that solves the
interval matrix inversion problem with the set inversion
algorithm SIVIA (Set Inversion Via Interval Analysis) and
constraint satisfaction problems (CSP) (see Jaulin et al.

[2001]). Nevertheless, this algorithm demands high com-
putational time if there exist large uncertainties affecting
the considered system (see Tran et al. [2016]).

Motivated by the above observations, this paper proposes
a new interval Kalman filtering algorithm with two main
goals: minimizing an upper bound for the estimation error
covariance and enclosing the set of possible solutions of
the filtering problem for interval linear systems. This
algorithm, called Minimum Upper Bound of Variance
Interval Kalman Filter (UBIKF), achieves a reasonable
computational time. It also achieves the goal to enclose all
the estimates consistent with the parameter uncertainties
with a much less conservative manner than Xiong et al.
[2013].

This paper is organized as follows. The problem formu-
lation is described in Section 2. Section 3 reviews the
main notions of positive semidefinite matrix and interval
analysis which are necessary for the development of the
new algorithm. Then the new interval Kalman filter is
derived in Section 4, followed by a numerical example in
Section 5. Conclusions and future works are presented in
Section 6.

2. PROBLEM FORMULATION

Considering the following class of uncertain linear discrete-
time stochastic systems:

{Xk+1 = ApXp + wg, (1)
Vi = CpXp + Vi,

where x; € R" is the state vector, yr € R™ is the
measurement vector and wy,, v are white Gaussian noise
sequences with zero mean and covariance matrices ¢ and

R. The structure of the classical Kalman filter for system
(1) is represented as follows (Kalman [1960]):

X =%, + Ki(yr — Crky,), (2)

where )A(; is the posterior state estimate, X, = Akfcz_l is
the prediction of state a priori and K}, is the gain matrix



that minimizes the mean square error E[(x;} —xx) (% —xx)"].
We consider the case where the matrices Ay, Cy and the
covariance matrices @), R are assumed bounded. Interval
analysis is one of the tools to represent bounded uncer-
tainties.

Interval analysis was developed by Moore [1966] and is
useful to deal with bounded uncertainties. Most of the
notions of interval analysis can be found in Jaulin et al.
[2001] in which an interval [z] is defined as a closed and
connected subset of R:

[z] ={z €eR|z <z <7}, 3)
where x and T are respectively the lower and upper bound.
The center of [z] is defined by mid([z]) = (T+x)/2 and its
radius is rad([z]) = (Z — z)/2. The set of all intervals in R
is noted as IR. An interval vector (or matrix) is a vector
(or matrix) whose elements are considered as intervals. In
this paper, an interval vector and an interval matrix are
denoted as [x] and [M]. The set of n—dimensional interval
vectors (or m x n interval matrices) is denoted as IR™ (or
IR™*™). Given [M] € IR™*", the two functions mid([M])
and rad([M]) provide two m x n real matrices containing
the centers and radius of elements of [M].

The matrices Ag, Cr, @ and R of the system (1) are
represented by interval matrices, denoted [Ax], [Ck], (@]
and [R], containing all possible values of each parameter.
Since it is impossible to solve directly the Kalman filtering
problem due to parameter uncertainties, our goal is to
obtain an upper bound ‘P; such that:

B[ —x0) (5 —x)"] 2 P (4)
for the set of all models with parameters bounded by the
above interval matrices. The envelope enclosing the set
of state estimates corresponding to the gain K is then
computed. This idea is similar to Xiong et al. [2013] in
which the envelopes of the optimal gains and the state
estimates given by the Kalman filtering procedure are
determined by using interval analysis. In contrast, the
proposed algorithm determines a gain matrix K which
minimizes the trace of the upper bound on the error
covariance instead of finding a set of gain in Xiong et al.
[2013]. Since the gain matrix in our filter is punctual, it
allows to reduce the conservatism and the computational
time of interval operations.

3. PRELIMINARIES

This section introduces the notations used throughout the
paper, including some definitions and properties of positive
semidefinite matrices and some basic concepts of interval
analysis.

3.1 Symmetric positive semidefinite matrices

Definition 1. A symmetric n X n real matrix M is positive
semidefinite, denoted M > 0, if for all non-zero n-
dimensional column vector z, the scalar z” Mz is non-
negative.

All the diagonal elements of a positive semi-definite matrix
are real and non-negative. A special case of positive
semidefinite matrices is given in the following remark.

Remark 1. For any real matrix M, the product M M7 is
a positive semidefinite matrix.

Remark 1 comes from the fact that for any non-zero vector
z of appropriate size, the expression zZ M M7z = ||MTz||§
is non-negative, where ||V||, is the Euclidean norm of the
real vector V defined as the square root of the sum of
squares of its elements.

Definition 2. Given two symmetric real matrices M, N
with the same size, M is said greater or equal to IV, written
as M = N, if M — N is positive semidefinite.

Proposition 1. Given two non null matrices M, N with
the same size and an arbitrary real number 8 > 0, the
following inequality holds:

BIMMT + BNNT = MNT + NM7T. (5)

Proof. Developing (M — SN)(M — BN)T and using Re-
mark 1, we obtain inequality (5).

Remark 2. A positive value of 8 can be computed to
minimize the trace of the left-hand side of inequality (5).
Differentiating the trace of the left-hand side of inequality
(5) gives:

otr (B~*MM™ + BNNT) 1

53 =— ?tr (MMT)
+tr (NNT), (6)
O*tr (B'MMT + BNNT) 2
( N ) =gtr (MM™T) =0, (7)

where tr(M) is the trace of the square matrix M. The
positiveness of the second derivative guarantees the exis-
tence of the global minimum. Setting the first derivative
to zero, we obtain:

B = \Jtr(MMT)/tr(NNT). (8)

Proposition 2. Consider two n X n matrices M7, My and
My = Ms, the following inequality holds for any m x n
matrix N:

NM;NT = NM,NT. (9)

Proof. The definition of a positive semidefinite matrix is
used to show that N(M; — My)NT = 0. For any non-zero
m-~dimensional vector z, we have:

2" N(M; — My)NTz = xT (M, — My)x > 0,
since My — My > 0, where x = N7z € R™. Therefore,
N(M; — M3)NT = 0.
An operation used in this paper is the square root of a

positive semidefinite matrix M.

Property 1. A symmetric positive semidefinite matrix M
is orthogonally diagonalizable, i.e. there exist an orthog-
onal matrix V and a diagonal matrix D such that M =
VDVT. Thus, the square root of M is M'/2 = VDY/2y T,

Property 2. If M »= N = 0 then M'/2 = NV/2 = 0.



3.2 Interval analysis

Definition 3. An interval matrix [M] € TR™*" is said to
be symmetric if the real matrices mid([M]) and rad([M])
are symmetric.

The following property is useful to describe a quantity in
terms of its nominal value and a bounded uncertainty:

Property 3. (see Moore et al. [2009]). Given a real value
x belonging to an interval [z], there exists a real value
a € [—1,1] such that z = mid([z]) + a.rad([z]) .

Using Property 3 for matrices, the following proposition is
obtained:

Proposition 3. Given an m x n real matrix M belonging
to an interval matrix [M], there exist mn real values
a e [-1,1] with i € {1,...,m}, j € {1,...,n} such
that:

M = mid([M]) + 37 " o [rad((M))] , *

i=1 j=1

(10)

where [rad([M¥])] is an m X n matrix whose ij—th
element contains the radius of the ij—th element interval
value of [M] and the other elements are zero.

In the case of symmetric matrices, the following represen-
tation should be considered:

Proposition 4. Given an n X n real symmetric matrix M
belonging to a symmetric interval matrix [M], there exist
n(n + 1)/2 real values o’ € [—1, 1] such that:

M =mid([M)) + diag (rad ([M])) diag (o)

—|—7§: Zn: o' [rad ([M™])]

i=1 j=i+1

(11)

where diag (rad ([M])) is a diagonal matrix containing the
radius of diagonal elements of [M], [rad ([M*7])] is a
symmetric matrix whose 1j— and ji—th elements are the
radius of [M%] and [M7%] and the other elements are zero.
The matrix diag (o'') is diagonal and o/ € [—1, 1], for all
1<i<j<n.

Classical operations for intervals, interval vectors, interval
matrices (e.g. +,—,X, +,... ) are extensions of the same op-
erations for reals, real vectors, real matrices. For instance,
the following results will be applied in the next sections of
this paper:

[z] + [yl = [z +y.T+7],

[z] x [y] = [min(zy, 27, Ty, T9), max(zy, 27, Ty, 77)] -
For the interval matrix multiplication, the ¢j-th interval
[C%] of the product [C] = [A][B] encloses all possible
values of the ij-th element of real matrices C' = AB, for
any A € [A], B € [B]. The interval matrix obtained [C]
may contain real matrices D that are not the result of the
multiplication of any real matrices A € [A] and B € [B].
This conservatism is generated by the multi-occurrence
problem detailed in Moore et al. [2009].

Proposition 5. Given a symmetric interval matrix [M] €
IR™ ™ there exists a symmetric positive semidefinite

1 The expression is a developed form of the Hadamard product.

matrix M that bounds all symmetric positive semidefinite
matrices M € [M], i.e. M — M »= 0. We denote M > [M].
The expression of M? is:

n—1 n
—1 -1
I+ /Bmid,ii + Z Z Bmid,ij

i=1 j=i+1

M2 = (mid ([M]))*

n—1 n
[ 14 Briaii + D > Bisy | (diag(rad([M])))?

i=1 j=i+1

n—1 n n—1 n
+ ) _Z;rl <1 + Bmidij + B + 22 X ﬁkl,’ij) [Tad([Mi’j])}zy
J=t

k=i l=j+1

where :

Brmid,ii = /tr {(mid([M]))2} /tr{(diag(rad([M))))?},

Bmiais = \Jtr{ (mid([M]))2}/tr{[rad((MET])]},

Bty = \tr{(diag(rad([M])))2}/tr{[rad(M7])]2),

Briij = \/tr{[md([M’“’l])f}/tr{[md([Mi’j])f}-
The matrix M is computed using Property 1 for M?2.

Proof. The representation of a symmetric matrix M €
[M] in Proposition 4 is used to compute M? = MM7T:

M? = (mid ([M]))*
+ diag(rad([M))) (diag (a”))2 diag (rad([M]))
+ {mid ([M])} {diag (o) diag(rad([M]))}

+ {diag(rad([M]))diag (o) } {mid ([M])}

£33 fmia (M)} {o [rad(M9)]}

i=1 j=i+1

+i > {a¥ [rad([M™])] } {mid ([M])}

i=1 j=i+1

n—1 n
+3 " {a¥ [rad((M)] } {diag (o) diag(rad([M]))}

i=1 j=i+1

n—1 n
+ Z Z {diag(rad([]%]))diag (a”)} {aij [rad([Mi*j])}}

i=1 j=i+1
n

n—1 n—1 n
+Z Z Z Z {a¥[rad([M*])] }{a* [rad([M*'])] }.

i=1 j=i+1 k=1 Il=k+1

The upper bound M? of the matrix M? is obtained by
using Proposition 1, Remark 2, Proposition 2 and noting
that 0 < (diag (a”))2 =< T and 0 < (a¥)? < 1 for all
—1 < a¥ < 1. Property 2 gives M = M, for all symmetric
positive semidefinite matrix M belonging to [M].



4. MAIN RESULTS

Like the classical Kalman filter, the filter proposed in
this paper can be designed in two steps: prediction and
correction.

4.1 Prediction step

In the prediction step, the state estimate from the previous
time step and the transition model are used to predict the
state at the current time step. Thanks to natural interval
extension, this step is performed as follows:

[%e] ™ = [Ak] K] (12)
where the sign (—) means the result of the prediction step
and (+) represents the estimations. The error covariance
matrix can also be predicted using interval analysis:

[Pe]™ = (A P, [T + (@) (13)

Equation (13) provides an interval matrix enclosing all
possible covariance matrices given the interval matrices
[Ag], [Q] and the estimated covariance matrix P} | of

the previous step. An upper bound P, of [P;]™ can be
determined by applying Proposition 5, i.e. P, > [P] .

4.2 Correction step

The state estimate at time step k is computed by the
Equation (2), given X, € [X;]  and Cj € [Cy]. In order to
reduce the effect of the dependency problem (Jaulin et al.
[2001]), the Equation (2) is rearranged as follows:

il " = (I = Ki [Ch]) (%] + Ky
The box [%;]" encloses all possible values of ;.

(14)

The gain matrix K} is determined as follows. The expres-
sion of the error covariance matrix after the correction
step, for any Cy € [Ck], R € [R), is:

Pt = (I — KxCy) Py (I — KyCr)" + KxRK.  (15)
An upper bound of P,j can be obtained by using Proposi-
tion 3 for the matrix Cy, then developing Equation (15).
The terms (I —Kpmid([Ck]))Py (o™ [rad([M*7])])T can be
rewritten as follows:

- . T
(¢ = Kwmia(cx])) (P7)"?) (0¥ [rad ([M))] (27) ")
Similarly, (a® [rad([M%7])])P; (@™ [rad([M™"])])* are
also divided into two parts:
- - T
(@ [raa(aro])]) (#)"%) (e fraa(nem)) (7))

for all i,m € {1,...,n,} and j,n € {1,...,n,}. Proposi-
tion 1 is then applied to these pairs of matrices with g =1
to obtain the following inequality:

PF = (ngny + 1) (I — Kymid([Cy])) Py (I — Kymid([Cy]))"

 (namy + 1) Ky ( ; 3 [rad((cy')] 75 [rad([C,ij])]T) KT
+ K RE}]
=P/

(16)
where R = [R] is determined with Proposition 5.

Having the expression of P} as a function of K}, we look
for K}, the value that minimizes the trace of (Pz. The first
and second derivatives of ¢ (P}) with respect to K}, are:

r (P
dtd;{:) — _QPZ’Hymid([Ck])T
+ 2Kmid([Cr]) Py, ymid([Cr]) T
2, (3535 rad(0p o, raaticy)”
+ 2kaRa
d2tr (P
tdf((,gk) = 2mid([C]) Py ., mid([Ck])"
+23°%" [rad(icg))] o [rad(cp)]”
+ 291—7 -

where Py = (ngny + 1)P;. The second derivative is
always definite positive that guarantees the existence of a
minimum value for tr (TZ) and K, is obtained from the

first derivative:

Ky =P, mid([Cy))" S, (17)
where:
S = mid([Cy])Py, mid([C])"+
Ny Ng iy B iy T (18)
£33 [rad(CD)] Py, [rad(GED] + R

The expression of the covariance matrix bound T; is
obtained by Equation (16) using K} given in Equation
(17):

P = (I - Kymid([C])) Py, (19)

In summary, the UBIKF allows to find a gain matrix Ky, a
covariance upper bound fP;l' and an interval state estimate
[Xx]T at each iteration such that for any real matrices Ay,
Ck, @, R belonging to the interval matrices [Ax], [Ck], (@],
[R], we have:

e Ix]

P < PF
where )A(z and P,j are the state estimate and the covariance
matrix given by the Kalman filtering procedure for the
linear system (Ag, Ck, @, R) and the gain matrix Kj.
The proposed filter has the similar objective as Xiong
et al. [2013], i.e. to bound the set of all state estimates.
Nevertheless, it should provide less conservative results
since the gain matrix is punctual and so the conservatism
of interval analysis is reduced. This is illustrated in the
case study of Section 5.

(20)

5. NUMERICAL EXAMPLE

The filter proposed in this paper is applied to a state es-
timation problem of a typical proton exchange membrane
fuel cell system (PEMFC). The main components of the



system are shown in Figure 1. The fuel cell converts the
chemical energy into electricity by consuming oxygen and
hydrogen provided by air and hydrogen supply system.
The linear model used in this paper can be found in Ro-
tondo et al. [2016]. It is derived from the nonlinear model
presented in Pukrushpan et al. [2004] under the following
assumptions: the stack temperature Ty; is constant; the
temperature and humidity of the inlet reactant flows are
perfectly controlled; the anode and cathode volumes of
multiple fuel cells are lumped as a single stack anode and
cathode volumes; all the reactant behave as ideal gases.

State variables m,
| H2 Load
nput m
Intermediate variables van
Measurements Mgy, st |

Ban ~ _

1
<] o o e [P
Hp tank Tet

&»{ Cooler HHunudMBr}—j; T

Compressor } }

IH

02 MN2 Myca Brm Bsm Pea

Wep Wep

Fig. 1. Fuel cell system

The stack current I is considered as the system input.
A state space representation of order 9 is presented in
Rotondo et al. [2016] with the following state variables:
mass of oxygen (mop,), mass of hydrogen (mpg,), mass of
nitrogen (mp,), air mass in the supply manifold (mgp,),
air pressure in the supply manifold (ps,), air pressure in
the return manifold (p;., ), compressor speed (w,p), mass of
water in the anode (my, 4 ) and in the cathode (My, ¢q). An
Euler discretization has been performed with the sample
time Ts = 0.04s to obtain the following discrete model:

{Xk-H = Apxp + Bils ) + Dy + Wi, (21)

Yi = Crpxp + Vi,

where wj, and vy are zero-mean Gaussian process noise
and measurement error vectors. The measured outputs of
the system are compressor speed (wcp), mass of oxygen
(mo,), mass of hydrogen (mpg,), mass of nitrogen (mpy,),
air pressure in the supply manifold (ps,), air pressure in
the return manifold (p;.,), pressure in the anode (paun),
pressure in the cathode (p.q). The covariance matrices @
and R of process noises and measurement errors are given

by:

Q = diag(10~'%;107 12,107 2,107 12; 10%; 10%; 10; 107 125107 12),
R = diag(10;1071%,10719,10710: 102, 102; 102).

A test with time-varying parameters has been designed.
The elements ay; (first line), ag; (second line), and az;
(seventh line) of the matrix Ay oscillate with sinusoidal

1073

—— Real state Q P9 B
. ) A ,I R
92 1| —e— LB iIKF “ \ 7% i’ 5|
—o— UB {IKF [ 84 ¥
o) g
—— LB UBIKF ,,g,j
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1.8 AW /.-»‘\ |
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. e b/ &l\.;i) \c'f" \e‘—
2 5
. 16 [l n
Q [If
S

MH, [kg]

Fig. 2. Real state and 99.7% confidence intervals (upper
bound (UB) and lower bound (LB)) given by iIKF
and the UBIKF for mass of oxygen mo, and mass of
hydrogen mp,.

law having the magnitude of 5% of their nominal values.
These variation laws are assumed unknown and must be
considered as uncertainties by the filters. The interval
matrix [Ax] containing all admissible parameters is chosen
as follows:

mid([Ag]) = A}, rad([A]) = 0.05|A7],

(22)



where AY is the nominal value of A given in Rotondo
et al. [2016].

Moreover, the compressor speed sensor, mass of hydrogen
sensor, mass of oxygen sensor are assumed to provide 2% of
uncertainty. Therefore, the interval matrix [Cy] is defined
as:

mid([Cy]) = CY , rad([C]) = 0.02[CF],

where C¥ is the nominal value of C.

(23)

The covariance matrix of process noise is considered to
be certain, i.e. [Q] = @, while the measurement error
covariance matrix is assumed to be uncertain with 50%
uncertainty.

mid([R]) = R , rad([R]) = 0.5|R|. (24)
Besides, this numerical example is also tested with the
improved interval Kalman filter (iIKF) presented in Xiong
et al. [2013]. The results of this algorithm are compared
with those of the UBIKF in Figure 2 and in Table 1,
including the root mean square error (RMSE) for each
state, the percentage of time steps when the confidence
interval contains the real state O, and the computational
time (for 7500 time steps). Both of these two filtering
algorithms have the same goal to provide the envelopes
of the set of all possible state estimates of the filtering
problem in a linear system with bounded uncertainties.
The 99.7% confidence intervals 2 given by these two filters
(Figure 2) enclose the real states at every time step (O =
100%). The confidence intervals of the proposed filter are
tighter than those given by iIKF. Moreover, the gain in
computational time of the new filter compared to iIKF is
about 3.8 (Table 1). These advantages come from the fact
that the UBIKF deals with the real matrices while the
iIKF applies the constraint satisfaction problem and the
set inversion techniques for interval matrices. Therefore,
the UBIKF allows to obtain less conservative result with
reasonable computational time.

Table 1: Results of the iIKF and the proposed UBIKF

o, iy “o ! Time

RNSE | O(%) | RMSE | O[%] | RMSE | 0(%)
IKF [ 54107 100 [ 15107 ] 100 | 156 | 100 |511s
UBIKF [ 481077 100 [ 14107 | 100 | 177 | 100 | 133

The initial interval Kalman filter in Chen et al. [1997] has
also been applied to this example. The results given by
this algorithm diverge due to the large uncertainties in
the model.

6. CONCLUSION

This paper presents an efficient method to find a positive
definite upper bound of an interval matrix, that is applied
to propose an interval filter for uncertain linear systems.
This approach allows to bound the set of all possible state
estimations given by the Kalman filtering structure for any

2 The 99.7% confidence intervals of a multivariate Gaussian distribu-

tion N (u,X) are {p, —3+/diag(Z), pu + 34/ diag(Z)} . For UBIKF,

the 99.7% confidence intervals are computed using the box [%z]T
and the upper bound of the covariance matrix.

admissible parameter uncertainties. It has been applied
to a model-based state estimation of a PEMFC and has
been compared with the improved interval Kalman filter
Xiong et al. [2013]. The new filter provides convergent
state confidence intervals with reasonable width and small
computational time.

Further work will target complexity analysis of the pro-
posed filter and the other interval Kalman filters. It will
give a theoretical result about the computational time of
the considered filtering algorithms.
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