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Abstract

The optimal station keeping control problem of a geostationary satellite equipped with electric thrusters
is recast as a switched system commutation times optimisation problem, considering that a system with a
bang-bang control profile is composed by several subsystems, one for which all the controls are off and the
other ones one for which one of the controls is on. In order to optimise the commutation times, the optimal
firing sequence has to be known in advance. This sequence is provided by a two-step decomposition
technique and the proposed method can be interpreted as a third step. Simulation results on a realistic
example validate the benefit of this third optimisation step on the control sequence fuel consumption.

1. Introduction

Spacecraft orbiting the Earth on Geostationary Earth Orbits (GEO) undergo orbital disturbing forces, resulting in
a natural drift outside their operational station keeping (SK) windows (a rectangular box of a given geographical
longitude and latitude range). It is therefore mandatory to design an accurate SK control strategy, in order not to let the
spacecraft operating conditions deteriorate.

The usual spacecraft propulsion system is composed of chemical thrusters (see Soop!? or Sidi'!). However,
the idea of using electric propulsion has been proposed in the sixties (see for instance the references Barret’ and
Hunziker!?), followed by some theoretical developments in the eighties (as for example the development conducted
by Anzel' and Eckstein®). Despite the difficult operational constraints arising from the use of the electric propulsion
(disjunctive thrusts, minimum elapsed time between two thrusts, on-off profile of the thrusters), this kind of propulsion
is a viable alternative to the commonly used chemical one thanks to its high specific impulse. Indeed, this particular
feature naturally imply fuel consumption savings enabling to increase the spacecraft longevity.

The minimum-fuel station keeping problem may be mathematically expressed as an optimal control problem
(OCP). Two types of methods may be used to solve optimal SK control problems. The collocation based direct methods
rely on a discretisation of the state and the control vectors in order to create a non linear programming problem (see
Betts* or Hull®) whose solution is a discretized approximation of the optimal solution. Indirect methods are based on
the Pontryagin Maximum Principle (PMP). Despite the difficulty of handling the operational constraints of the electric
propulsion within the PMP framework, Gazzino et al.® set up a decomposition method to solve the optimal station
keeping control problem taking the operational constraints into account. However, due to the great number of tuning
parameters and to the complexity of the problem, the obtained local solutions appear to be highly sensitive to the
initialisation process, thus resulting in some convergence issues in some cases or in a possible optimality deficiency.

If the operational constraints are respected, the spacecraft trajectory is composed of thrusting arcs separated by
coasting arcs. Thus, the control profile switches from a time interval where all thrusters are off to a time interval for
which one thruster is on, and vice-versa. Therefore, the system can be viewed as a switched system composed by one
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subsystem per thruster and one subsystem to describe the case where all thrusters are off. Xu and Antsaklis'® proposes
a method in order to compute the optimal switching times of switched systems thanks to a time change of coordinates.
The idea of this paper is to use the method of Xu and Antsaklis'? to optimise the switching times for the optimal station
keeping control problem. As this method requires to know in advance the optimal firing sequence of the thrusters, the
two-step decomposition technique of Gazzino et al.® is first used as an initial guess. The proposed optimisation step
can hence be considered as a third step of the decomposition method. The efficiency of the proposed technique for
improving the results of Gazzino et al.? is illustrated on a realistic numerical example.

2. Problem statement

2.1 Geostationary Spacecraft Dynamics

The motion of a spacecraft orbiting the Earth on a Geostationary Earth Orbit (GEO) can be described with the equinoc-
tial orbital elements as defined in Battin:3

Xeoe = [a e €y iy l\ gM@]t € R6’ (1)

where a is the semi-major axis, (ey, e,) the eccentricity vector, (ix, iy) the inclination vector, {fye = w + Q+ M - O is
the mean longitude where € is the right ascension of the ascending node, w is the perigee’s argument, M is the mean
anomaly and ©O(?) is the right ascension of the Greenwich meridian. The dynamics of the spacecraft may be represented
by the following non linear state-space model:

d-xeue

dt = fL(xeoe’ t) + fG(xeoea I)M. (2)

fi € R®is the Lagrange contribution part of the external disturbing forces. For a GEO spacecraft, these disturbing
forces are the non-spherical part of the Earth gravitational potential that mainly affects the mean longitude €yg, the
solar radiation pressure (SRP) that mainly affects the eccentricity vector (ey, e,) and the gravitational attraction of the
sun and the moon that mainly affects the inclination vector (iy, i,). These forces are described by the CNES ORANGE
model (cf. Campan et Brousse®). f; € R®? is the Gauss contribution part for the disturbing forces that do not derive
from a potential.

u = [uR ur uN]l € R3 is the control vector expressed in the local orbital RT N frame (also written RS W)

defined in Soop'? by:
e N is the unit vector along the kinetic momentum,;
e R is the unit vector along the direction Earth’s center - satellite;
e T completes the right-handed orthogonal direct basis.

In order to deal with the station keeping problem, the relative state of the satellite with respect to the station
keeping state is defined as:

xa=lax 0 0 0 0 fye,| 3)

where ay is the synchronous semi-major axis and £ye,, is the station mean longitude.
The relative dynamics equations are developed by linearization of Equation (2) about the station keeping point
(3). By denoting x = x.,. — x4 the relative state model for the SK problem reads:

% = A()x + D(t) + B()u, )

where the matrices A € R, B € R®3, C € R¥® and D € R® are defined as follows:

0
AW = o (filXeoe0), 1)) , (%)
Xeoe Xeoe=Xsk
B() = folxs1), (6)
D) = frlxu, 1), (N
The geographical coordinates of the satellite:
Yeoe = T (Xeoes D) Xeoes (8
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are of interest because the station keeping problem consists in constraining them in the vicinity of the station position

Vsk = [rxk 0 /lxk]t where ry is the synchronous radius and Ay is the station keeping geographical longitude. The
relative geographical position with respect to the station-keeping position is denoted by:

Y = Yeoe — Ysk = T(xg,)x = C(t)x, 9

and is obtained by linearising Equation (8).
After the linearisation, the station keeping requirement on the latitude and the longitude of the spacecraft is
expressed by constraining the relative geographical position with respect to the centre of the SK window:

[[010]C(H)x(®)] < 6 and |[0 0 1]C(H)x(¢)| YVt € [0, T], (10)

with ¢ being the half width of the SK window in the latitude and longitude directions. A trajectory satisfying the SK
constraints (10) is called SK-feasible.

2.2 Electric Thrusting System

The considered satellite is equipped with four electric thrusters mounted on the anti-nadir face, each of them having
an orientation defined by a cant angle 6 and a slew angle @. These angles define the North-East, the South-East, the
North-West and the South-West directions of thrust. The satellite dynamics can be expressed considering the four
thrusts provided by the four engines as control variables. The control u(r) expressed in the local orbital frame is a
linear combination of the four thrusts such that u = TF, where I' = [T | T2 | T3 T4l e R¥>* and F = [F, F» F3 F4]' €
[0, Fyuax]*. The thrust direction matrices I'; € R? are defined such that:

r;= E[_ sinfjcosa; -—sinf;sina; —cosej]t ,

an

where the cant and slew angles 6; and «; respectively are defined exactly as in Anzel.!

For the sake of simplicity, the thrust vector is normalized by the maximum level of thrust F,,,. It is thus possible
to write F = F,,, F with F € [0, 1]*. As the thrust are on-off, the thrust profile is modelled as a rectangular signal that
is parametrized by the date #; ; corresponding to the middle instant of the thrust and by its half width duration denoted
Ali, j

P
Fi(t) = Fux Z RectangleFunction(t, 1; j, At; ;). (12)
j=1

where P; is the number of thrusts of thruster i.
Some technological operational constraints that are inherently related to the actuation system have to be taken
into account:

(a) thrusters cannot have simultaneous thrusts;

(b) a thrust must last at least 7; : 2At; ; > T7;

(c) two successive thrusts of a given thruster must be separated of an interval of latency equal to T';
(d) two thrusts of two different thrusters must be separated by an interval of latency equal to 7.

The constraint for the time latency between the thrust & of thruster i and the thrust / of thruster j is thus mathematically
expressed as:
tix — tjgl = (Atix + Atjy) 2 K j, (13)

fork=1...Piand[ = 1...Pj, where K; ; = T, if i = j (constraint (c)) and K; ; = T4 otherwise (constraint (d)). In
addition, some other convenient constraints are enforced in order to make sure that the thrusts will not begin before 0
and end after T':

tij— Ati,j >0 and L+ Ali,j <T. (14)

A trajectory satisfying the operational constraints for the electric propulsion system is called operationally feasi-
ble.
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2.3 Statement of the Station Keeping Optimal Control Problem

The main goal of the station keeping system is to maintain the longitude and the latitude of the satellite in a box defined
by its size ¢ by acting on the orbital parameter via the 4 thrusters while optimising the fuel consumption. The associated
optimal control problem is in general defined over a fixed horizon for the computation of optimal open loop control
laws. In this context, optimality means that a minimum fuel-solution is looked for to extend the operational life time
of the satellite. Therefore, performing minimum-fuel station keeping is minimizing the performance index:

4

P;
J =2 D I )Y Aty (15)
=1

thruster i=1

Considering all the constraints described above, the minimum-fuel SK problem to solve may be summarized as
the following optimal control problem:

Problem 1 Find the sequence of dates {#; ;} and durations {At; ;}, fori =1...4, j = 1...P; (with P; fixed) solutions of

the minimization problem:
4 P
(1) = A(®) x(t) + D(t) + BOTFpax F(1),
x(0) =0, (16)
s.t. {[[0 1 0]C(®)x(®)| <4, |[00 1]C(Hx(1)| < 6,
2At; ;2 Ty, 1 — At 20, 1+ At < T,
tix — tjgl — (Atix + Atj)) > K;

3. Problem resolution in the Switching Systems Framework

3.1 Transformation of the Optimal Control Problem

The analysis of the geostationary orbital perturbations done in the existing literature (see e.g. Campan and Bousse,’
Sidi'' or Soop'?) allow to determine some rule of thumb for geostationary SK strategies. The North-South out-of-
plane effect of the Sun and the Moon attraction are the most predominant forces that have to be corrected each half
orbit, once in the South direction and half an orbit later in the North direction. According to this rule of thumb, the
control scheme that should be applied is such that the two North thrusters are firing simultaneously, as well as the two
South thrusters of the considered propulsion system. Nevertheless, this resulting control sequence does not fulfil the
operational constraint (a).

In the reference Gazzino et al.,* a two-step decomposition method have been used in order to solve the station
keeping problem while satisfying the operational constraints (a)-(d). However this decomposition method suffers from
the drawback of necessitating a fine tuning of a lot of parameters. The aim of the proposed contribution is to add a
third step that can help to simplify this parameter tuning step.

From the method of Gazzino et al..® the control sequence that has been created is a combination of coast arcs, of
firing arcs for the North-East thruster, of firing arcs for the South-East thruster, of firing arcs of the South-East thruster
and of firing arcs for the South-West thruster, that is to say, a combination of the five subsystems:

A(Dx(t) + D(t),
AWX(1) + D) + BOTFpee[1 0 0 0]

i) = JADX(W) + D)+ BOTFas [0 1 0 0] (17)
A@0X(1) + D) + BOTFpac [0 01 O]T,
A@X(1) + D(1) + BOTF e [0 0 0 1]T.

By denoting U; a R* vector with a 1 at the i position, and by extension Uy the R* zero vector, all the dynamics
functions:
fix(0) = A(O)x(®) + D(@) + BOTFyaxUi, i €10, ..., 4}, (18)
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can represent a subsystem of the overall system. Hence, the time horizon optimisation [0, 7] can be splitted into K
intervals T} for which the control vector V; is one of the five admissible control vectors U;, i € {1,...,4}. With these
considerations, all the dynamics functions f; can represent a subsystem of the overall system. Hence, the commutation
from V, to Vi, between the intervals T} and T},; at commutation time #; can be viewed as a commutation between
two of the five subsystems. In a switched system framework, the system dynamics can be written as:

fort € Ty, Jix € {0, ..., 4}, x(t) = £, (x(1)), (19)

where the following equality holds : V; = Uj,.
In accordance with the operational constraints (c)-(d) two thrusting arcs must be separated by a coasting arc.
Thus the control sequence has the following structure:

Uo, Vj,, Uy, Vj,, Ug,..., Uy, V., Up (20)

where V; = U; with j € {1,...,4} and P is the optimal number of thrusts. There are therefore 2P switches and 2P + 1
intervals on which the control is constant. It is possible to write T = t,p, as if the final time were the last commutation
time. In order to satisfy the operational constraints (c) and (d), the length of the firing arcs must respect the constraints:

o 141 — by = T if the coasting arc lies between two firing arcs of the same thruster,
o fy41 — by = Ty if the coasting arc lies between two firing arcs of two different thrusters.
The operational constraint (b) is then written as:
ok — b1 2 T} (2D
With this reformulation using the five subsystems of the overall system, the rectangular signal of the thrust can
be parametrised by its start and end times as:

P;
Fi(t) = Fppux Z RectangleFunction(t, tjon, 4 off)- 22)
j=1

The performance index is thus rewritten as:

P
J = Fpax Y Tl (02 = 125-1), 23)
i=1

since odd intervals are coasting arcs and the even intervals are firing arcs.
The Optimal Control Problem 1 is thus rewritten in the following form:

Problem 2 Find the optimal switching sequence {;}, k € {l,...,2P}, with P fixed, solution of the minimisation
problem:

P
IB:PJ - Fmax ;(hi - t2i—l),
x() = fi,(0)(@),
[[0 1 0]C(5)x(t)
1[0 0 11C(O)x(1)
x(0) =0,

by — g1

6’

24
. 24

| <
| <
S.t.

>
>

T

D+l — Dok g

with T, = T for the firing arcs of the same thruster and T, = T for the firing arcs of two different thrusters. °

The Problem 2 is an OCP for which the decision variables are the commutation times. It has been partly solved
in Gazzino et al.® by a numerical two-step decomposition approach but with no guarantee of optimality of the firing
times thus obtained. The first step of this method consists in removing the operational constraints and in solving the
simplified SK OCP with a direct method initialised by an indirect method. The trajectory obtained after this first step
is in general SK-feasible but not operationally feasible. In order to recover rectangle functions from the continuous
control profile, a threshold parameter ¢ has to be chosen carefully. The second step aims at creating an operationally
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feasible trajectory from the one computed at step 1. To this end, two equivalence schemes have been created, the first
one being called the Consumption Based Equivalence (CBE) and the second one called the Effect Based Equivalence
(EBE) (see Gazino et al 8 for details and the significance of these appellations). The SK-feasible and operationally
feasible trajectory resulting from step 2 is very sensitive to the value of the threshold parameters ¢. Therefore, our
objective is to improve this preliminary solution by using the method of Xu and Antsaklis'? based on the switched
systems theory.

3.2 Optimisation of the Commutation Times with the Switched Systems Theory

The reference Xu and Antsaklis' presents a technique to optimise the commutation times between the different sub-
systems of a compound system that is used in order to optimise the switching times between the coasting and the firing
arcs. This method resorts to a time change of coordinates and a parametrisation of the commutation times. However
it is mandatory to assume that the order of the sequences of the active subsystems is a feasible one, obtained by ap-
plication of the result of Gazzino et al.® Seeking this on and off times is equivalent to find an optimal subsystems
commutation sequence.

A time change of coordinates is used to parametrise the switching times:

t=1t; + A(r = k) if t € [1, ri1], (25)

with Ay = #4+1 — #. The system dynamics is rewritten with the new time variable:

A2 [A((T))x(7) + D(1(7))] ifre[2k—2,2k-1],
Ax(7) A1 [A((T)x(7) + D(1(7)) + BU(T)I Frax Uyl if 7 € [2k — 1, 2K], o
ar ) 26)
AapA(HD)X(T) + D(H(D)] ifTe 2P 2P+ 1],
fork = 1,..., P. The state vector can be now considered as a function of the new time variable 7 and of the switching

times #;: x = x(7, {tx}).

In order to handle state constraints, in the reference Gazzino et al.,” where a fuel-optimal rendezvous problem has
been solved with the Xu and Antsaklis'? technique, a target term has been added to the objective function. However,
as the station keeping constraint are expressed as trajectory state constraints, this constraint is handled in the objective
function by adding a penalisation term:

1 1
Ye.x() = 5 [C20x(0) - ST [sign(Ca(n)x(r) = 6) + 1] + 5 [COx(@0) + 61 [sign( = C2()x(0) = 6) + 1]
@7
+ % [C3(0)x(t) — 51 [sign(C3(Dx(1) = 6) + 1] + % [C3(D)x(1) + 61 [sign( — C3(0)x(t) - 8) + 1],

where C,(¢) = [0 1 0]C(¢) and C3(¢) = [0 0 1]C(¢). Applying the temporal change of coordinates, the new objective
function taking the station keeping window penalisation term into account reads:

2P+1

T At = Fax Z(rzl hist) + Z (fe = 1) f Y((), V), (28)
i=1
with u a parameter that has to be chosen. The station OCP reads thus in the switching systems framework:
Problem 3 Find the optimal, switching sequence {;}, k € {1,...,2P}, with P fixed, solution of the minimisation
problem:
2P+1
II}II'}I .](X Iy ) = Finax Z(tZt = - 1) +u Z (tk — I l)f W(I(T) )C)dT
such that
(0) Ao [A(#())x(T) + D(#(7))] ifre[2k—-2,2k-1], (29)
X(1) =
Mg 1 [A(H(T)x(7) + D(t(7)) + BA(T) Fa U] if T € [2k — 1,2Kk]
x(0)=0
ty — ty—1 2 T,
b1 — i 2 T,
with T, = T for the firing arcs of the same thruster and T, = T for the firing arcs of two different thrusters. °
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As the switching times determine the structure of the control profile, the state trajectory is recovered by propa-
gation of the system dynamics from the initial condition.

Problem 3 can be solved with a descent algorithm. To this end, it is necessary to compute the derivative of the
performance index in order to obtain the descent direction. The computation of derivative requires to distinguish the
odd and the even commutation times:

dJ 21-1
= —Fpax + M lﬁ(f(T), x(t)dt
dty— 2-2
21-1 o o'
+ p(t2-1 = 121-2) [(T 20+ 2)—(;(7) x(7)) M PRUCY X(T)) (T)] dr
21 30)
M Y(1(r), x(1)dt
-1
21 w al//
+ p(to — t2-1) (-7+2l+ 2)—(I(T) x(1)) M (t(T) X(T)) (T)
20-1
dJ 20+1
—— = Fpax — M 'ﬁ(l(T), x(T)dT
dty 2
20+1 o o'
+ p(tor41 = 121) f (-7+2l+ 1)—(;(1-) x(7)) t o (I(T) X(T)) (T)]
5 (€28)
+u Y(t(1), x(T)dt
20-1
i o '
+ ulty = ty-1) [(T 2+ 1) (1), X(1)) + == (1), (7)) o (T)] dr.
21-1
The derivatives of the state vector with respect to the commutation times verify the following relation:
d [0x(1) 0 (dx(1)
= = — . 32
dr(ﬁtk) 6tk(dT) (32)
It is thus possible to derive a dynamic equation for ‘93‘% by differentiation of the dynamics equation of the state vector

x(1) with respect to the commutation time #;. Hence the function 7 — dg(r) is obtained by integrating the following

dynamics equations:

0x(1) ifre[2k-2,2k—-1],
ty—1 — ty—2)A(t
(tok—1 — trx—2) ((‘1'))(%21_1 1
0x(1) if e [2k-1,2k],
b — tr_1)A(t
(tox — tok-1) ((7'))(%2[_1 L%l

A(1(T)x(t) + D(#(7))

BA(1) aD(7)
d (8)6(1')) ~ + (211 = t-2) [(T_ 2+ 2)( o Ot g ) fre(2-22-11
dr\oty_ |
T 11-1 +A(t( )) 6)62(1‘('1)
= [A@(7))x(7) + D(2(7)) + B(t(1))U/]
0A(1) oD(t) 0B(t)
+(l21—121_1) (—T+2l+2)( o X(T)+ o + o U[) ifre [2[— 1’21]’
YA ))ax(ﬂ}
2[ 1

and
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0 if 2k - 2,2k — 1],
(11 = AN G el ]
Ox(1) if T € [2k—1,2k],
(t2k — 1o A(H(T)) o k%1
- [AG@E(™)x(7) + D((1))]
0A(1) 0D(t)
d (ﬁx(r)) _ + (L1 — o) | (=T + 21 + 1)( 5 x(7) + o ) ifrenae ), s
dr \ oty +AGD) 0x(1)
oty
A@(M)x(7) + D(1(7)) + B(«(1))U;
AA() aD(r)  OB()
+(l21—l211)[(T—2[+1)( ot x(1) + o + o Ul) ifre[20— 1,21
0x(1)
+A(H(7)) s ]

The derivative of the penalisation function with respect to the state vector is:

0
a—'f:(t, xX(1) = C() [C2(0)x(1) = 61 [sign(Ca(Dx(1) = 8) + 1] + Co(1) [C2()x(1) + 61 [sign( = Co(Dx() ~ 6) + 1] 35)

+ C3(0) [C3(D)x(r) — 6] [sign(C3(D)x(t) — 6) + 1] + C3(r) [C3(0)x(2) + 6]° [sign( — C3(£)x(r) — 6) + 1],

and its derivative with respect to time is:

Z—li(t, x(7)) = %x [C2(D)x(t) — 61* [sign(Ca(D)x(r) — &) + 1] + dilzt(t)x [C2(H)x(t) + 61* [sign( — Co()x(1) — 8) + 1]
+ di;t(t )x [C3(H)x(t) — 61* [sign(C3(H)x(t) — ) + 1] + %x [C3()x(t) + 61* [sign( — C3()x(r) = 8) + 1],

(36)
The SK problem can therefore be solved according to the following algorithm:

Algorithm 1 Optimise the commutation times {#;}

Require: x(0) the initial position
Ensure: the trajectory is operationally and SK-feasible

{Step 1: simple SK problem}

1: Remove the operational constraints (a)-(d) from Problem 1

2: u;j(1)i=1,...4,e0,r] < the optimal control for the SK-feasible trajectory computed by an indirect method initialised by
a direct method (see Gazzino et al.?)

3: ¢ « threshold parameter to transform the continuous control profile in a rectangle profile

4: {tjx, At;} < the middle times ¢#;; and the half durations At;; of the thrusts,

{Step 2: equivalence schemes}

50 {5, At’y} < the middle times and half durations computed by the CBE or the EBE.
{Step 3: commutation times optimisation with an interior point algorithm}

6: {tx} < the commutation times computed from {¢},, At’, }

746} )

8: {7’} « the solution of Problem 3 with an interior point algorithm

4. Numerical Results

The proposed commutation times optimisation technique is applied for the station keeping of a 4850 kg satellite
equipped with the electric propulsion system presented in Section 2.2. Two cases are studied. For the first one, we
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were able to correctly tune the threshold parameter ¢ so that the trajectory obtained after the step 2 is SK-feasible and

operationally feasible. The proposed technique optimises the commutation times in order to decrease the consumption
of the Sk strategy.

For the second case, the parameter ¢ was harder to determine, resulting in a trajectory operationally feasible but
not SK-feasible. The proposed technique manages to optimise the commutation times so that the ensuing trajectory is
SK and operationally feasible while reducing also drastically the obtained consumption..

4.1 Commutation Time Optimisation for a SK-Feasible Trajectory

The two-step decomposition technique of Gazzino et al.? is used first in order to obtain a SK and operationally feasible
trajectory. Solving the problem without the operational constraints (step 1) shows an optimal control profile for which
the North and South thrusters fire simultaneously, which is also the optimal configuration according to the station
keeping literature. Therefore, the step 2 is mandatory to get an operationally feasible control profile.. It was possible
to choose ¢ = 0.8 for the CBE and ¢ = 0.9 for the EBE. The u coefficient of Equation (28) is chosen to be 1.107.

Figures 1 and 2 depict the control profiles obtained by the proposed method starting respectively from the CBE
scheme and from the EBE scheme. Figures 3 and 4 exhibit the trajectories resulting from these control profiles in the
latitude-longitude plane. The two equivalence schemes lead to different consumption values (see Table 1), and the
proposed optimisation of the switching times leads to a substantial fuel saving. In general, a high value of the threshold
parameter leads to a smaller fuel consumption.
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Figure 1: Control profiles:
—: solution of the consumption based equivalence with threshold 0.8,
- -t solution of the switched systems optimisation.
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Figure 2: Control profiles:
—: solution of the consumption based equivalence with threshold 0.8,
- -t solution of the switched systems optimisation.
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Figure 3: Latitude vs. longitude:

—: solution of the consumption based equivalence with threshold 0.8,
- -t solution of the switched systems optimisation.
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Figure 4: Latitude vs. longitude:
—: solution of the effect based equivalence with threshold 0.9,
- -t solution of the switched systems optimisation.

Equivalence CBE EBE
scheme
Two-step | g gg s 172 mys
solution
Threshold value 0.8 0.9
Three-step
solution 0.45m/s 0.31 m/s

Table 1: Consumptions for the two-step and the three-step solutions.

4.2 Commutation Time Optimisation for a non SK-Feasible Trajectory

The CBE and EBE schemes enforce the operational constraints but do not tackle the SK constraints. Therefore the
threshold parameter ¢ has to be precisely adjusted so that a SK-feasible trajectory can be computed at the end of step
2. Nevertheless, it may happen that the threshold parameter ¢ is so hard to determine that the computed middle times
and thrust half durations lead to a non SK-feasible trajectory. The proposed technique based on the switched systems

manages to optimise the commutation time so that the trajectory at the end of step 3 is both operationally feasible and
SK-feasible.

Figure 6 depict the state trajectory at the end of step 2 with ¢ = 0.9 computed with the CBE scheme. In this
case, the SK constraints are not respected. Despite this, the step 3 enforces the SK constraints while making sure that
the operational constraints are still respected. Figure 5 displays the corresponding control profiles. Table 2 shows the
decrease in consumption realised by step 3. Note that for a non SK-feasible trajectory computed with the EBE scheme,
the proposed computation times optimisation technique manages as well to enforce the station keeping constraints.

11



LOW-THRUST GEO STATION KEEPING VIA THE SWITCHING SYSTEMS THEORY

x 10

SW
T
I

Time (days)

Figure 5: Control profiles:
—: solution of the consumption based equivalence with threshold 0.9,
- -t solution of the switched systems optimisation.
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Figure 6: Latitude vs. longitude:

—: solution of the consumption based equivalence with threshold 0.9,
- -t solution of the switched systems optimisation.
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Equivalence CBE
scheme
Two-step 12.37 m/s
solution
Threshold value 0.9
Three—.step 0.31 ms
solution

Table 2: Consumptions for the two-step and the three-step solutions in the case were the SK constraints are not re-
spected at the end of step 2.

5. Conclusion

In this paper, an optimisation of the commutation times originating in the theory of the switched systems has been used
in order to optimise the on-off firing sequence for the minimum-fuel station keeping of a satellite equipped with electric
thrusters. In fact, the system can be naturally decomposed into several subsystems, one per thruster whose control is
on and one corresponding to a coasting arc. As the proposed method requires to know beforehand a feasible firing
sequence, a two-step decomposition technique has been used as an initial guess for the optimal sequence of firing arcs..
The optimisation of the switching times allow to overcome the drawbacks of the previous steps.
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