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Abstract

We propose a method to exploit the symmetries of a real-time system repre-
sented by a Time Petri net for its verification by model-checking. The method
handles both markings and timing constraints; it can be used in conjunction
with the widely used state classes abstraction, a construction providing a finite
representation of the behavior of a Time Petri net preserving its markings and
traces. The approach has been implemented and experiments are reported.
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1. Introduction

Symmetry reduction aims at exploiting the symmetries of a system in or-
der to explore its state space more efficiently. Instead of enumerating all the
reachable states, one enumerates equivalence classes of states w.r.t. the sym-
metry relation. When applications have some symmetric structure—and large
applications typically have—this provides an effective way to fight combinatorial
explosion.

The idea of exploiting symmetries can be traced back to studies in program
verification and analysis of high-level Petri nets. Symmetry reduction has been
used since in a variety of contexts and a number of tools support symmetries,
whether inferred or structural, including e.g. [20, 12, 30, 29]. Symmetry reduc-
tion can be further combined with other reduction techniques, such as stubborn
sets or covering steps. Combining symmetries with symbolic analysis based on
decision diagrams has been investigated for some models [14] but, in spite of
some results, they seem harder to accommodate with such approaches than with
enumerative methods.
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In this paper, we propose a symmetry reduction method for a state space
abstraction technique for real-time models with dense time semantics, the State
Class Graph (SCG) construction for Time Petri nets [3, 2].

Time Petri nets [23] (TPN for short) are a widely used model for analysis
of real-time systems. Time Petri nets enrich Petri nets with time intervals as-
sociated with the transitions of the net. These intervals specify the possible
time delays between last enabledness of the transitions and their activation.
Time Petri nets have been used for a variety of verification tasks, including
model checking, scheduling analysis or evaluation [11, 33, 22] in a variety of ap-
plication domains like communication protocols, real-time systems, biochemical
networks, etc. Compared to the prominent model of Timed Automata, bounded
TPN have the same expressiveness in terms of timed language acceptance, but
are less expressive in terms of timed bisimulation [1], unless enriched with pri-
orities [4]. They benefit of well established analysis methods, based for most on
the state class construction of [3], and of several mature tools [5, 16, 10].

TPN can be interpreted over discrete time or over dense time. While sym-
metry reduction of discrete Time Petri nets can be seen as a straightforward
extension of symmetry reduction of (untimed) Petri nets (it was available in the
INA tool [32]), symmetry reduction for dense time Time Petri nets is more chal-
lenging. When interpreted over dense time, state spaces are typically infinite
and finite representations are obtained through time abstractions. The time in-
formation is typically represented by systems of difference constraints with their
variables associated with the transitions of the net. Some results are available
on symmetry reduction for Timed Automata [19, 35], but none is available so
far for dense time Time Petri nets.

Our contributions. We have developed and implemented a symmetry reduction
technique for the most commonly used state space abstraction for Time Petri
nets, known as the state classes construction. First, we make some technical
contributions, with the definition of a total order relation between symmetry
equivalent transitions (Section 5) that relies on an invariant on the systems of
difference constraints capturing time information. A second, more practical,
contribution is a high-level structural approach for declaring the symmetries of
a net (see Section 4) in a way enabling efficient (polynomial) computation of
canonical representatives for state classes, using the previous ordering.

Outline of the paper. We start with some information on Time Petri nets and
their analysis techniques. In Section 3, we extend the symmetry reduction ap-
proach for Petri nets to dense-time Time Petri nets. Our approach to symmetry
reduction of TPN is presented in Section 4; it describes a compositional method
to build large nets from smaller components, together with their symmetries,
associated with a method for computing state class representatives. The main
technical result of the paper is found in Section 5, a total order between symme-
try equivalent state classes. Section 6 presents a preliminary implementation of
our method integrated into the Tina toolbox [5] and some experimental results.
Some possible extensions of this work are discussed in the conclusion.
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2. Time Petri nets

A Time Petri net [23] (or TPN) is a Petri net in which transitions are
decorated with time intervals that constrain the time a transition can fire.

Let II be the set of non-empty real intervals with their endpoints in IN∪{∞}.
A TPN is a tuple 〈P, T,Pre, Post, m0, Is〉 in which:

• 〈P, T,Pre,Post,m0〉 is a Petri net, with P the set of places, T the set of
transitions, m0 : P → IN the initial marking, and Pre, Post : T → P →
IN the precondition and postcondition functions.

• Is : T → II is a function called the static interval function.

For additional modeling expressiveness, Time Petri nets can be enriched with
inhibitor arcs and read arcs (testing absence or presence of tokens in a place,
respectively), preemption, priorities or external synchronized data processing.

2.1. Semantics

A marking is a function m : P → IN. A transition t ∈ T is enabled at m iff
m ≥ Pre(t) (we use the pointwise comparison between functions). We denote
EN (m), or simply E(m) when N is clear from context, the set of transitions
enabled at m in net N .

A state of a TPN is a pair s = (m, I) in which m is a marking and I : T → II
is a partial function, called the (dynamic) interval function, that associates a
temporal interval with every transition enabled at m. For i ∈ II, ↓i denotes
its left end-point, and ↑i its right end-point or ∞ if i is unbounded. For any
θ ∈ IR≥, let i .− θ = {x− θ|x ∈ i ∧ x ≥ θ}.

Definition 1. The semantics of a TPN 〈P, T,Pre,Post, m0, Is〉 is the timed
transition system SG = 〈S, s0,→〉 where:

• S is the set of states of the TPN;

• s0 = (m0, I0) is the initial state, where m0 is the initial marking and I0
is the static interval function restricted to the transitions enabled at m0;

• → ⊆ S × (T ∪ IR≥)× S is the state transition relation; (s, a, s′) ∈ → is

written s
a−→ s′. For any t ∈ T and θ ∈ IR≥, we have:

(i) (m, I)
t−→ (m′, I ′) iff:

1) t ∈ E(m)
2) m′ = m−Pre(t) + Post(t)
3) 0 ∈ I(t)
4) (∀k ∈ E(m′))((A(k) ∧ I ′(k) = I(k)) ∨ (¬A(k) ∧ I ′(k) = Is(k)))
where A(k) = k 6= t ∧ k ∈ E(m−Pre(t))

(ii) (m, I)
θ−→ (m, I ′) iff:

5) (∀k ∈ T )(m ≥ Pre(k)⇒ θ ≤ ↑I(k) ∧ I ′(k)=I(k) .− θ)
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The state transitions labeled over T (case (i) above) are the discrete tran-
sitions, those labeled over IR≥ (case (ii)) are the continuous, or time elapsing,
transitions. A net transition t may fire from (m, I) if t is enabled at m and
firable instantly (0 ∈ I(t)). In the target state, the transitions k that remained
enabled while t fired (t excluded) retain their intervals. Such transitions k are
said to be persistent (w.r.t. t,m, if not clear from context). The remaining tran-
sitions, among those enabled at m′, are associated with their static intervals,
they are said to be newly enabled (w.r.t. t,m). A continuous transition by θ is
possible from (m, I) if and only if θ is not larger than ↑I(k) for any transition
k ∈ E(m).

Because there may be an infinite number of continuous transitions, the state
spaces of TPN are generally infinite, even when the net is bounded (its set of
reachable markings is finite). To model check them, one needs finite abstractions
of the state graphs.

Definition 1 gives a dense time semantics to Time Petri nets. TPN can also
be given a discrete time semantics by enforcing θ ∈ IN in continuous transitions.

Finally, TPN states (whether in dense or discrete time) can be defined
in terms of clock functions instead of firing interval functions, the clock of a
transition being the time elapsed since it was last newly-enabled. Clock func-
tions γ may be used to denote interval functions, since we have at any state
I(t) = Is(t)

.−γ(t), but the mapping is only surjective: when Is(t) is unbounded,
several γ(t) may obey that equation.

2.2. The State Class Abstraction

The State Class Graph (SCG for short) is a finite abstraction of the state
graph SG that abstracts time elapsing transitions but preserves its markings
and traces; the SCG embeds the reachability graph of the TPN.

The temporal information in states can be conveniently seen as firing do-
mains rather than interval functions: the firing domain associated with interval
function I is the set of real vectors {φ|(∀i)(φi ∈ I(i))} (φi is the coordinate of
φ associated with transition i).

The State Class Graph construction of [3, 2] defines inductively a set of
classes Cσ, where σ ∈ T ∗ is a sequence of discrete transitions firable from the
initial state. Intuitively, the class Cσ collects the states reachable after firing the
sequence σ, abstracting delays. State classes are represented by pairs (m,D),
where m is a marking and the firing domain D is described by a finite system of
linear inequalities. We say that two state classes C = (m,D) and C ′ = (m′, D′)
are equal, denoted C ∼= C ′, if m = m′ and D ⇔ D′ (i.e. D and D′ have equal
solution sets).

Algorithm 1 (Construction of the SCG [3]).
The SCG is the set of classes (Cσ)σ∈T∗ obtained as follows:

• The initial class Cε is (m0, D0), where D0 is the domain defined by the
set of inequalities {↓Is(t) ≤ φt ≤ ↑Is(t) | t ∈ E(m0)}.

• If σ is firable and Cσ = (m,D), then:

4



- σ.t is firable iff:

1. m ≥ Pre(t) (t is enabled at m)

2. system D ∧ F is satisfiable, where F = {φt ≤ φi | i 6= t ∧ i ∈ E(m)}

- Cσ.t = (m′, D′) where

m′ = m−Pre(t) + Post(t)

D′ is obtained from D in three steps:

1. The above conditions F are added to D;

2. For each k enabled at m′ a new variable φ′k is introduced, obeying:
φ′k = φk − φt if k persistent w.r.t. t,m
↓Is(k) ≤ φ′k ≤ ↑Is(k) otherwise

3. Variables φi are eliminated (using e.g. Fourier-Motzkin elimination).

The firing domains obtained by Algorithm 1 can be represented by systems of
difference constraints, or difference systems for short, that is sets of inequalities
of the form αi ≤ xi, xi ≤ βi or xi − xj ≤ γi,j , where αi, βi and γi,j are bounds,
associating a rational constant with a comparison operator in {≤, <,≥, >}.
Such systems, often represented by Difference Bound Matrices, admit canonical
forms that can be computed in polynomial time (see e.g. [26]).

The SCG is certainly the best known and most widely used state space
abstraction for Time Petri nets. It is finite if and only if the TPN admits a
finite number of reachable markings, and it preserves both the markings and
traces of the net [3, 2] and so is suitable for Linear Time Temporal Logic (LTL)
model checking.

If only marking reachability properties are of interest, instead of the SCG
one may use a typically coarser abstraction referred to here as SCG⊆ [7]. Let
us say that class (m,D) is included in class (m′, D′) when m = m′ and the
solution set of D is included in that of D′. The SCG⊆ is built like the SCG,
except that classes related by inclusion are merged; this coarser construction
preserves markings but over-approximates traces.

In the remainder of the text, we simply use the name of the transition, say
t, as a shorthand for the firing domain variable φt associated with transition t.

3. Symmetry Reduction of TPN

3.1. Symmetries in state classes graphs

This section defines symmetries on Time Petri nets and state class graphs.
The terminology and Theorem 1 are straightforwardly adapted from [31, 27].

Definition 2. A symmetry of a TPN 〈P, T,Pre,Post,m0, Is〉 is a permutation
π of P ∪ T that preserves node types, preconditions, postconditions and static
intervals. That is:
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1. (∀x)(x ∈ P ⇔ π(x) ∈ P )

2. (∀t, p)(Pre(t)(p) = Pre(π(t))(π(p)))

3. (∀t, p)(Post(t)(p) = Post(π(t))(π(p)))

4. (∀t)(Is(t) = Is(π(t)))

The set SN of all symmetries of TPN N forms a group under function
composition. Recall that TPN states are pairs (m, I) where m is a marking and
I is an interval function. Given a symmetry π of a TPN, let us define:

• the action π(m) of π on m by (∀p ∈ P )(π(m)(p) = m(π−1(p)))

• the action π(I) of π on I by (∀t ∈ T )(π(I)(t) = I(π−1(t)))

• the action π(m, I) of π on a state (m, I) by π(m, I) = (π(m), π(I)).

The symmetries of a TPN induce symmetries of its state space:

Lemma 1. Let N be a TPN and SG = 〈S, s0,→〉 its state graph. Let π be
some symmetry of N . Then for all t, θ,m,m′, I, I ′:

1. (m, I)
t−→ (m′, I ′)⇔ π(m, I)

π(t)−→ π(m′, I ′)

2. (m, I)
θ−→ (m′, I ′)⇔ π(m, I)

θ−→ π(m′, I ′)

Proof. 1. We have to prove that conditions 1 to 4 in Def. 1 are preserved by
application of a net symmetry. For conditions (1) and (2), this is proved
in [31] (Lemma 1). For (3) and (4), similarly, this is straightforward from
the definitions of actions.

2. From [31] we have: (∀k)(m ≥ Pre(k) ⇔ π(m) ≥ Pre(π(k))), and then
from the definition of actions, π(I)(π(k)) = I(k) for any I and k. Hence
(2) holds.

Two states s and s′ are equivalent with respect to SN , written s ≈ s′, iff
there is a symmetry π ∈ SN such that π(s) = s′. Relation ≈ is an equivalence
relation; the equivalence class of any s by ≈ is finite and is called the orbit of s.
Orbits of places and orbits of transitions are defined similarly.

For model checking purposes, defining symmetry reduction on states would
be of little help since TPN typically have an infinite number of states. Fortu-
nately, Lemma 1 carries over to the state class abstraction of TPN.

If π is a TPN symmetry, we define π(D) as the set of solutions of D in which
each variable t is replaced by π(t). Likewise the action π(m,D) of π on a class
(m,D) is defined by π(m,D) = (π(m), π(D)) and state class equivalence by
(m,D) ≈ (m′, D′)⇔ (∃π ∈ SN )(π(m,D) = (m′, D′)).

Let SCG≈ denote the state class graph built like the SCG in Algorithm
1, but retaining only one state class per orbit. A marking m is symmetric iff
(∀π ∈ SN )(π(m) = m). The following theorem shows how symmetries help
reachability analysis of TPN by the state classes method:

Theorem 1. Assume π is a symmetry of a TPN. Then for all t,m,m′, D,D′:
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1. (m,D)
t−→ (m′, D′)⇔ π(m,D)

π(t)−→ π(m′, D′)

2. if m0 is symmetric, then for any state class C:
C ∈ SCG⇔ (∃C∗ ∈ SCG≈)(C ≈ C∗)

Proof. (1) directly follows from the definition of actions on state classes. (2)
is proved by induction on the firing sequences of the SCG.

3.2. Applying Symmetry Reduction

There are two main issues to be solved when trying to put symmetry re-
duction to work: identifying the symmetries of the model (the TPN here) and
deciding when two states (state classes here) are equivalent.
Detecting symmetries: detecting net symmetries amounts to compute all net au-
tomorphisms, a problem known to be at least as hard as the graph isomorphism
problem [27]. For this reason, many implementations of symmetry reduction
rely on some static symmetry information provided by the user. Murϕ [20],
for instance, makes use of a dedicated “scalarset” type, also used in [19]. In
high level Petri nets, symmetries are deduced from the syntax of inscriptions.
On the other hand, some tools [29] compute these automorphisms from nets
automatically with acceptable performances on average.

In our implementation, described in Sections 4 and 6, nets are described hier-
archically as compositions of smaller nets, the composition operators specifying
both the architecture of the net and a symmetry.
Checking state equivalence: There are basically two methods for checking equiv-
alence ≈ on states (or state classes here): comparing a new state for ≈ pairwise
with all computed states, or computing from the state a representative state
and storing only these.

In [27, 28], three implementations of equivalence checking are discussed.
All assume that the symmetry group is available, but no particular structure is
assumed for it; all symmetries are handled uniformly. The first method, referred
to as “iterating the symmetries”, amounts to applying all possible symmetries
to the new state and to check if the result state has been stored yet. The set
of symmetries to be applied is reduced thanks to particular representations of
symmetries and of the set of stored states. The second method, “iterating the
states”, amounts to find a symmetry such that applying it to some stored state
yields a state equal to the new state. The method relies on so-called symmetry-
preserving hash functions. A third method relies on state representatives; it
takes advantage of the same representation of symmetries as the first method
to find a minimal form for the new state. The minimal states computed are
not necessarily canonical though; there may be several representatives per state
orbits. The work presented in [21] builds upon these algorithms and proposes
some improvements. The experiments discussed in [21] suggest that the third
algorithm typically yields the best results.

On the other hand, the methods relying on scalarsets [20, 19] or similar
structural techniques trade generality for efficiency. Scalarsets may only ex-
press particular groups of symmetries, typically full symmetries in systems of
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processes (those resulting from all process permutations). As a consequence,
canonical representatives can be efficiently computed for states.

Among the methods proposed in [27, 28], the first two would be applicable
to state classes as well since they only require to be able to compare states for
equality; this is yet unclear for the third method which relies on a total ordering
of states. But these methods do not obviously lead to efficient implementations;
this is substantiated by our experimental data in Section 6. Though technically
different, our reduction technique is closer to those relying on scalarsets; the
symmetries are declared, and restricted to those admitting a polynomial time
algorithm for computing canonical representatives (see e.g. [15]). The approach
is presented in the next section.

4. Describing symmetries compositionally

Large systems are typically built by assembling components, possibly repli-
cated. Replication typically induces symmetries of their state spaces [24, 34].
We wish to take advantage of the structure of a net, made explicit by construc-
tion, to compute and handle the symmetries of its state space.

In our approach, nets are described hierarchically as compositions of smaller
nets. Symmetries are introduced by adhoc composition operators. Each builds
a net from a replicated component and simultaneously specifies a component
symmetry. The approach is presented in this section and illustrated in Section 6.

4.1. Decomposition and composition of TPN

Petri nets based models admit several natural decomposition into subnets.
Nets can be decomposed from a partition of their places, or of their transitions,
or of their arcs. We use the first form; from a partition of places: the subnet,
or component, defined by block b of the partition is constituted of the places in
b, their adjacent arcs, and the transitions connected to these arcs. Transitions
may occur in several components (with their Pre and Post functions spread
among these) while each place may only occur in a single component;

The corresponding composition operator is the synchronized product of nets,
reviewed in the sequel. Synchronized products are pervasive in the study of
formal models for concurrency (e.g. Process calculi, networks of automata,
etc); for Petri nets, it was introduced in [17]. For easing the specification of
synchronizations among components, the transitions of nets are assumed to be
labeled over an alphabet of actions Σε = Σ ∪ {ε}, with ε 6∈ Σ. Σ is the set of
visible, or observable, actions; ε is the silent, or internal, action.

Definition 3 (Labeled Petri net). A labeled Petri net is a tuple
〈P, T,Pre,Post,m0,Σε, L〉 in which:

• 〈P, T,Pre,Post,m0〉 is a Petri net,

• Σε = Σ ∪ {ε} is a finite alphabet of actions, with ε 6∈ Σ.

• L : T → Σε is a function called the Labeling function.
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Definition 4 (Synchronized product). Consider two labeled Petri nets not
sharing any place or transition: N1 = 〈P1, T1,Pre1,Post1,m

0
1,Σ

ε
1, L1〉 and

N2 = 〈P2, T2,Pre2,Post2,m
0
2,Σ

ε
2, L2〉. Their synchronized product N1 | N2 is

the net N = 〈P, T,Pre,Post,m0,Σε, L〉 obtained as follows:

• P = P1 ∪ P2

• m0(p) = if p ∈ P1 then m0
1(p) else m0

2(p)

• Σε = Σε1 ∪ Σε2

• For each i ∈ {1, 2}, T contains all transitions t ∈ Ti such that Li(t) 6∈
Σ1 ∩ Σ2, with:

For each p ∈ P :

Pre(t)(p) = if p ∈ Pi then Prei(t)(p) else 0

Post(t)(p) = if p ∈ Pi then Posti(t)(p) else 0

L(t) = Li(t)

For each (t1, t2) ∈ T1 × T2 such that L1(t1) = L2(t2) 6= ε, T contains a
transition, referred to as (t1, t2), with:

For each p ∈ P :

Pre((t1, t2))(p) = if p ∈ P1 then Pre1(t1)(p) else Pre2(t2)(p)

Post((t1, t2))(p) = if p ∈ P1 then Post1(t1)(p) else Post2(t2)(p)

L((t1, t2)) = L1(t1)

T contains no other transitions than those specified above.

Product | is commutative and associative; it is also compositional (the se-
mantics of a product of nets is obtained from the semantics of its constituents).
It can be extended to TPN [4].

A language for building nets from components. A net with no particular struc-
ture made explicit, holding at least a place and its connected edges and tran-
sitions, or a single transition, is called a basic net. Our nets will be built,
hierarchically, as synchronized products (denoted |) from basic nets. For con-
venience, a relabeling operator allowing to hide or change the label of some
transitions may be provided (as in the CCS process calculus, for instance), as
well as derived product forms like free products or iterated products replicating
a component before composing the copies.

Such a language of net expressions has been available for a long time in the
tool Tina [5]. Examples of nets built this way will be given in Section 6. We
discuss now the introduction of symmetries in our language of components.
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4.2. Describing nets together with their symmetries

Nets built from replicated components typically exhibit symmetries. Con-
sistently with our structural description of nets, we want to declare component
symmetries when building nets rather than computing net symmetries after-
wards. This will be done by enriching our language of net operators by specific
operators for the most common kind of symmetries (full symmetries, circular
symmetries, cube symmetries, for instance). These operators will work as itera-
tors replicating a component, and simultaneously enforcing a symmetry among
the copies, resulting in a net together with a description of its symmetries.

The approach is discussed in [9] in a general setting. In this paper, and for
the purpose of illustrating our symmetry reduction method for Time Petri nets,
we will use here a simplified version. The simplification consists of limiting the
symmetry declarations to full symmetries and cyclic symmetries and, for full
symmetries, preventing synchronizations between the components involved. An
additional restriction on products will be made precise shortly.

The previous net expressions are enriched with two operators: Pool and
Ring. Both take an arity n and a net C as parameters: Pool(n,C) stands
for the free product of n independent copies of net C with the symmetries
resulting from transpositions of the pool components – Ring(n,C) stands for
the synchronized product of n copies of C after a conventional renaming of
transitions ensuring synchronization of a ring element with its neighbors. The
symmetries are those resulting from cyclic permutations of the ring components.

Our enriched language of net expressions is thus (|||||| stands for the free prod-
uct and ΘΘΘ is an unspecified family of relabeling operators):

N ::= B | N|||N | N||||||N | NΘΘΘ | PoolPoolPool (n,N) | RingRingRing (n,N)

For example, the expression (RingRingRing(8, P ) ||| Q ||| PoolPoolPool(3, R)) denotes the net
obtained by synchronizing a ring of 8 instances of component P with component
Q and a pool of 3 instances of component R.

Such expressions simultaneously describe a net and its group of symmetries,
compositionally. In synchronized products of nets, we will assume the additional
restriction, easily checked statically, that one transition at least in each pair of
transitions synchronized must be invariant under the action of the symmetries of
its component. Then, the group described can be built in terms of cyclic groups,
symmetric groups, disjoint products of groups and wreath products of groups.
These group constructions all belong to the so-called easy groups [13]; computing
canonical representatives for their elements can be done in polynomial time.

Compared to the treatment of Lola [29], for instance, our nets will only
exhibit the symmetries declared, while Lola will compute all symmetries. But
Lola fails to capture the structure of the group of symmetries, which prevents
application of efficient reduction techniques known for some particular groups.
The benefits of the knowledge of the group structure will be clear from the
experiments presented in Section 6, which include a comparison of our reduction
results with those obtained by Lola.
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4.3. Checking marking equivalence in Petri nets

Our approach for checking state equivalence relies on canonical representa-
tives for states, and specifically in computing the lexicographically least elements
of state orbits [13]. For the Petri nets described as in Section 4.2, we could pro-
ceed as follows; the treatment is extended to Time Petri nets afterward.

The states of a Petri net are its markings; transitions express state changes
but do not contribute themselves to the state information. Computing canonical
representatives for marking, modulo the symmetries considered, can be done in
polynomial time; canonization of a marking m is performed recursively from the
group description derived for the net:

– For symmetric groups (pools): By construction, components are disjoint
(do not interact) and isomorphic since obtained by replication. All place and
transition orbits are of size n (the number of components involved in the pool).
Clearly then, the pool marking m can be represented by a matrix in which
column i holds the markings of the places in component i and line j holds the
markings of all places in some place orbit j.

Then, the canonical representative for marking m represented this way is
obtained by sorting its columns lexicographically (that is by sorting the local
states [13]). The component permutation that sorts the columns defines a sym-
metry π of the net; the canonical representative of m is π(m). One can always
find an ordering on the places of the net such that the representatives are the
least markings in their orbits.

– For cyclic groups (rings): Even though the ring components interact, they
are still isomorphic, so we can use for markings the same matrix representation
used for symmetric groups. Then, a cyclic permutation ρ of components (of the
columns of the matrix M representing marking m) is computed that minimizes
lexicographically the vector of columns of matrix M. The canonical represen-
tative of m is π(m), where π is the symmetry of the net corresponding with
component permutation ρ.

– For products: Wreath products appear when a net with some symmetries
declared is iterated in a pool or ring construction. With the hypotheses of
Section 4.2, the symmetries of a product of nets, whether free or synchronized,
results in a disjoint product of groups. Classically [13], canonical representatives
for elements of such groups are built from the canonical representatives of their
constituents.

4.4. Checking state class equivalence in Time Petri nets

Time Petri nets are built using the same language of net expressions pre-
sented in Section 4.2. The information in state classes is richer than that cap-
tured by markings in Petri nets; states here are pairs (m,D), where m is a
marking and D is a firing domain. Firing domains can be classically repre-
sented by so-called Difference Bound Matrices (DBM for short). The DBM of
class (m,D) has size (n + 1) × (n + 1), where n is the number of transitions
enabled at marking m.

A naive way to compute the canonical representative of a state class (m,D)
would be to compute first a canonical representative for the marking and then
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one for the firing domain, represented by a DBM. For the marking, one can
proceed as explained in Section 4.3. For the DBM, the problem is discussed in
[18] for the clock DBM of Timed Automata: DBM can be seen as adjacency
matrices of some complete labeled digraphs; sorting DBM amounts to sort such
graphs, a problem known to be equivalent to the graph isomorphism problem.
So there is no hope to obtain an efficient canonization of state classes along this
path.

Fortunately, we can abstract the information conveyed by firing domains in a
way that allows computing representatives for state classes by a simple extension
of the method used in Section 4.3 for markings. The method relies on a total
order �D between transitions that are equivalent by symmetry (are in the same
orbit) and enabled at state class (m,D). A suitable order is developed in the
next section; the idea is inspired by [19] in which clocks of Timed Automata
zones are compared using their last reset date. The handling of time in TA is
quite different from that in TPN, however, and the zone constructions of TA
significantly differ from the state class constructions of TPN, so we cannot reuse
the clock order of [19] and had to investigate a specific one for state classes.

Computing canonical representative for state classes. Given such an order, �D,
one can compute the canonical representative of class (m,D) as follows.

Recall that, in Section 4.3, markings were presented as matrices M such that
column i is the local marking of component i and line j holds the marking of all
the places in orbit j. Similarly, and for the same reasons (the components of a
pool or ring are isomorphic), the set e of transitions enabled at some marking m
(the time information in a state class is associated with these transitions only)
can always be represented by a matrix E in which column i holds the transitions
of component i, and all transitions in line j are in the same transition orbit.

Then, instead of simply comparing the columns of M as in Section 4.2,
we compare lexicographically pairs (mi, ei) in which mi (resp. ei) is the ith

column of M (resp. E). If the marking elements differ then we are done,
otherwise we must compare the transition elements; these are compared with
the lexicographic order on �D. Sorting a state class (m,D) abstracted this way
yields a permutation π of the net; the canonical representative of the class is
π(m,D).

We now focus on the development of the total order �D for a class (m,D).

5. Ordering State Classes

First, for any state class (m,D), we define a total order relation �D between
transitions enabled at m and equivalent by symmetry (≈). Afterwards, this
relation is used to define a total order between equivalent state classes.

Intuitively, we will have t �D t′ if the transition t stayed enabled longer
than t′ (since their last enabling date) in the execution that led to class (m,D).
However, the information on the last enabling date of a transition cannot be
reconstructed from the firing domain of a class, which mandates several technical
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results to define the ordering relation. Ultimately, the definition of �D will be
based on an invariant on firing domains. This is the goal of Section 5.2.

5.1. Closure Form of Firing Domains
The firing domains computed during the SCG construction (see Algorithm 1)

can always be written in a standard form, as follows. For every pair of transi-
tions t, t′ that are enabled in a class (m,D), we have the following inequalities
in D:

αt ≤ t ≤ βt and t− t′ ≤ γt,t′ (t 6= t′)

The bounds αt, βt and γt,t′ exactly define the domain D (a class with n enabled
transitions has n · (n+ 1) bounds). Also, by construction, when t is newly
enabled in the class (m,D), we have αt = ↓Is(t) and βt = ↑Is(t). These are the
static timing constraints for t; we use the notation αst and βst for these values
afterward.

We can improve the standard form of D by choosing in the above represen-
tation the tightest possible bounds preserving the associated solutions set. In
this case we say that D is in closure form. The closure form provides a normal
form for firing domains. Indeed, two domains are equal if and only if they have
the same closure form. Another advantage of using closure forms for repre-
senting class domains is that they can be computed incrementally with O(n2)
complexity; Lemma 2 below is proved in [8].

Lemma 2 (Computing firing domains). Assume C = (m,D) is a class
with D in closure form. Then for every transition t in E(m) there is a unique
class C ′ = (m′, D′) obtained from C by firing t such that D′ is also in closure
form. Moreover D′ obeys the following constraints, for each distinct transitions
i, j ∈ E(m′):

β′i = βsi if i newly enabled,
β′i = γi,t otherwise
α′i = αsi if i newly enabled,
α′i = max(0,−mink∈E(m)(γk,i)) otherwise
γ′i,j = β′i − α′j if i or j newly en.,
γ′i,j = min(γi,j , β

′
i − α′j) otherwise

We can use this incremental construction to derive invariants on the coeffi-
cients of the firing domains when in closure form.

Lemma 3. For any class C = (m,D) with D in closure form, and for any
transitions i, j, k enabled at m, we have:

1. γi,j ≤ βi − αj 4. γi,j ≤ γi,k + γk,j
2. βi ≤ γi,j + βj 5. 0 ≤ αi ≤ αsi
3. αi ≤ γi,j + αj 6. 0 ≤ βi ≤ βsi
7. if C ′ = (m′, D′) is obtained from C by firing some

transition, then β′i ≤ βi
Proof. 1-4 follow from the fact that D is in closure form (bounds are tight).
5-7 are proved by induction on firing sequences using Lemma 2.
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5.2. A Total Order on Equivalent Transitions

We prove a general invariant on firing domains in closure form, obtained
during the SCG construction. This property makes explicit a relation between
transitions that have the same static timing constraints (αs and βs), which is
necessarily the case for equivalent transitions (symmetries must preserve static
intervals).

We say that two transitions i and j are equivalent for D, denoted i =D j, if
and only if, when transposing the transitions i and j in the system of difference
constraints D, we obtain a system D′ that has the same solution set.

Lemma 4. If D is in closure form then i =D j if and only if αi = αj, βi = βj,
γi,j = γj,i and for all transitions k distinct from i, j, (γi,k = γj,k ∧ γk,i = γk,j).

Our next property states a similar result for an ordering relation instead of
an equivalence. Assuming i 6= j, we say that i is before j, written i �D j, as
follows:

i �D j =def γi,j ≤ γj,i ∧ (∀k 6= i, j)(γi,k ≤ γj,k) (�-DEF)

Lemma 5. Assume (m,D) is a class obtained in the SCG construction and i, j
are two transitions with the same static time interval ( Is(i) = Is(j)). Then
i �D j implies αi ≤ αj, βi ≤ βj and for all transitions k distinct from i, j,
γk,j ≤ γk,i.

Proof. (full proof in Appendix) Lemma 5 is pictured in Figure 1 on a domain
represented by a DBM. It says that if i and j have equal static intervals then
the circled relations imply the boxed relations. The proof is by case analysis
and induction on the firing sequence leading to (m,D), using Lemmas 2 and 3.

A simple corollary of Lemma 5 is that the relation �D is antisymmetric for
every pair of equivalent transitions: we have that i �D j and j �D i implies
i =D j. Next, we show that the relation is also total. We can extend the �D
relation to the whole set of transitions (not only the enabled ones) by defining
that i �D j whenever i is not enabled.

Lemma 6. Assume (m,D) is a class obtained in the SCG construction and i, j
are two transitions enabled at m with the same static time interval ( Is(i) =
Is(j)). Then either i �D j or j �D i .

Proof. (full proof in Appendix) By case analysis. We have three cases to
consider. The first is when both transitions i and j are newly-enabled in (m,D)
(they were introduced simultaneously). It directly follows from Lemma 2. The
second is when one is persistent and the other is newly-enabled. It directly
follows from Lemmas 3 and 2. The last case is when both are persistent. It is
proved by induction by showing that the ordering between i and j is preserved
whatever the transition introduced next as long as both i and j stay persistent.
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Figure 1: Illustration of Lemma 5: ≥ imply ≥ .

5.3. A Total Order on Equivalent State Classes

Our results from Section 5.2 show that the relation �D totally orders equiv-
alent transitions. Checking i �D j at a state class (m,D) has quadratic time
complexity in the number of transitions enabled at m.

We take advantage of this relation to derive an order between equivalent
state classes. We say that a symmetry π is stable for a marking m (resp. for a
class (m,D)) if π(m) = m. Let C = (m,D) be some state class of the SCG. If
π is stable for C, then the class π(C) = (m,π(D)) is also a class of the net and
the firing domain π(D) has the same “variables” as D, but each transition i in
D is changed into π(i).

By definition of the relation �D (see equation �-DEF), it is easy to see that
i �D j if and only if π(i) �π(D) π(j). We use this property to define an order
relation �T between the firing domains obtained as the result of applying some
symmetry to domain D (such domains will be said to have the form π(D)).

We assume an arbitrary, total ordering ≤T over the transitions in T . For
any given permutation π stable for m we say that D �T π(D) if and only if
D = π(D) (that is t =D π(t) for all t in E(m)) or for the first transition t such
that t 6=D π(t), we have t �D π−1(t):

D �T π(D) =def (D = π(D)) ∨ (∃t)
(
t ≺D π−1(t) ∧ (∀k <T t)(k =D π(k))

)
The relation �T is analog to the lexicographic order built from ≤T and �D,

but our definition has the advantage to work with any domains of the form
π(D). Relation �T is a total order between equivalent firing domains.
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Next, assuming a total ordering ≤P over places P , we can easily build a
total order �P over markings.

From �T and �P we now define a total order � between equivalent classes.
Two classes C and C ′ are equivalent if there is a symmetry π of the net such that
C ′ = π(C). We say that (m,D) � π(m,D) if m �P π(m) or m = π(m)∧D �T
π(D) (that is � is a lexicographic order). We can observe that comparing firing
domains is conceptually far more complex than comparing markings, because
relation �D is tied to a particular domain whereas for markings we can merely
use the comparison between integer tuples.

Theorem 2. Let C = (Cσ)σ∈T∗ be the set of classes in the SCG construction
of a TPN. Then relation � is a total order between state classes equivalent for
≈ in C.

We have been very careful in our definitions of �T and � to avoid any
reference to a particular implementation of symmetries. Hence our results can
hold for different design choices.

6. An implementation

6.1. Computing experiments

The symmetry reduction method described in Section 4, relying on the or-
dering defined Section 5 when applied to TPN, has been implemented in an
extension of Tina2, an existing toolbox for analysis of Time Petri nets and
various extensions [5].

We report some experiments on a train-gate controller model, in both timed
and untimed versions, and on an example with compound symmetries. The nets
are built with the language of net expressions with symmetries introduced in
Section 4.2. Canonical representatives for markings in the untimed examples
and for state classes in the timed examples are computed exactly as explained
in Sections 4.3 and 4.4, respectively.

The timed version of the train-gate controller model is taken verbatim from
[6]. The untimed version is a slightly simplified version of a model found in [25].
In both cases the net models a level crossing: a number of tracks cross a road,
protected by a gate; when approaching and leaving the road the trains trigger a
signal sent to a controller that raises or lowers the gate as necessary. The safety
property to be ensured is, of course, that the gate is closed whenever a train is
crossing the road. In the timed version, this is ensured by time constraints on the
relevant events, while the untimed versions makes use of signal acknowledgments
and a shared green flag. In each case, the model is obtained by synchronizing a
gate model (right), a controller (middle) and a pool of tracks. The timed model
is represented in Figure 3 and the untimed one in Figure 2. The unit of time in
all tables is the second of CPU time on a typical workstation.

2Tina is available at http://www.laas.fr/tina, its experimental extension supporting sym-
metries is available at http://www.laas.fr/tina/symmetries.
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5

5

App

2

Exit

4
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5
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Raised

Down

Lowered

Green

far

tracks R (no sym.) R≈ (our) R≈ (lola)

5 size 1036 60 92
time (s) 0.00 0.00 0.01

10 1048598 290 18836
14.40 0.00 0.67

20 1.099×1012 1775 303830981
− 0.13 76221

50 1.267×1030 23430 −
− 9.42 −

100 1.606×1060 176855 −
− 225.18 −

Figure 2: Untimed level crossing example.

17



[0,0] Exit

far

[3,5]

[2,4]

App

[0,0]

Down
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2
[0,0]

Exit

[0,0]

Up

5

App

[0,0]
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2

5

4

5

tracks SCG SCG≈ SCG⊆ SCG⊆
≈

3 size 3101 578 172 41
time (s) 0.02 578 0.00 0.00

4 134501 6453 1175 76
1.67 0.15 0.02 0.00

5 8557621 84510 10972 143
179.33 2.61 0.38 0.01

6 697913229 1183782 128115 274
24346.77 46.95 8.37 0.02

7 7.278×1010 18143796 1772722 533
− 1060.21 614.38 0.07

8 9.262×1012 297205635 28208543 1048
− 25105.87 177602.90 0.16

10 − − − 4126
− − − 1.10

12 − − − 16420
− − − 8.29

14 − − − 65578
− − − 95.07

16 − − − 262192
− − − 1418.38

18 − − − 1048630
− − − 22407.25

Figure 3: Timed level crossing example.
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The results on the untimed models are shown in Figure 2. Columns R
holds the sizes of reachability sets, omitting symmetries, and their computing
times, for the models with the number of tracks specified in the first column.
Column R≈ (our) shows the sizes and computing time of the symmetry reduced
reachability sets computed by our tool. As can be observed, we obtain the
expected gains in size, as well as considerable gains in computing times. The
numbers in grey font have been obtained “analytically” by summing the sizes
of orbits of the symmetry reduced markings as building spaces of such sizes are
beyond the capabilities of our tool (which is based on enumerative approaches).

The last column shows the results of computing the symmetry reduced reach-
ability sets by the latest available version of tool LoLA (V2.0), which relies upon
the techniques of [29]. As can be seen, LoLA typically computes several rep-
resentatives per orbit. As a consequence, the gain on the number of states
obtained by symmetry reduction is much smaller than what we obtain with our
treatment. On the other hand, LoLA can extract more symmetries from nets
than we are able to express, and computes symmetries automatically from bare
nets. We have not been able to compare our results with those of [21].

The results on the timed models are shown in the table of Figure 3, for two
state class graph constructions. As in the untimed case, the grey numbers have
been obtained by summing the sizes of orbits of the symmetry reduced classes.

For the same number of tracks, the number of state classes of the timed
model (columns SCG and SCG≈) is much larger than the number of markings
in the untimed model. The gain obtained by symmetry reduction of state classes
is however similar to that obtained for markings in the untimed version, both in
terms of size of state spaces and computing times. It can also be observed that
the coarser construction of “state classes under inclusion” (columns SCG⊆ and

SCG⊆≈), only preserving markings (cf. Section 2) benefits of similar gains.

We conclude our experiments with a timed example featuring embedded
symmetries. The TPN considered is made of 6 copies of the net represented
Figure 4, with various symmetry declarations specified in the left column.

Omitting time information, the nets have factorized marking graphs of the
sizes indicated in column R≈. Columns SCG≈ and SCG⊆≈ show the effects of
symmetry reduction on the graphs of state classes for the various symmetry
descriptions. The last line shows the figures when no symmetries are speci-
fied: omitting time information, the net has then 64 markings and 384 transi-
tions; taking time information into account it admits 1 973 488 state classes and
11 285 976 transition(s) for the standard SCG construction and 1957 classes for
the coarser SCG⊆ construction,

These experiments, and many others conducted over the last months, con-
firm that reduction by symmetry, when applicable, is an effective way of fighting
combinatorial explosion. They are even more important for real-time models
since alternative abstractions like partial order methods, unfolding methods or
logic-based symbolic methods appear more difficult to apply on such models.
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[0,3] [1,2]

R≈ SCG≈ SCG⊆≈
symmetry description markings state classes state classes

Pool(6, N) size 7 5404 7
time (s) 0.004 0.36 0.004

Pool(3, N) || Pool(3, N) 16 72234 69
0.0 5.36 0.02

Pool(2, Pool(3, N)) 10 36154 35
0.0 2.86 0.01

Ring(6, N) 14 328984 327
0.01 25.71 0.08

Ring(3, N) || Ring(3, N) 16 221600 225
0.0 17.75 0.06

Ring(2, Ring(3, N)) 10 110860 113
0.0 9.72 0.03

Ring(3, N) || Pool(3, N) 16 126334 124
0.0 9.82 0.03

Ring(2, Pool(3, N)) 10 36154 35
0.0 2.91 0.01

Pool(2, Ring(3, N)) 10 110860 113
0.0 9.21 0.03

N ||N ||N ||N ||N ||N 64 1973488 1957
0.0 92.70 0.54

Figure 4: Component N and example symmetries.

20



Symmetry reduction allows one to perform verification of TPN faster and with
much less computing resources (a laptop may suffice where a large server was
required).

6.2. Towards richer symmetries

The preliminary implementation presented in the previous section forbids
interactions between components of a pool, which can be limiting. That restric-
tion can be relaxed: [9] introduces a construction that given a group specification
on component identifiers, an arity n, a component TPN N and an interaction
pattern between components, builds the net resulting from the synchronization
of n copies of N following the interaction pattern, with the symmetries arising
from the group specification on component identifiers.

Our component language for nets can be enriched to handle such construc-
tions. This would allow one to build richer models, such as the well known
Fischer protocol in which all components are in a full symmetry, but interact
with each others though a lock variable. However, if pool components are al-
lowed to interact, then it would not be true in general that the length of all
transition orbits are equal to the number of components in the pool, which
prevents to use the sorting method of Section 4.4 to compute canonical repre-
sentatives. Alternative, sub-optimal, methods could be used though. Note that,
since the lock variable in that protocol holds a process identifier, the Timed Au-
tomata model of the Fischer protocol in [19] does not fulfill either the conditions
ensuring that the canonization algorithm used in that work produces canonical
representatives.

7. Related work and Conclusion

In the context of Petri nets, symmetry reduction methods have been mostly
applied to Colored Petri Nets (and the problem of symmetries on data values).
The problem that we address in this paper is quite different. Concerning sym-
metries for real-time models, the only works we are aware of are on Uppaal [19]
and RED [35]. The latter combines logic-based symbolic exploration with sym-
metries and relies on over-approximations of the state space; so it uses different
methods than those discussed here. The treatment of symmetries for Timed
Automata [19] is closer in spirit to our work.

We developed a symmetry reduction method for the State Class Graph con-
struction of Time Petri nets. That, as far as we know, had never been attempted.
As appears from Section 5, the technical treatment differs significantly from
that of [19]. Actually the difference is not surprising since (going beyond the
difference between the models) the abstraction method for Timed Automata is
based on clock domains—that is on the time elapsed since a transition fired—
rather that on firing domains—that capture the time, in the future, when a
transition can fire. For TPN, the firing domain approach is more interesting
in practice since it yields smaller abstractions. Though not discussed in this
paper, our symmetry reduction approach can be applied as well to the alterna-
tive Strong SCG construction introduced in [6], based on clock domains rather
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than firing domains. This abstraction yields larger state spaces in general but
is required for handling some extensions of TPN, like priorities. The ordering
required for the Strong SCG construction is significantly simpler than that de-
rived in Section 5 for the SCG and, as one may expect, close to the ordering
used in [19].

We have several opportunities for extending our work. The pragmatic re-
duction approach proposed in Section 4 is useful in many cases, but forbidding
interactions between components of a pool is limiting. As mentioned in Sec-
tion 6.2, we could relax this restriction in our component language, but this
may prevent to compute canonical representatives with the optimal algorithm
discussed in Section 4.

There is room in our method, however, for integrating alternative algorithms
for computing representatives if required by some component. In our treatment,
the canonization algorithm used for pool components could depend on the fea-
tures of the net described, using the optimal algorithm of Section 4 if components
do not interact, or some sub-optimal algorithm when they do.

In the same vein, we could add to our language of components other oper-
ators, for other commonly found symmetries like dihedral or cube symmetries,
each handled with their own algorithm for computing representatives. Finally,
it is tempting to investigate some combination of the techniques of [28] with our.
For components in which symmetries are not easily expressed in our language,
they could be computed from the component; a dedicated algorithm would be
used for computing representatives for their states.

These aspects are largely orthogonal to the real-time concerns which were
the main focus of the work presented here; we hope to investigate them in the
future.
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Classes en O(n2) et des Temps de Chemin en O(m × n). TSI. Technique
et Science Informatiques, 22(4):435–459, 2003.
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Proof of Lemma 5, Page 14

Lemma 5 is pictured in Figure 1.
Assume C = (m,D) is a class obtained in the SCG construction and i, j are

two transitions with the same static time interval (Is(i) = Is(j)). We show that
if i �D j, then (i) αi ≤ αj , (ii) βi ≤ βj , and (iii) for all transition k distinct
from i, j, γk,j ≤ γk,i. (In the remainder of the proof, we use the name F to
denote part (iii) of this conjunction).

The proof is by case analysis on i, j.

If both i and j are newly-enabled:

αi = αj since αi = αsi , αj = αsj , and αsi = αsj by hypothesis

βi = βj since βi = βsi , βj = βsj , and βsi = βsj by hypothesis

γk,i = γk,j since

if k is persistent

γk,i = βk−αsi , γk,j = βk−αsj , and αsi = αsj by hypothesis

if k is newly-enabled

γk,i = βsk−αsi , γk,j = βsk−αsj , and αsi = αsj by hypothesis

hence i =D j and consequently F holds

If i persistent and j newly-enabled (or the converse, symmetrically):

αi ≤ αj
since j is newly-enabled, we have αj = αsj , so αi > αj ⇔
αi > αsj , which is impossible since αsj = αsi by hypothesis
and 0 ≤ αi ≤ αsi by Lemma 3.

βi ≤ βj
similarly, since j is newly-enabled, we have βj = βsj , so βi >
βj ⇔ βi > βsj ⇔ βi > βsi , which contradicts Lemma 3.

(∀k 6= i, j)(γk,j ≤ γk,i)
if k is persistent

We have:
γk,j = βk − αsj since j is newly-enabled,
αsj = αsi by hypothesis,
βk−αsi ≤ βk−αi since 0 ≤ αi ≤ αsi and 0 ≤ βk by Lem.
3,
Then, if γk,i = βk − αi:
γk,j = βk − αsj = βk − αsi ≤ βk − αi = γk,i
hence γk,j ≤ γk,i
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Otherwise consider any sequence (Cx)0≤x≤p of classes
from the initial class ending at class C (i.e. Cp = C); we
denote αxi , β

x
i , γ

x
k,i the bounds in class Cx.

Let Cn be the last class in that sequence in which γnk,i =
βnk − αni . By Lemma 2, Cn necessarily exists and, for
any u ∈]n, p], i and k are persistent in class Cu and
γuk,i = γu−1k,i .
Next, we have βk ≤ βnk , 0 ≤ αi ≤ αsi and 0 ≤ βk by
Lemma 3, and thus βk − αsi ≤ βnk − αni
So γk,j = βk − αsj = βk − αsi ≤ βnk − αni = γnk,i = γpk,i
hence γk,j ≤ γk,i

if k is newly-enabled

γk,j > γk,i ⇔ βsk − αj > βsk − αi
which is impossible since αi ≤ αj (as seen above)

If both i and j are persistent:

by induction on firing sequences.

Assuming we have Is(i) = Is(j), i �D j, F , (m,D)
f−→ (m′, D′),

and both i and j are persistent in D′, we have

α′i ≤ α′j ∧ β′i ≤ β′j ∧ (∀k 6= i, j)(γ′k,j ≤ γ′k,i) (F ′)

α′i ≤ α′j
we have α′i = −mink γk,i and α′j = −mink γk,j by
Lemma 2,
γi,j ≤ γj,i and (∀l 6= i, j)(γli ≥ γlj) by induction hy-
pothesis,
so −mink γk,i ≤ −mink γk,j and thus α′i ≤ α′j

β′i ≤ β′j
we have β′i = γi,f and β′j = γj,f by Lemma 2, γi,f ≤ γj,f
by induction hypothesis, so β′i ≤ β′j

(∀k 6= i, j)(γ′k,j ≤ γ′k,i)
k is persistent

by Lemma 2,
γ′k,i = min(γk,i, β

′
k − α′i) and γ′k,j = min(γk,j , β

′
k −

α′j)
we have four cases to consider:

1. γ′k,i = γk,i and γ′k,j = γk,j : then γ′k,j ≤ γ′k,i since
γk,j ≤ γk,i by ind. hyp.

2. γ′k,i = γk,i and γ′k,j = β′k − α′j : we have γ′k,j =
β′k − α′j ≤ γk,j (by Lemma 2) and γk,j ≤ γk,i by
ind. hypothesis
so γ′k,j ≤ γk,j ≤ γk,i ≤ γ′k,i, hence γ′k,j ≤ γ′k,i
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3. γ′k,i = β′k − α′i and γ′k,j = γk,j : Since α′i ≤ α′j
(shown above) and βk, α′i and α′j are non-negative
(Lemma 3), we have β′k − α′i ≥ β′k − α′j
then γ′k,j ≤ β′k − α′j ≤ β′k − α′i = γ′k,i, hence
γ′k,j ≤ γ′k,i

4. γ′k,i = β′k−α′i and γ′k,j = β′k−α′j : then γ′k,i ≥ γ′k,j
since α′i ≤ α′j (by above)

k is newly-enabled

by Lemma 2 γ′k,i = βsk − α′i, γ′k,j = βsk − α′j
it was proved above that α′i ≤ α′j , and Lemma 3
says that alpha’s and beta’s are non-negative
hence βsk−α′i ≥ βsk−α′j and consequently γ′k,i ≥ γ′k,j

Proof of Lemma 6, Page 14

Assume (m,D) is a class obtained in the SCG construction and i, j are two
transitions enabled by m with the same static time interval (Is(i) = Is(j)).
Then either i �D j or j �D i.

We consider the following three possible cases. Informally, the first case is
when transitions i and j are introduced simultaneously in system D (they have
the same “age”), the second is when they are introduced at different times (one
is older than the other), and the last case asserts that the relationships between
i and j is preserved whatever the transition introduced next as long as i and j
stay persistent.

Both i and j are newly-enabled at (m,D):

Then γi,j = βsi − αsj , γj,i = βsj − αsi and thus γi,j = γj,i since Is(i) =
Is(j).

for any k 6= i, j, γi,k = βsi − αk, γj,k = βsj − αk and thus γi,k = γj,k

since Is(i) = Is(j).

So i =D j; both i �D j and j �D i hold.

i is persistent and j is newly-enabled (or the converse, symmetrically):

γi,j ≤ γj,i
since j is newly-enabled, we have γi,j = βi − αsj and γj,i =
βsj − αi
so γi,j ≤ γj,i ⇔ βi + αi ≤ βsj + αsj
but Is(i) = Is(j) by hypothesis,
so γi,j ≤ γj,i ⇔ βi + αi ≤ βsi + αsi
by Lemma 3 we have αi ≤ αsi and βi ≤ βsi
hence βi + αi ≤ βsi + αsi and γi,j ≤ γj,i
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(∀k 6= i, j)(γi,k ≤ γj,k) :

since j is newly-enabled, we have γj,k = βsj − αk
so γi,k > γj,k ⇔ βsj − αk < γi,k
but γi,k ≤ βi − αk by lemma 3
so γi,k > γj,k ⇔ βsj − αk < βi − αk ⇔ βsj < βi,
which is impossible since βsj = βsi by hypothesis and βi ≤ βsi by
Lemma 3.

hence i ≺D j (or j ≺D i, symmetrically)

Both i and j are persistent and i �D j (or j �D i, symmetrically):

by induction using Lemma 2:

initially: if j is newly-enabled in D, in which i is persistent, then
i �D j holds (see the previous case)

induction step: assume i and j are persistent in (m,D) and (m′, D′),

i �D j and (m,D)
f−→ (m′, D′)

γ′i,j ≤ γ′j,i
Lemma 2 yields
γ′i,j = min(γi,j , β

′
i − α′j) = min(γi,j , γi,f − α′j)

γ′j,i = min(γj,i, β
′
j − α′i) = min(γj,i, γj,f − α′i)

we have four cases to consider:

1. γ′i,j = γi,j and γ′j,i = γj,i : γi,j ≤ γj,i by hyp., so γ′i,j ≤
γ′j,i

2. γ′i,j = γi,j and γ′j,i = γj,f − α′i : γi,f ≤ γj,f by ind. hyp.
and α′j ≥ α′i by Lemma 5 so γ′i,j ≤ γi,f−α′j ≤ γj,f−α′i =
γ′j,i, that is γ′i,j ≤ γ′j,i

3. γ′i,j = γi,f − α′j and γ′j,i = γj,i : then by ind. hyp.
γ′i,j ≤ γi,j ≤ γj,i = γ′j,i, hence γ′i,j ≤ γ′j,i

4. γ′i,j = γi,f − α′j and γ′j,i = γj,f − α′i : then by ind. hyp.
and Lemma 5: γ′i,j = γi,f − α′j ≤ γj,f − α′i = γ′j,i, hence
γ′i,j ≤ γ′j,i

(∀k 6= i, j)(γ′i,k ≤ γ′j,k)

if k is persistent

γ′i,k = min(γi,k, β
′
i − α′k) = min(γi,k, γi,f − α′k)

γ′j,k = min(γj,k, β
′
j − α′k) = min(γj,k, γj,f − α′k)

we have four cases to consider:

1. γ′i,k = γi,k and γ′j,k = γj,k : γi,k ≤ γj,k by hyp. thus
γ′i,k ≤ γ′j,k

2. γ′i,k = γi,k and γ′j,k = γj,f − α′k : γi,f ≤ γj,f by ind.
hyp. so
γ′i,k ≤ γi,f − α′k ≤ γj,f − α′k = γ′j,k, hence γ′i,k ≤ γ′j,k
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3. γ′i,k = γi,f − α′k and γ′j,k = γj,k : then by ind. hyp. so
γ′i,k ≤ γi,k ≤ γj,k = γ′j,k, hence γ′i,k ≤ γ′j,k

4. γ′i,k = γi,f − α′k and γ′j,k = γj,f − α′k : then by ind.
hyp.
γ′i,k = γi,f − α′k ≤ γj,f − α′k = γ′j,k, hence γ′i,k ≤ γ′j,k

if k is newly-enabled

γ′i,k = β′i − α′k = γi,f − α′k
γ′j,k = β′j − α′k = γj,f − α′k
so γ′i,k ≤ γ′j,k holds by induction hypothesis (γi,f ≤ γj,f )

and consequently i �D′ j :
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