
HAL Id: hal-01566201
https://laas.hal.science/hal-01566201

Submitted on 20 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Overview of Problems and Approaches in Machine
Intelligence

Malik Ghallab, Félix Ingrand

To cite this version:
Malik Ghallab, Félix Ingrand. An Overview of Problems and Approaches in Machine Intelligence.
Frontiers in Science and Engineering (international journal), 2016, 6 (1), pp.115-156. �hal-01566201�

https://laas.hal.science/hal-01566201
https://hal.archives-ouvertes.fr

An Overview of
Problems and Approaches in Machine Intelligence

Malik Ghallab et Félix Ingrand
LAAS-CNRS, University of Toulouse

February 29, 2016

Abstract. Robotics is an interdisciplinary research field leveraging on control theory, mechanical
engineering, electronic engineering and computer science. It aims at designing machines able to
perceive, move around and interact with their environment in order to perform useful tasks. Artifi-
cial Intelligence (AI) is an area of computer science, overlapping with but significantly distinct from
robotics. Its purpose is to understand intelligence, through effective computational models, design
and experiment with systems which implement these models .

There is a significant convergence between Robotics and AI. Their intersection, qualified here
as Machine Intelligence, is critical for both areas. Robots implement the so-called “perception -
decision - action” loop; the intelligence or decision making part is central in that loop for tackling
more variable and complex environments and tasks. On the other hand, AI is moving from abstract
intelligence, such as in playing chess, to addressing embodied intelligence.

This paper introduces the reader to some of the research issues and approaches in Machine In-
telligence. It surveys the state of the art in key issues such as planning and acting deliberately on
the basis of tasks and world models, learning these models, and organizing the sensory-motor and
cognitive functions of a robot into resilient and scalable architectures.

Key words: Robotics, Artificial Intelligence.

Contents
1 Introduction 2

2 Overview of the Field 4

3 Motion Planning, Mapping and Navigation 7
3.1 Motion planning with probabilistic road maps . 8
3.2 Simultaneous Localization and Mapping . 11
3.3 Navigation . 17

4 Task Planning and Acting 17
4.1 Deterministic Approaches . 19
4.2 Timed Approaches . 19
4.3 Probabilistic Approaches . 22
4.4 Integrating of Motion and Task Planning . 23

1

5 Interaction 24
5.1 Multi-Robot Interaction . 25
5.2 Human - Robot Interaction . 25

6 Learning 27
6.1 Reinforcement Learning . 27
6.2 Learning from Demonstration . 30

7 Integration and software architecture 32
7.1 Architecture Paradigms . 32
7.2 Robustness, Validation and Verification . 33

8 Conclusion 35

1 Introduction

Robotics and Artificial Intelligence are two overlapping but quite distinct research fields. Machine
Intelligence refers to their intersection. This paper surveys the state of the art at this intersection. Its
purpose is to introduce the reader to the synergies between Robotics and Artificial Intelligence and to
demonstrate that Machine Intelligence is a very rich and fruitful in scientific problems.

Robotics aims at designing machines which are able to perceive, move around and interact with
their environment in order to perform some specified useful tasks. It is an interdisciplinary research
field, which covers several disciplines, primarily control theory, mechanical engineering, electronic
engineering and computer science. Its recent links with life sciences or materials sciences have opened
new and exciting perspectives. It entertains growing synergies with neuroscience for the development
of cognitive models and functions (e.g., Wolpert and Flanagan [129, 128], Wolpert and Ghahramani
[130]). Robotics, as an enabling technology, provides a significant technical and conceptual support
for the development of several other research fields such as medicine (e.g., surgery, biomechanics), or
environment and space sciences (e.g., oceanography or planetology). It addresses a wide spectrum of
applications.

Artificial Intelligence (AI) is a research area of computer science, mostly independent from
robotics. Its purpose is to understand intelligence through effective computational models, design
systems which implement them, and experiment with these systems in order to scientifically evaluate
and qualify the proposed models of intelligence. AI entertains interdisciplinary links with mathemat-
ical logics, psychology, neuroscience, linguistics, philosophy and other cognitive sciences. It already
brought a wealth of mature technologies, such as machine learning techniques, that are now seam-
lessly integrated in many computerized devices such as smartphones, cameras, web browsers, search
engines and semantic web applications.

Robotics is quite often referred to in AI research. It is a natural reference for work on embodied
intelligence and for experimental validation. The early beginnings of AI are rich in pioneering projects
of autonomous robots, such as Shakey at SRI of Rosen and Nilsson [101] or the Stanford Cart in the
late 60s, and a few years later, Hilare at LAAS of Giralt et al. [56] or the CMU Rover of Moravec [90].
These, and many other projects since that early period, clearly lie at the intersection of Robotics and
AI, seeking to understand, model and design machines that combine autonomous perception, decision
and action.

AI has been less frequently referred to in robotics publications. This is due to the breadth of the
robotics field. This is also due to the early challenges on which the robotics community has focused.
Early robots had reduced autonomy and limited sensing, locomotion and manipulation capabilities.
This naturally set the initial challenges more about sensory-motor functions than about deliberation

2

and cognitive functions. Significant progress during the last two decades on the sensory-motor level
has, fortunately, put robotics deliberation problems on the limelight.

We are now witnessing a growing convergence between Robotics and AI. Their inter-
section in Machine Intelligence is critical for both areas. Robots have been defined as a
“perception - decision - action” control loop. The decision part is central in that loop. On the other
hand, AI is moving from abstract intelligence, such as playing chess, to addressing embodied intelli-
gence. The intersection of Robotics and AI covers in particular the following issues:
• Perception, semantic interpretation of sensory data, environment modeling;

• Acting deliberately: planning and achieving autonomously complex tasks, including navigation in
open unknown environments;

• Learning to perceive, to act and behave with improved performance;

• Organizing sensory-motor and deliberation functions in a robot.

For the sake of a focused survey, the first item is not covered in this paper, to the exception of
a brief mention of some aspects of perception that are specific to robotics. The survey is primarily
devoted to the last three items, addressed successively in:
• Sections 3, 4 and 5, which are devoted respectively to motion planning and execution, tasks plan-

ning and acting, and interaction with humans or robots;

• Section 6 on learning; and

• and Section 7 on organization and architecture issues.
For a good understanding of the problems discussed here, the paper starts with a general intro-

duction to robotics and its applications (Section 2). It concludes with a short perspective on future
research. In each section we have chosen to illustrate with enough technical details some basic tech-
niques, and to refer the reader to the relevant publications for further deepening. A wide coverage of
robotics can be found in the handbook of Siciliano and Khatib [105]. A similar coverage for AI is
given in the textbook of Russell and Norvig [102].

(a) Baxter, a robot manipulator for
manufacturing (Rethink Robotics)

(b) Autonomous vehicles for logistics
applications (Kiva Systems)

Figure 1: Robots (a) for a fixed environment, and (b) for a single task.

3

2 Overview of the Field

A robot can be defined as a machine able to perform a set of tasks in a class of environments with
some degree of autonomy and robustness. As for any natural being, the autonomous capabilities of a
robot are relative to the diversity of the tasks and environments it can cope with. A robot integrates
several components - actuators, sensors, computers, radio transmitters - which ensure in particular the
following functions:

• motion, with wheels, legs, wings, propellers, caterpillars, fins;

• manipulation, with mechanical arms, clamps, hand, cups, specialized tools;

• perception by proprioceptive sensors which estimate the internal state of the machine: odometer
and angular encoders, inclinometer, magnetometer, accelerometer, inertial measurement unit, GPS,
and exteroceptive sensors, which estimate the environment: camera, laser, radar, spectrometer, IR
or ultrasound range finder;

• communication, and

• decision making.

There are several classes of generic robotics applications corresponding to different classes of
environments and tasks. Each such a class emphasizes specific problems depending on the level of
autonomy desired for a robot. Well known examples are the following:

• Manufacturing robots: robot arms with adapted sensors at fixed positions for tasks such as painting,
welding, assembly, loading and unloading a press or machine tools [59];

• Exploration robots: mobile robots in outdoor environments [40] performing terrain mapping, soil
analysis, mining [33], intervention in a contaminated site, deployment of equipments at the bottom
of the ocean [6], in Antartica or on Mars [131];

• Service robots: mobile robots in indoor environments for cleaning, surveillance, transportation in a
shop, a workshop, a clean room or an hospital [55];

• Personal robots: mobile robots assisting people in professional environments or at home [98];

• Medical robots: robots specialized in assisting surgeons, in particular in “noninvasive
surgery” [119];

• Robot carried by human: exoskeleton allowing the extension of the sensory-motor skills of their
carrier [74].

This list is not exhaustive. Other classes of robotics applications, such as agriculture, ecology,
construction, demining or military operations give rise to active research. Specific environments in
one of the above application classes, e.g., aerial exploration robotics, lead to particular problems.
Finally, cooperation and interaction when the tasks are carried out by several robots or by human -
robot teams bring additional challenges.

A key notion in robotics is the diversity of environments and tasks a robot must face. The tech-
nology is relatively mature when there is no diversity, that is for robots specialized in a single envi-
ronment, well modeled and instrumented, and on just one well specified task. If one considers man-
ufacturing robots, millions robot arms are operating in the industry (Figure 1(a)). In service robotics,
numerous autonomous ground vehicles are used in warehouses for logistic services [58] (Figure 1(b)
and in the electronic or pharmaceutical industry. In both cases, the well-modeled stable environment

4

(a) Mars Rover Curiosity (NASA/ JPL) (b) Surgical robotics assistance (DaVinci
Intuitive Surgical)

Figure 2: Tele-operated robots.

of the robot is the result of a significant engineering effort. The same remark applies to single-task
robots, e.g., vacuum cleaner (more than 5 million sold) or lawn mower, which are a large commercial
success.

When the environment or tasks are highly variable, the degree of autonomy of the robot becomes
an important factor. We may distinguish three levels:
• no autonomy: the robot applies to its actuators pre-recorded or operator specified commands;

• tasks autonomy: the robot performs tasks precisely defined by the operator, e.g., goto point A then
pick-up object O;

• autonomy to achieve missions specified in abstract terms, e.g., find and rescue injured persons in
the area.

When there is no need for autonomy, many robotics technologies are already mature. This is due
in particular to the highly simplified perception and deliberation problems. Robots tele-operated at
the task level have been demonstrated in impressive experiments, e.g., in the exploration of planets
(Figure 2(a)). They are also used in successful applications, e.g., robotics surgery systems have been
deployed at several thousands sites, despite their high cost and complexity (Figure 2(b)). Remote
manipulation has to address other technical challenges, such as how to provide good sensory feedback
to a human operator to enable her to properly understand the state of the environment and the task,
or how to reliably translate human commands to the robot actuators (e.g., to filter the signal from the
movements of the surgeon’s hand to obtain a precise and safe trajectory of the scalpel and to control
its motion with respect to the movement of the operated organ).

Limited autonomy simplifies perception and deliberation but it also constrains the tasks that can
be performed by a tele-operated robot. Thus, Mars rovers of the previous generation, Spirit and Op-
portunity, were tele-operated at the motor control level. The communication delay (up to 40 minutes
depending on the Mars-Earth configuration) limited their remote operation to a few meters per day.
At a later stage of their mission, the introduction of autonomous motion has allowed these robots to
traverse up to 140 meters per day. Today, Curiosity can perform up to 1.5 Km per day of autonomous
navigation, but it is still tele-operated at the task level for its other activities. In some application,
autonomy is not desired: the human operator wants to remain in full control of every command. How-
ever, it can be preferable to tele-operate a robot at the task level, e.g., tell it to make a precise line
of surgical sutures, or to close an underwater valve, leaving it up to the robot to translate the task

5

(a) NASA/JPL (b) INTRA Group

Figure 3: Robots for hazardous environments.

into controlled commands, under the supervision of the operator. Here also, the state of the art has
reached some maturity, illustrated for example by robots used in hazardous environments (Figure 3).
Another illustration of the autonomy at the task level can be given by telepresence robots. These are
mobile platforms carrying away the image and voice of the user, giving a visual and audible feedback,
capable of simple tasks, e.g., find a person, asking her to lend an object and bringing it back to the
robot’s user (Figure 4).

One may try to use these and similar platforms to achieve more autonomous and varied missions.
But the state of the art faces many open problems, in particular for the interpretation of the environ-
ment, for planning and acting with incomplete and uncertain models and noisy sensory data.

(a) Double
Robotics

(b) PadBot

Figure 4: Telepresence robots

Autonomy at the mission level already achieves good experimental success when the tasks are well
structured and constrained, even when the environment is highly variable. Driverless cars provide a

6

good illustration. The first success goes back to the 2005 “DARPA Grand Challenge”: autonomous
traversal of 320 km in the Mojave Desert in less than 7 hours (Figure 5(a) [123]), which was followed
in 2006 by the “DARPA Urban Challenge”. Since then, several companies reported millions of kilo-
meters of autonomous driving on roads and highways (Figure 5(b)). Autonomous underwater vehicles
(AUV) are another excellent example. Experimental AUVs are launched for up to 24 hours in a mis-
sion of mapping, water sampling, oceanographic and biological measurement; in case of a problem,
the AUV surfaces and indicates its position to be retrieved by its operators (Figure 5(c) [84]).

(a) Stanley, DARPA challenge
2005 (Stanford U.)

(b) Autonomous Driving
(Google)

(c) Dorado, AUV (MBARI)

Figure 5: Autonomous vehicles.

Robotics research relies significantly on experiments. The advance of the field has been condi-
tioned by the availability of inexpensive reliable platforms with broad functionalities that are easily
deployable and programmable. Significant progress has been witnessed in the last decade. A good
illustration is provided by humanoid robots: many research groups have now access to biped robotic
platforms of human size (Figure 6(a) and 6(b)). These robots demonstrate good motor skills as well
as impressive mechatronics. Platforms on wheels with two arms, sometimes with an articulated trunk,
also illustrate rich sensory-motor capabilities. These platforms are able for example to catch simulta-
neously two thrown balls (Figure 7(a)), to fold laundry or to play billiards (Figure 7(b)).

Several research competitions stimulated the progress of the field. In addition to autonomous
driverless cars, there are several other competitions, e.g., in robotics assembly, aerial robotics or hu-
manoid robotics. The robotics soccer competition “RoboCup” is very popular. One can be critical for
the oversimplifications often introduced in these competitions (artificial or “micro-worlds” problems).
However, their effects in terms of attractiveness, visibility and team commitment, especially among
students, remain largely beneficial to the progress of robotics.

3 Motion Planning, Mapping and Navigation

Mobility is a critical and widely studied function for autonomous robots [78, 30, 80]. When the
environment is well modeled, the movements of a robot can be planned and controlled in a robust
manner. Otherwise, the robot has to explore its environment to acquire the needed geometrical and
topological models. Let us discuss here these two problems of motion planning and environment
modeling.

7

(a) HRP 4 (Kawada
Industry)

(b) Atlas (Boston Dynamics)

Figure 6: Humanoid robots.

3.1 Motion planning with probabilistic road maps

We assume that the environment is described by a geometric model (such as a Computer-Aided Design
model), which specifies the geometry of the obstacles and the free space. The robot is modeled by its
kinematics, i.e., the set of degrees of freedom and the constraints of its moving limbs, as well as its
dynamics, i.e., masses and inertia of its components, and the forces and torques of its actuators.

Motion planning consist in finding a trajectory for connecting an initial position to a goal position.
This trajectory should be feasible in space and time. The problem is usually decomposed into two
steps: (i) find a feasible path that satisfies the kinematics constraints of the robot and the geometric
constraints of the environment, and (ii) find a control law along that path that satisfies the dynamic
constraints of the robot. In simple cases these two problems (i) and (ii) can be solved independently.
When there are no moving obstacles and the robot dynamic constraints are weak (e.g., slow motion),
it is generally easy to map a feasible path into a feasible trajectory with simple control laws. Motion
planning in robotics reduces mainly to a path planning problem, which we detail below.

A free rigid object in Euclidean space without kinematic constraint is characterized by six config-
uration parameters: (x, y, z) for the position of a reference point and three angles for the orientation
of the solid in space. But a robot has kinematic constraints that restrict its movements. For example,
a car in the plan has three configuration parameters (x, y and orientation θ), which generally are not
independent (a car cannot move laterally). The PR-2 robot (Figure 7(b)) has 20 configuration param-
eters (3 for the base, one for the trunk, 2 for the head, and 7 per arm). The humanoid robot HRP-4
(Figure 6(a)) has 32 configuration parameters plus five for each hand.

For a robot with n configuration parameters in a given environment let us define:
• q ∈ <n, the configuration of the robot, a vector of n real values that specifies the n parameters

characterizing the position of the robot in a reference frame;

8

(a) Justin (DLR) (b) PR2 at LAAS (Willow Garage)

Figure 7: Mobile robots with two arms.

• C, the configuration space of the robot, which describes all possible values of q in <n given the
kinematic constraints, such as the max and min angular positions that each joint can have, and the
dependencies between configuration parameters;

• Cf ⊆ C, the free configuration space which gives all possible values of q ∈ C given the constraints
of the environment, i.e., the set of configurations for which the robot does not collide with obstacles.

These concepts are illustrated in Figure 8 for a robot with two degrees of freedom.1

Planning a motion between an origin configuration qo and a goal configuration qg, both in Cf ,
consists in finding a path between qo and qg in this n dimensional continuous space. The major dif-
ficulty here, as for any other planning problem, is that the search space Cf is not known explicitly.
The explicit definition of Cf from the geometric model of the environment and the kinematic con-
straints of robot is an extremely complex problem, difficult to solve even for very simple robots and
environments. In the trivial 2D case of the previous example, this problem corresponds to finding the
analytical definition of the grey area in Figure 8(b). Significant research in computational geometry
addressed this representation problem, see e.g., Schwartz et al. [104]. It opened the way to sampling-
base approaches that helped to circumvent the problem, in particular with the following method.

The Probabilistic Roadmap algorithm of Kavraki et al. [73] relies on two easily computable
operations:
• kinematic guidance: find a direct kinematic path L(q, q′) between two configurations q and q′ ∈ C

without worrying about environment constraints, i.e., L(q, q′) satisfies the kinematic constraints

1Figure adapted from http://www.cs.cmu.edu/motionplanning/

9

116-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

E

D

270

360

180

90

0
90 18013545

qA

E

D
qB

A

B

Torus
(wraps horizontally and vertically)

β"

α"

β

(a)

2

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration Space Obstacle

An obstacle in the robot’s workspace

E

D

270

360

180

90

0
90 18013545

qB

qA

The C-space representation
of this obstacle…

E

D

How do we get from A to B ?

A

B

Reference configuration

180°%

360°%

β"

α"

+π

+π
-π

0

0

(b)

Figure 8: (a) A planar robot with two angular joints, α and β facing a circular obstacle. (b) Corre-
sponding configuration space: the projection of the obstacle in C shows that the two configuration qA
and qB are not connected : no motion of the robot can move it from points A to B.

but not necessarily the constraints of non-collision with obstacles. The techniques used for that are
specific to the type of the robot kinematic constraints, e.g. composition of straight lines and curves;

• collision test: check whether a configuration q does or does not collide with obstacles, i.e., if
q ∈ Cf ; check whether a path L(q, q′) between two configurations is collision-free, i.e., if it passes
entirely in Cf . This relies on basic techniques of computational geometry.

A roadmap G in Cf is a graph whose vertices are configurations in Cf ; two vertices q and q′ are
adjacent in G iff there exists a path without collision L(q, q′) in Cf .

If a roadmap G in Cf is known, then planning a path between an origin configuration qo and a goal
configuration qg can be solved with the three following steps:
• find a vertex q in G such that q is accessible from qo i.e., L(qo, q) ∈ Cf ;

• find a vertex q′ in G such that qg is accessible from q′, i.e., L(q′, qg) ∈ Cf ;

• find a sequence of adjacent vertices in G between q and q′.
Path planning is then reduced to a simpler problem of finding a path in graph. If such a sequence

of configurations is found, efficient algorithms allow to smooth and optimize locally this sequence of
configurations in G into a kinematic path. It remains therefore to find a map G covering adequately
Cf , i.e., if there is a path in Cf then there is also a path in the roadmap G using the previous three steps.

The algorithm in Figure 9 [108] provides a graph G which probabilistically satisfies this coverage
property. This algorithm incrementally generates G starting with an empty roadmap. It adds to the
map under construction a randomly drawn configuration q in the following two cases:
• if q belongs to the free space and extends the coverage of G, allowing to reach parts of Cf not yet

covered (step .(i)), or

• if q belongs to the free space and extends the connectivity of G, allowing to connect two components
not currently connected in the roadmap (step .(ii)).

10

Probabilistic Roadmap (G)
iterate until Termination

sample a random configuration q ∈ C
if q ∈ Cf then do

if ∀q′ ∈ G: L(q, q′) /∈ Cf then add q in G . (i)
else if ∃q1, q2 in G such that q1 and q2 are not connected

and L(q, q1) ⊂ Cf and L(q, q2) ⊂ Cf
then add q and the edges (q, q1) and (q, q2) to G . (ii)

Return(G)

Figure 9: Probabilistic roadmap algorithm for path planning

The Termination condition is based on the number of consecutive samples of unsuccessful ran-
dom free configurations that do not add anything to the map. If kmax is such a number, then the
probability that the resulting graph covers Cf is estimated by (1−1/kmax). In practice, this algorithm
is very efficient. The probabilistic roadmap technique and its incremental variants (called RRT for “
Rapidly exploring Random Trees” [80]) are now widely used in robotics. They are also used in other
application areas such as mechanical design, video animation, or computational biology for molecular
docking problems to find whether a ligand can bind to a protein. They have been extended to take into
account dynamic environments.

These techniques have advanced significantly the state of the art but they do not solve all motion
planning problems in robotics. Many open problems remain, in particular for handling the robot
dynamics. Further, one needs to synthesize plans that are robust to the uncertainty of the models and
to the sensory-motor noise in the robot localization and motion control. For example, we may want
a path that relies on known landmarks to maintain the localization uncertainty below an acceptable
threshold. In addition, we need to restate the problem for concrete tasks. The previous formulation
refers to a completely specified motion problem, i.e., from a configuration qo to a configuration qg.
In practice, the problem arises with respect to a task, e.g., grasp an object. This leads to several
open problems [107]. A grasp allows to infer the configuration of the end effector (hand and fingers)
from the position of the object to be grasped. But the configuration of the end effector gives only
a part of qg. It is possible to decompose the problem into: (i) plan the movement of the base of
the robot to a configuration “close” to the object, then (ii) plan a movement of the arm to a grasp
position. However, the manipulation of an object can require intermediate poses at different moment
with respect to the object, or the manipulation of other interfering objects. It is then necessary to
change the structure of the search space according to the grasps and poses of objects handled. In
addition, the above decomposition is not always feasible. For example, a humanoid robot requires a
coordinated movement of its body and all limbs [72] (Figure 10). Further, sensing and visibility issues
bring additional constraints, e.g., planning a motion that avoids occultation between a camera carried
by the robot’s head and its hand, to allow for visual servoing [28].

3.2 Simultaneous Localization and Mapping

The execution of a planned motion requires the control of the actuators for achieving a trajectory,
possibly with avoidance of unexpected obstacles. The synthesis of this control is done with models
and methods from control theory. Robotics raises very interesting problems in automatic control, e.g.,
in the control of non-holonomic systems. These issues are not within the scope of this paper. We refer
the reader for example to the book of LaValle [80] or the synthesis of Minguez et al. [87].

11

(a) (b) (c)

Figure 10: Picking up a ball requires a coordinated whole body motion planning; here the synthesized
plan led the robot to step back, bend and extend opposite arm to maintain its balance (LAAS).

The execution of a planned motion requires also to maintain a good estimate of the state of the
robot throughout the execution of the command. In particular, the robot must always know where
it is in the environment. Sometimes, one may use absolute localisation, as given by a GPS or a
radio-positioning system if the environment provides the adequate infrastructure. However, to operate
autonomously in a diversity of environments, a robot must be able to locate itself directly from the
perceived natural elements of its environment and a map of this environment. Further, this map
is generally partially known, or even unknown. In general a robot is faced with a problem called
simultaneous localization and mapping (SLAM). This problem has been identified quite early [27,
113], and has been since a very active research topic in robotics.2

To define the problem, let us discuss its two subproblems:
• Localization: the robot is localized in a fully known environment, modeled by k landmarks that are

easily recognizable and perfectly positioned in space (2D or 3D). At time t, the robot is in a posi-
tion estimated by x̃t. It moves with the command ut (giving the movement speed and orientation
between t and t′). This allows to estimate the new position x̃′. The robot observes k landmarks
where it expects to find them (from the estimated x̃′). It updates its position in relation to each
recognized landmark. The observed positions of the landmarks are combined into a new estimated
position of the robot x̃t+1. The process is repeated at each time step as long as the robot remains
within a fully known environment. The intermediate estimate x̃′ serves only to find landmarks. The
localization error takes into account the sensing errors in the landmark observed positions, but it
does not increase with time as long as the landmark locations in the map are error free. The error
associated with the motor command ut does not affect the localization.

• Mapping: The robot builds a map of its environment assuming it knows precisely its successive
positions. The jth landmark is estimated at time t as x̃jt . The robot moves between t and t + 1
to a new known position, from which it observes again the position of the jth landmark as x̃′j
2See, e.g., the software repository: http://www.openslam.org/

12

with sensing error. x̃′j and x̃jt are combined into a more reliable estimate x̃jt+1 . The map quality
improves with time.

A DCB(a)A DCB(b)A DCB (c)A DCB (d)

Figure 11: SLAM procedure for a simple 2D robot: (a) Three landmarks (corners of obstacles) are
detected and positioned with inaccuracy due to sensing noise. (b) The robot moves and estimates its
position with a motion error. (c) The landmarks are observed and associated with the corresponding
ones previously perceived. (d) Data fusion reduces the errors on the current position of the robot and
the positions of the landmarks. The process is iterated for each new robot motion and sensing.

In practice, the two problems have to be addressed simultaneously. The initial map, if there is one,
is never error free. Errors in the map entail localization errors. Symmetrically, the robot localization is
noisy, which entails errors in its updates of the map. However, the two sources of error, from sensing
and motion, are not correlated (see Figure 11). It is possible to combine the two subproblems into the
simultaneous estimate of the positions of the robot and the landmarks.

One approach initially explored for solving the SLAM relies on extended Kalman filters. The
technical details may seem complicated but a step by step presentation shows that the principle is
simple. It is assumed that the environment is static and the sensors of the robot are properly calibrated
and do not introduce systematic bias. Sensing errors are modeled as a Gaussian noise with zero
mean and a standard deviation specific to each sensor. Let us assume two sensors, characterized
respectively by σ1 and σ2, which both measure the distance to the same landmark. They return two
values µ1 and µ2. We can estimate the true distance by averaging the returned values while giving
more confidence to the most accurate sensor, i.e., the one with the smaller σi. Hence µi is weighted by
1/σi. The estimated distance µ is associated with a standard deviation σ defined below (Equation 1).
This estimates has good properties: it minimizes the mean squared error. The error resulting from the
combination of the two measures decreases, since σ <min{σ1, σ2}.

µ = α(µ1/σ1 + µ2/σ2), with α = σ1σ2/(σ1 + σ2)

1/σ = 1/σ1 + 1/σ2
(1)

This process is applied incrementally. We combine the current estimate (µ′, σ′) to the new mea-
sure (µz, σz). The new estimate at time t (µt, σt) integrating the new measure is given by the same
equation, rearranged easily into the following form (Equation 2):

µt = µ′ +K(µz − µ′)
σt = σ′ −Kσ′

K = σ′/(σz + σ′)

(2)

13

Let us now introduce the robot’s motion. At time t− 1 the robot was in a position with respect to
the landmark of interest estimated by (µt−1, σt−1). Between t− 1 and t the robot moves according to
a command known with an uncertainty similarly modeled. Let (ut, σu) be the estimate of this motion
along the robot - landmark line. This estimate is given by the command sent to actuators and/or by
the odometer. The relative distance to the landmark after the motion is estimated by (µ′, σ′), noting
that the error increases due to the motion:

µ′ = µt−1 + ut

σ′ = σt−1 + σu
(3)

We now can combine the two previous steps into a SLAM approach based on Kalman filtering.
The estimate of the relative position robot - landmark is updated between t− 1 and t in two steps:

(i) update due to motion (with Equation 3): (µt−1, σt−1) → (µ′, σ′)
(ii) update due to sensing (with Equation 2): (µ′, σ′) → (µt, σt)

In the general case, these updates are applied to vectors instead of simple scalar values. We run the
above process to the update of the positions of the robot and the landmarks in the Euclidean space, 2D
or 3D. The position of the robot does not necessarily include all its configuration parameters, but only
the portion of q necessary for the localization of a reference point and for the positioning of its sensors.
The map is characterized by many landmarks positioned in space. A vector µt, whose components
are the robot configuration parameters and the positions of the landmarks, is updated at each step.
The error is no longer a scalar σt but a covariance matrix Σ whose element σij is the covariance
components i and j of the parameters of µ. The error on the position of the robot is coupled to the
errors of the map and symmetrically. Furthermore, the above approach applies only to linear relations.
But the relationship between the command and the motion is not linear. We approximate a solution
to this problem by linearizing around small motions. This leads finally to the extended Kalman filter
formulation of SLAM:

µ′ = Aµt−1 +But

µt = µ′ +Kt(µz − Cµ′)
Σ′ = σt−1 + Σu

Σt = Σ′ −KtCΣ′

Kt = Σ′CT (CΣ′CT + Σz)
−1

(4)

Two update steps are easily identified:

(i) (µt−1, σt−1) → (µ′,Σ′) : vector ut, matrices A and B for the motion,
(ii) (µ′,Σ′) → (µt,Σt) : vector µz , matrix C for the new measurements.

One also takes into account the covariance associated with the motion and the measurements (Σu

and Σz). It should be noted that the first step uses the motion to update the position of the robot as
well as those of the landmarks. Similarly, the second step integrates the new measurements for both,
the localization and mapping.

This approach has been successfully implemented and frequently used [122]. It has many advan-
tages. In particular, it maintains the robot localization and the corresponding bounds on the error.
These bounds are very important in navigation: if the error grows beyond some threshold, specific
action has to be taken. The method converges asymptotically to the true map, with a residual error

14

due to initial inaccuracies. Finally, the estimate is computed incrementally. In practice, the number
of landmarks increases dynamically. The robot maintains a list of landmark candidates which are
not integrated into the map (nor in the vector µ) until a sufficient number of observations of these
landmarks have been made. If n is the dimension of the vector µ (i.e., the number of landmarks), the
complexity of the update by Equation 4 is O(n2). The computations can be done online and on board
of the robot for n in the order of 103, which means a sparse map.

Particle filtering offers another approach to SLAM with additional advantages. Instead of estimat-
ing the Gaussian parameters (µ,Σ), the corresponding probability distributions are estimated through
random sampling. Let P (Xt|z1:t, u1:t) = N (µtΣt), where Xt is the state vector of the robot and
landmark positions at the time t, z1:t and u1:t are the sequences of measures and commands from 1 to
t. Similarly P (zt|Xt−1) = N (µzΣz).

Let us decompose the state vector Xt into two components related to the robot and the landmarks:
Xt = (rt, φ1, ..., φn)T , where rt is the position of the robot at time t, and φ = (φ1, ..., φn)T the
position of landmarks, which do not depend on time because the environment is assumed static.3 The
usual rules of joint probabilities entail the following:

P (Xt|z1:t, u1:t) = P (rt|z1:t, u1:t)P (φ1, . . . , φn|z1:t, u1:t, rt)

= P (rt|z1:t, u1:t)
∏
i=1,n

P (φi|z1:t, rt) (5)

The second line results from the fact that, given the position rt of the robot, the positions of the
landmarks do not depend on u and are conditionally independent. The robot does not known precisely
rt but it assumes that rt ∈ Rt = {r(1)t , . . . , r

(m)
t }, a set of m position hypotheses (or particles). Each

hypothesis r(j)t is associated with a weight w(j)
t . Rt and the corresponding weights are computed in

each transition from t− 1 to t by the following three steps:

• Propagation: for m′ positions in Rt−1 randomly sampled according to the weights w(j)
t−1, we com-

pute r(j)t the position at time t of the resulting control ut, with m′ > m,

• Weighting : the weight w(j)
t of particle r(j)t is computed taking into account the observation zt from

the product P (zt|φ, r(j)t)P (φ|z1:t−1, r(j)t−1).

• Sampling: the m most likely assumptions according to the new weights w(j)
t are kept in Rt.

For each of the m particles, the probability P (φi|z1:t, rt) is computed with a Kalman filter reduced
to the 2 or 3 parameters necessary to the position φi. With good data structures for the map, this
approach, called FastSLAM [88], reduces the complexity of each update to O(nlogm) instead of
O(n2) in the previous approach. In practice, one can keep a good accuracy for about m ' 102

particles, allowing to maintain online a map with n ' 105 landmarks.
The main limitation of these approaches is due to a well known and difficult problem of data

association. At each step of the incremental localization process, one must be sure not to confuse
the landmarks: associated measurements should be related to the same landmark. An update of the
map and the robot positions with measurements related to distinct landmarks can lead to important
errors, well beyond the sensory-motor errors. This argument, together with the computational com-
plexity issue, favors sparse maps with few discriminating and easily recognizable landmarks. On a
small motion between t − 1 and t, the landmarks in the sensory field of the robot are likely to be

3Note that in µt the estimate φ evolves with t, but not the position of the landmarks.

15

recognized without association errors. But after a long journey, if the robot views some previously
seen landmarks, a robust implementation of the approach requires a good algorithm for solving the
data association problem.4 In the particle filtering approach, the probability distribution of Rt is very
different when the robot discovers a new place (equally likely distribution) from the case where it
retraces its steps. This fact is used by active mapping approaches, which make the robot retrace back
its steps as frequently as needed [114].

ut−1

��

ut

��

ut+1

��
rt−1

��

// rt

��

// rt+1

��
zt−1 zt zt+1

φ

OO == 66

Figure 12: Formulation of SLAM with a dynamic Bayesian network; arcs stand for conditional depen-
dencies between random variables, φ gives the positions of the landmarks (time-independent), ut, rt
and zt denote the command, the robot positions and the new measurements at time t.

In the general case, there is a need for an explicit data association step between the two stages
(i) and (ii) corresponding to Equation 4. This step leads to maintain multiple association hypotheses.
The SLAM approaches with Dynamic Bayesian Networks (DBN) for handling multi-hypotheses give
good results. The DBN formulation of SLAM is quite natural. It results in a dependency graph (Figure
12) and the following recursive equation:

P (Xt|z1:t, u1:t) = αP (zt|Xt)

∫
P (Xt|ut, Xt−1)P (Xt−1|z1:t−1, u1:t−1)dXt−1

= αP (zt|Xt)

∫
P (rt|ut, rt−1)P (Xt−1|z1:t−1, u1:t−1)drt−1

(6)

Here, α is a simple normalization factor. The vector state is as above Xt = (rt, φ1, ..., φn)T ; the
second line results from the fact that the environment is assumed static and that the robot motion and
landmark positions are independent. The term P (zt|Xt) expresses the sensory model of the robot,
and the term P (rt|ut, rt−1) corresponds to its motion model. This formulation is solved by classical
DBN techniques, using in particular the Expectation-Maximization algorithm (EM), as for example
in Ghahramani [51], which provides a correct solution to the data association problem. However,
online incremental implementation of EM are quite complex. Let us also mention another version of
FastSLAM which takes this problem into account by an explicit optimization step over all possible
associations [89].

Recent approaches to SLAM favor this DBN formulation with a global parameter estimation prob-
lem overs the set of landmarks and robot positions. The problem is solved by robust optimization
methods. This general formulation is called the beam adjustment method, following the computational

4This is sometimes referred to as the SLAM loop problem.

16

vision and photogrammetry techniques [125]. Visual SLAM has also benefited from recent image pro-
cessing features which are quite robust for localization and identification of landmarks [85, 93, 82].

Let us conclude this section by mentioning a few possible representations for the map of the
environment. Landmarks can be any set of sensory attributes that are recognizable and localizable in
space. They can be a simple collection of points. They can also be compound attributes, such as visual
segments, planes, surfaces, or more complex objects. The most appropriate attributes are generally
specific to the type of sensors used. The global map can be represented as a 2D occupancy grid.
Simple 3D maps for indoor environments, such as the Indoor Manhattan Representation, combine
vertical planes of walls between two horizontal planes for the floor and ceiling, [46]. They can be
used with more elaborate representations integrating semantic and topological information (see next
section).

3.3 Navigation

The previous approaches are limited to metric maps. They only take into account distances and
positions in a global absolute reference. When the environment is large, it is important to explicitly
represent its topology, possibly associated with semantic information. In this case, a map relies on
hierarchical hybrid representations, with metric sub-maps in local reference frames, together with
relationships and connectivity constraints between sub-maps. The robot re-locates itself precisely
when arriving in a sub-map.

Navigation in this case is also hybrid. Within a sub-map, motion planning techniques are used.
Between sub-maps other methods such as road following or beam heading are more relevant. Sensory
aspects and place recognition play an important role in navigation methods for semantic hierarchy of
spatial representations [76].

Mapping and map updates can be as flexible as in the case of SLAM through the updates of a
graph of local sub-maps [77, 38]. Topological planning relies on path search techniques in graphs
(using algorithms such as Dijsktra or A∗). It is associated with motion planning in sub-maps. Both
types of planning can be combined incrementally. Topological planning gives a route which is updated
and smoothed incrementally to optimize the motion giving the observed terrain while moving [75].

Topological planning in a graph or within a grid can be used with a partial knowledge of the
environment. Extensions of the A∗ algorithm (D∗ [115], D∗ Lite, or Focused D∗) compute shortest
paths in the graph, but they use the robot sensing to update the topology and costs parameters for
finding shortest paths.

Finally, a classical problem in any hybrid approach is that of the frontiers between levels and
their granularity. Labels of places (doors, rooms, corridors) and topology can emerge naturally from
sensing and/or from a uniform description of space into cells (grids, polygons or Delaunay triangles).
Decomposition techniques by quadtrees (a partially occupied cell is decomposed recursively) are
useful but can be computationally complex. Analysis of the levels of connectivity of a graph provides
elegant solutions with low complexity when the topological graph is planar [64, 79].

4 Task Planning and Acting

Task planning is the problem of synthesizing a plan, i.e., a sequence or a structured set of actions,
starting from the description of all possible actions that a robot can perform, and such that the synthe-
sized plan achieves an intended objective. Task planning is supposed to be general enough to handle
all kind of tasks, integrating mobility, manipulation, assembly, sensing, etc. A planner is a predictive

17

system: it chooses, among various projections of possible futures those likely to lead to the goal. For
this, the models of possible actions are at some level of abstraction that allows easy predictions. They
are mainly logical or relational models, which grasp the causal relationships between actions, their
conditions, effects and the intended objectives. The plans produced are more like guidelines for acting
than direct programs to execute in open loop: they seldom fully unfold as expected, along a nominal
scenario. Once a plan is found, there are problems for acting according to that plan, i.e., transforming
the abstract actions in the plan into commands adapted to the context, monitoring their execution, and
if necessary, to taking corrective steps, including replanning.

Robotics was one of the first area that motivated the development of task planning. It led naturally
to the issue of coupling of planning and acting – the STRIPS planner of Fikes and Nilsson [43], on the
Shakey robot, associated with Planex [42] for the execution of plans, is a seminal work in this area.

The execution controller (controller for short) does not make prediction. It uses different types of
models which allow monitoring and, possibly, diagnosis. It must know which actions, especially the
sensory ones, are needed to launch a planned action and/or to observe the direct or indirect effects
of the action. It must be able to update the state of the world required to monitor the plan execution.
It must know the conditions which invalidate the current action, expressing the failure or absence of
response time, and those which invalidate the current plan. In addition, the controller must be able
to manage uncertainty and nondeterminism at various levels: the imprecision of sensory data and the
uncertainty about their interpretations; the action duration; the nondeterminism inherent to the action
outcomes, etc. Indeed, the controller launches the actions, but their effects and precise courses of
execution depend upon conditions and contingent events partially modeled. Finally, by definition, the
controller operates online: it must also be responsive to unforeseen events by the plan, and ensure
some safety conditions.

The coupling of planning and acting requires a tradeoff between the constraints and models needed
for the planner predictions and those needed for the acting online with action refinements, reactions,
monitoring and revision. A description of a planning and acting system and how to achieve this
tradeoff could be made on the basis of a hierarchical state transition system Σ = (S,A,E, γ), where
S,A and E are enumerable sets of state of activities and events, and γ is a function that describes the
dynamics of the system γ = S×A×E → S2. Activities are decided and triggered by the robot, while
events are not under its control; they give rise to changes in the environment which can be observed
directly or indirectly. Σ is described with two levels of abstraction:
• the planner has an abstract model of Σ: its macro-states are subsets of S, its actions are subsets of

activities; it rarely takes into account E;

• the controller has a finer model of Σ: it is able to refine each planned action in corresponding
activities which are under its control; it knows how to launch activities and how to monitor their
progress; it can trigger activities (e.g., monitoring, alarms) to observe the dynamics of S, and other
activities to react to events.

A complete formalization of such a system depends on many conditions, especially the type of plan-
ning used, deterministic or non-deterministic and the system dynamics, e.g., how to take into account
the concurrency between activities and events within the function γ. A presentation of possible ap-
proaches is beyond the scope of this paper. We refer the reader to the textbook of Ghallab et al. [54]
for a detailed coverage of tasks planning methods, and to the recent survey of Ingrand and Ghallab
[66] for a broad perspective on deliberate actions in robotics . In the remainder of this section, let
us review some of the main approaches for acting and execution control, focusing on relational and
logic representations in deterministic and temporal approaches, and on Markov representations for
nondeterministic approaches.

18

4.1 Deterministic Approaches

The approaches using a classical planner (as in STRIPS) often produce a plan π to which they associate
a causal structure that help the controller follow the proper execution of the plan (e.g., triangular
tables). The purpose of these structures is to provide the conditions of use of the actions so that the
controller can verify their applicability and their proper execution. If these conditions are not met the
control can relaunch this action (or another) or it can call the planner to produce a new plan.

These causal structure to monitor the execution of a plan are quite limited. Richer formalisms
have been proposed to permit the execution of plans. They can be classified into two broad families.

Imperative Languages such as RAP [45], PRS [65], or TDL [109]. They offer an imperative pro-
gramming language that allows to specify procedures to be performed to meet some objectives
(e.g. perform an action). These languages offer conventional programming control structures
(test loop, recursion, parallelism, etc.), and often rely on concepts borrowed from logic pro-
gramming (as in Prolog).

State Transition Systems such as SMACH, the ROS controller language of ROS [18]. The user
provides a set of hierarchical finite state machines. Each state corresponds to an activity involv-
ing one or more components of the robot. According to the returned values of executions, the
controller performs the appropriate transition to the next state. The overall state of the system
corresponds to the composition of the hierarchical automata.

These systems, based on automatons or procedures are very useful and necessary in setting com-
plex robot experiments where one must coordinate many software components. However, these mod-
els, used to refine actions in activities, must be directly programmed by procedures or automatons
developers, and are not inferred from specifications. This is a problem with respect to their validation
and verification.

Planning with Hierarchical Task Network (HTN) [118, 37] naturally incorporates a refinement
process of abstract tasks in elementary actions. HTNs represent decomposition methods of task as
a network (often an and/or tree) of elementary actions. The specification of knowledge in these ap-
proaches appears natural to the programmer. These approaches seldom provide ways to refine planned
actions into commands, and to repair refinements when an execution failure occurs. However, several
HTN systems are used in robotics and extend the formalism in various ways. For example SIPE [126]
can produce plans where the duration of actions is taken into account. TCA/TDL [109] integrates
execution and decomposition during the execution of tasks in plans. Xfrm [13] can produce plans
following an HTN approach, but also allows the modification/repair of these plans while executing
them (transformational planing).

4.2 Timed Approaches

The controller of an autonomous robot must explicitly take into account time. A state transition
approach is not sufficient. Indeed, the activities of the robot are not instantaneous (motions, taking
images, etc). Often, they must be executed in parallel, synchronized, and bounded with earliest and
latest date. These motivations lead to explicitly include time and temporal constraints in the models:
the plan produced will be more robust with respect to execution.

Several planning approaches based on temporal intervals or events formalisms [5, 52] have been
developed, e.g., IxTeT [53] HSTS [92], Europa [48], APSI [49]. They led to extensions that take into
account execution. They produce plans in the form of a lattice of instants (the beginnings and ends of
actions) or intervals. A timeline represents the temporal evolution of a state variable (e.g., the position

19

of the robot); it is composed of instants or intervals in which the variable keeps a value (e.g., the
robot does not move), or changes its value (the robot moves). The search for a solution plan is in the
space of partial plans (where each state is a partial plan with a set of partially instantiated and ordered
actions), with a least commitment strategy.

These approaches have many advantages for planning and execution in robotics. They properly
manage concurrency or parallel execution. Furthermore, they generally produce plans that are tem-
porally flexible, leaving to the execution the choices of the exact dates of occurrence (controllable
or non-controllable but observable). For this, the execution controller must continually propagate the
time constraints based on the date of occurrence actually observed to ensure that the plan remains
consistent and repairable in case of inconsistency.

Some approaches (e.g., IDEA and T-ReX) offer a paradigm where the planner and the controller
are tightly coupled in a set of reactors, each with its own horizon for planning and execution.

For events as well as intervals, these approaches rely on Simple Temporal Networks (STN)
to model the temporal constraints between the events considered. An STN is a constraint net-
work whose variables are events; constraints between two events ti and tj are of the form:
minij ≤ tj − ti ≤ maxij . The Allen Algebra of intervals [5] (using relations such as before, meets,
overlaps, starts, during, finishes, their symmetrical and equality) can easily be transformed into an
equivalent STN. One has just to translate the relations in precedence (or equalities) on the beginnings
and ends of each interval.

The plan produced is an STN described by the corresponding constraint. Figure 13(a) shows the
STN plan of a Mars rover that must go to a given location, take a picture, communicate the result to
an orbiter during a window visibility, then return to its base. The network can be transformed into
a distance graph (see Figure 13(b) where arcs correspond to the inequalities tj − ti ≤ maxij and
ti − tj ≤ −minij). One finds the minimum using Floyd-Warshall algorithm 14(a). Here dist[i, j] is
the minimum distance from i to j, initialized with an infinite value when i and j are not constrained.
One then obtains the graph in Figure 13(c).

When an STN is taken as a task to perform, the execution controller must incrementally propagate
the update using algorithm 14(b) (which is of a lesser complexity, O(n + n2) instead of O(n3)). In
the example above, if the first Goto takes exactly 70 seconds, we get the STN in Figure 13(d) and after
propagation the graph in Figure 13(e).

These approaches have been successfully implemented in many robotic experiments (e.g.,
MBARI [100], Willow Garage [83], NASA [44] and LAAS [81]) but their development faces the
following difficulties:
• writing the planning models and debugging them is difficult, especially when one wants to take into

account nonnominal execution situations (i.e., failures and error recovery),

• the search for solutions in the partial plans space must be guided by adapted heuristics,

• the temporal controllability of the STN must be taken into account. Indeed, these STNs contain
controllable variables but also contingent variable. The values of the formers are selected by the
robot, whereas the values of the latters are contingent and determined by the environment within
their domain 5. An STN is controllable if there a possible value assignment for controllable events
depending on the values of the contingent ones. Strong controllability ensures that there exists
an assignment of values of controllable events for all possible values of contingent ones. Weak
5For example, in the graph Figure 13(c) to move between t0 and t1, the starting time t0 is controllable, but not the

arrival time t1. Travel time was reduced by propagation from 90 to 85 (Figure 13(c)), but in fact, only the observation after
execution will give the exact value.

20

t0

t1

t3

t6

t7 t8

t4

[60,90]
Goto

[5,10]
Take Image

[20,30]
Communicatet2

[60,90]
Goto

[80,80]
[30,30]

Visibility Window

[70,70]

[0,∞]

t5

[0,∞]
[0,∞]

[0,∞]

(a) Simple temporal network (STN)

t0

t1

t3

t6

t7
t8

t4

90

10

30

t2

90

80
30

∞

t5

∞
-60

-5

0 -20

∞

0

-60

-80

-30

70

-70

0
∞ 0

(b) Distance graph

t0

t1

t3

t6

t7
t8

t4

85

10

30

t2

80

80
30

25

t5

10-60

-5

0 -20
20

0

-60

-80

-30

70

-70

0
10 0

(c) After a Floyd-Warshall propagation (Algo 14(a))

t0

t1

t3

t6

t7
t8

t4

70

10

30

t2

80

80
30

25

t5

10-70

-5

0 -20
20

0

-60

-80

-30

70

-70

0
10 0

(d) After execution of the first Goto

t0

t1

t3

t6

t7
t8

t4

70

10

30

t2

80

80
30

15

t5

10-70

-5

0 -20
20

0

-60

-80

-30

70

-70

0
10 0

(e) After incremental propagation (Algo 14(b))

Figure 13: Successive phases of planning and execution of a temporal plan for a Mars exploration
rover.

Floyd-Warshall(dist, n)
for k from 1 to n

for i from 1 to n
for j from 1 to n
dist[i, j]← min{dist[i, j],

dist[i, k] + dist[k, j]}
(a) Initiale propagation: Floyd-Warshall

Algorithm

Incremental(dist, n, i0, j0)
for i from 1 to n
dist[i, j0]← min{dist[i, j0],

dist[i, i0] + dist[i0, j0]}
for i from 1 to n

for j from 1 to n
dist[i, j]← min{dist[i, j0],

dist[j0, j] + dist[i, j]}
(b) Incremental propagation: after changing

the constrain between two events i0 et j0

Figure 14: Temporal contraints propagation algorithms.

controllability ensures that there is a possible value assignment for the controllable ones for all the
values of the contingent ones, if they are known in advance (unrealistic). Dynamic controllability

21

ensures that there is an assignment for controllable ones for the values of the past contingent ones.
This last property keeps the flexibility while making sure that a solution remains.

Other approaches (e.g., Aspen/Casper [29]) based on a temporal model produce complete plans
without any flexibility. If a temporal (or a causal) failure occurs when executing the plan, the planner
then repairs it using local search techniques.

4.3 Probabilistic Approaches

Nondeterminism is not an intrinsic property of a system but a property of its model. Interaction with
the real world always involves some level of nondeterminism, that may of may not be grasped in its
model. The same arguments that foster the need for autonomous deliberation in a robot, i.e., open and
diverse environments and tasks, promote the use of nondeterministic models. These allow to handle
various possible interactions between the robot actions and the environment own dynamics, possibly
with probabilistic models. Markov Decision Processes (MDP) provide a convenient representation
for planning under uncertainty. Let us introduce here the general MDP approach, which will be also
useful for section 6 about learning.

Let S be a finite set of states, and A a finite set actions. If an action a is applicable in a state
s, a can lead nondeterministically to any states in F (s, a) ⊆ S. Let P (s′|s, a) be the probability of
reaching state s′ when action a is applied in s; r(s, a) ≥ 0 is the reward associated with a in s. Let
π : S → A be an application that associates to each state s the action to be performed in s. π is called
a policy; it corresponds to a plan that tells the robot which action to carry in each state. π has possibly
loops, i.e., following π from a state s may lead back to s after one or a few steps. The value function
Vπ(s) of a state s under policy for π is the expected sum of rewards of this plan, weighted (to ensure
convergence) by a decreasing coefficient:

Vπ(s) = E[

∞∑
t=0

ξtr(st, π(st))],with ξ < 1

= r(s, π(s)) + ξ
∑

s′∈F (s,π(s))

P (s′|s, π(s))Vπ(s′)
(7)

The optimal value function for a state s is V ∗(s) for the optimal policy π∗.

V ∗(s) = maxπVπ(s)

= maxa{Q∗(s, a)},with

Q∗(s, a) = r(s, a) + ξ
∑

s′∈F (s,a)

P (s′|s, a)V ∗(s′)
(8)

Dynamic programming leads to a recursive formulation of V ∗ and provides easily implementable
algorithms, such as Value Iteration (see Figure 15).

Value Iteration algorithm [16] terminates when a fixed point is reached, i.e., a full iteration over S
without a change in any V (s). It gives the optimal policy π∗. It can be initialized with an arbitrarily
V (s). In practice one does not need to loop until a fixed point. It is sufficient to make sure that all
updates of V (s) on some iteration over S remain below a threshold ε. The returned solution then
deviates from the optimum by at most 2ε× ξ/(1− ξ).

The above formulation is not goal oriented: it seek an optimal policy for an infinite process. This
formulation can be transformed into a goal-oriented approach by giving an initial state s0, a set of
goal states Sg ⊂ S, and by searching for an optimal policy that leads from s0 to one of the states in

22

Value Iteration(S,A, P, r)
until reaching a fixed point do

for each s ∈ S do
for each a applicable in s do

Q(s, a)← r(s, a) + ξ
∑

s′ P (s′|s, a)V (s′) . (i)
V (s)← maxa{Q(s, a)}

for each s ∈ S do
π(s)← argmaxa{Q(s, a)}

Figure 15: Value Iteration algorithm.

Sg. One can also integrate cost distribution on actions and variable rewards function for goal states. In
such a formulation, one is not searching for policy defined everywhere, but for a partial policy, defined
only in states reachable from s0 by this policy. A safe policy π is guarantied to reach a goal from s0.
If a problem has a safe policy, then dynamic programming with ξ = 1 can find an optimal one. The
algorithm Value Iteration applies to the case where there is a safe policy from every state. When this
assumption does not hold, the problem is said to have dead-ends, i.e., states from which a goal is not
reachable. Extensions to dynamic programming algorithms have been introduced, e.g., [20, 16, 9].
For example it is not necessary, nor possible iterate over all S. It is enough to search along states
reachable from s0 with a current policy. One may also estimate Q(s, a) by sampling techniques [68].
The step .(i) is replaced by Q(s, a)← Q(s, a) +α[r(s, a) + ξmaxa′{Q(s′, a′)}−Q(s, a)], where s′

is taken in F (s, a) by sampling according to the distribution P (s′|s, a). This approach is very useful
in reinforcement learning.

Value Iteration algorithm has a polynomial complexity in |S| and |A|. Unfortunately, most of
the time S has a huge size: it is exponential in the number of the state variables. There are a few
more scalable approaches, using heuristics and hierarchical techniques, e.g., [8, 121, 97, 96, 120]).
Probabilistic planning is a very active research area with may open problems.

Given a policy π, the controller for an MDP is extremely simple. Just iterate over two steps:
• observe the state s

• execute the action π(s)

until reaching a goal state or some other stopping conditions.
The MDP approach offer several runtime advantages. It explicitly manages the nondeterminism

and uncertainty. It can be extended to take into account Partially Observable domains [23]. Modeling
a domain as an MDP is a difficult task, but the MDP formulation can be combined with learning
techniques (see section 6). This explains the success of these approaches in many robotics applications
which will be discussed later.

4.4 Integrating of Motion and Task Planning

Task planning and motion planning are two different problems that use distinct mathematical repre-
sentations. The first is concerned with causal relationship regarding the effects of abstract actions, the
second is concerned with computational geometry and dynamics. In simple cases a robot can decou-
ple the two problems: task planning produces abstract actions whose refinement requires, possibly,
motion planning. The two problems are however coupled for constrained environments and complex
tasks. For example, moving objects in a storage room can make the motion impossible if the task is

23

not appropriately organized. Let us discuss here some approaches to the integration of motion and
task planning.

The Asymov planner [25] combines a state-space search approach for task planning (using the FF
planner [63]) with a search in the configuration space for motion planning. It defines a place as a state
in the task planning space, as well as a range of free configurations in Cf . A place is a bridge between
the two search spaces. These two spaces are not explicitly constructed, but for every found task state,
Asymov checks that there are some reachable configurations in Cf . This approach has been extended
to multi-robot problems cooperating over a joint task, e.g. two robots assembling a large furniture
such as a diner table in a cluttered environment.

Another interesting technique uses hierarchical planning in a so-called angelic approach [127]
(the term is borrowed from “angelic nondeterminism” which assumes that out of several issues, the
best one can be chosen). An abstract action can be decomposed in different ways. An abstract plan is
based on abstract actions; its set of possible decompositions is a subset of the product of all possible
decompositions of its actions, some of which are not compatible. It is not necessary to ensure that
all the decompositions are feasible. A plan is acceptable if it has at least one feasible decomposition.
Indeed, the decomposition is not made randomly. The robot decomposes, when needed, each abstract
action by choosing a feasible decomposition, if there is one. The idea is to rely on a lower bound of
the set of feasible decompositions of an abstract plan such as to make sure that this set is not empty.
These lower bounds are computed by running simulations of action decompositions into elementary
steps, using random values of state variables. The planner relies on these estimates for searching in
the abstract state space.

The approach of Kaelbling and Lozano-Perez [71] illustrates another hierarchical integration of
task and motion planning. When planning at the abstract level, estimates regarding geometric infor-
mation are computed with so-called Geometric Advisers. These advisers do not solve completely the
motion planning problem submitted to them, but provide information about how feasible is a given
step that enables the abstract search to continue until reaching a complete plan. When the produced
plan is executed, each step that requires movements triggers a full motion planning. This approach re-
lies on two strong assumptions: geometric preconditions of abstract actions can be calculated quickly
and efficiently (by the geometric adviser); subgoals resulting from decomposition of action are exe-
cutable in sequence. The approach is not complete, i.e., the geometric refinement of a planned abstract
action may fail. However, for problems where actions are reversible at a reasonable cost (i.e., allowing
for backtracking at the execution level) the approach is efficient and robust.

5 Interaction

Most of the approaches presented above make the assumption that there is a single agent in the envi-
ronment: the robot performing the task. But complex missions may require the participation of several
humans and robots. Several approaches address these issues of interaction. For example, Simmons
et al. [111] proposes the Syndicate architecture, an extension to 3T [19], which allows the cooperation
of several robots in collaboration with a human, for the assembly of large structures. Fong et al. [47]
offers an architecture to define interaction models (tasks, teams, resources, human) needed for the
cooperation of a team of astronauts and extra-planetary rovers. In the next two sections, we examine
these increasingly common interactions and how they are accounted for in the planning process.

24

5.1 Multi-Robot Interaction

Sometimes, to achieve a complex mission, it is necessary to deploy multiple robots. Several ap-
proaches to the problems of mission planning and execution in a multi-robot framework have been
developed. We may distinguish several types of problems depending on the following features:
• planning is centralized or distributed,

• plan execution by each agent is independent or coordinated,

• planning is done before acting or made as the robots proceed,

• execution failures are repaired, and if yes at which level,

• the robots can communicate between them for coordination and planning.
Many research focuses on multi-robot motion planning, with geometric and kinematic representa-

tions (see section 3), and decomposition techniques generic enough to lead to distributed implementa-
tions [36]. Recent results, e.g., [17], allow to efficiently take into account relative position constraints
between the robots as well as missions featuring several sites to visit.

The Martha project illustrates an approach to manage a fleet of robots handling containers in ports
and airports [4]. The allocation of tasks to robots is centralized, but on a limited horizon. Planning,
execution, refinement and coordination needed for the navigation of robots and the sharing of spacial
resources in the environment are distributed. Robots negotiate among themselves the navigation in
the environment, which is divided into cells (e.g., intersection crossing, convoy mode, overtaking),
and also negotiate their path inside these cells. The deployed system assumes a reliable local com-
munication. Execution deadlocks between multiple robots are correctly detected by the coordination
algorithm, and one of the robots automatically takes control and produces a plan that it redistributes
to the other robots with which it conflicts.

Other works propose an allocation of tasks by an auction mechanism [35] to assign tasks to robots
(cells crossing/surveying). Tovey et al. [124] propose a mechanism to generate appropriate auction
rules adapted to the particular goal a group of exploration rover has (minimize the sum of the distances,
minimize the maximum travelled distance of all robots, minimize the average time to the targets, etc.).
In [132, 26], the authors apply a similar technique to tasks and subtasks of an HTN plan as it is built.
Each robot can win the bids on a task, then decompose into sub-tasks following an HTN method,
and auction all or part of the sub-tasks. After the initial distribution of tasks, robots maintain, during
execution, the ability to auction tasks they failed to perform. Moreover, communication in these
systems is not permanent and complete, thus the replanning/redistribution phases must be planned in
advance.

5.2 Human - Robot Interaction

The development of service robots raises some issues with respect to human-robot interaction [57].
We focus here on approaches which are concerned with planning and the models they use.

Interactive planning (or mixed initiative planning), i.e., planning while keeping humans in the
loop, is used in various areas. The operator takes part in the search for a plan to make choices and
help the planner solve the problem.

Planning for human–robot interaction raises a completely different issue: the plan is generated
automatically by the robot, but must explicitly take into account the interaction with the human while
executing the plan and even in some cases, plan for a shared execution. To this end, the planner has
some models (learned or programmed) of human behaviors [12]. These models specify how humans

25

behave with respect to the robot, what are the behaviors of the robot which are acceptable to humans.
They also specify how planned actions translate into commands of the robot [116].

Various planners have been adapted to take into account the role of the human in the plans pro-
duced. Generally, these are multi-agents planners, which have been modified to consider the human
as one of the agents. [24] propose an extension to GOLOG/GOLEX to plan the mission of a robot
museum interacting with visitors. The approach used in [21] is based on MAPL, a PDDL based multi-
agent planner to represent the beliefs of the various agents, the actions and the perception operators.
A compiler then translates these PDDL models. Planning is then performed by the FF planner [63].

Task to decompose

Bob action

Robot action

Common action

Causal link

Hierarchical link

Bob stream

Robot stream

ReachFurniture(Bob, sofa)

GetObject(Bob,glass)
GetObject(Bob,bottle)

GetObjectFromFurniture
(Bob,glass,cupboard)

GetObjectFromFurniture
(robot,bottle,table)

TransmitObject(robot,bob,bottle)
ReachPlace(Bob,sofa_place)

ReachFurniture(robot, table)

SomeoneOpen(cupboard)
SomeoneClose(cupboard)

P
ic

k
u

p
In

(B
o

b
,
g
la

s
s
,

c
u

p
b
o

a
rd

)

ReachPlace(Bob,
sofa_place)

Move(Bob, sofa_place
cupboard_place)

Open(Bob,
cupboard)

Close(Bob,cupboard)

P
ic

k
u
p
O

n
(r

o
b

o
t,

b
o
tt

le
,
ta

b
le

)

ReachPlace(robot,
table_place)

Move(robot, doortable_place) Move(robot,table_place,cupboard_place)

R
e
a
c
h

A
g
e
n
t

(r
o

b
o

t,
 B

o
b
)

G
iv

e
 (
ro

b
o
t,

B
o
b
,
b
o
tt
le

)

Move(Bob,
cupboard_place,sofa_place)

ReachFurniture(Bob, sofa)

Fig. 8. a plan produced by HATP

! " # $ % & ' () *

"
!

"
"

"
#

"
$

"
%

"
&

"
'

!

#+&

&

(+&

"!

"#+&

"&

"(+&

#!

,-./012342567892:829;3<=2>-1:8?256788:8?2;:.0

@:.02A9B

,
-
.
/
0
12
3
42
5
67
8
9

Without user constraints

With user constraint

Fig. 10. Plans stock during planning time

The abstraction provided by HATP for plan negotiation is
illustrated by figure 9. In this abstraction we have a small
hierarchy provided by the Refinement Tree except that we do

not show refinement of a task when it is associated to only
one Agent. The idea is that tasks linked to one Agent are
considered as private (it is the responsability of the Agent to
realize it) whereas tasks involving several agents are public
ones (we explain who must do what for these tasks). It
is important to note that although only the abstraction is
presented to robot human partner, the robot has in memory
all the plan until Time Projection. This will be useful to
introduce monitors to check and to influence human partner
commitment during plan execution.

VIII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have described in this paper a task planner called
HATP designed for interactive and collaborative robotic
applications. It is able to produce socially acceptable plans
for several agents by making a social evaluation of plans
from a set of social rules. We have provided several details

Figure 16: A plan produced by HATP with human–robot interaction: the tasks (in black) are decom-
posed into primitive actions for the robot (in blue), actions of the human (in red), and joint actions (in
purple), which require a synchronization [3].

The HATP planner [3] plans in the context of human–robot interactions (e.g., for service robotics).

26

This planner extends the HTNs formalism to create plans containing two execution threads, one for
the robot and one for the human who interacts with the robot. Figure 16 shows a plan produced by
HATP. One can distinguish the execution of the robot thread (red) and the user thread (in blue). HATP
differs from the classical HTN planning on several points. Task models and refinement methods
involve human and robot. Furthermore, while the plan is produced, the system considers social rules
to produce plans which are deemed acceptable and understandable to humans. For example, the robot
will favor an action where it gives an object directly to the human rather than an action where it just
lays the object before him. Similarly, when interacting with humans, the robot will favor a position
where it faces the human, and make slower movements when it approaches him. When executing the
plan, the robot must interpret and recognize human actions to properly carry out its plan. For example,
if during a task the robot proposes a tool to human, and if the human loses interest, the robot should
not insist, and wait for the attention of the human to return back to the robot. These good behavior
recipes are not just cosmetic, they enable a more natural interaction between humans and robots.

6 Learning

Machine learning techniques have a very successful impact in many areas, and particularly in robotics.
A variety of computational learning techniques are developed at various levels in robotics, from the
sensory-motor level to the acquisition of tasks or environment models. A good coverage of recent
learning techniques robotics can be found in [106]. We already covered environment mapping issues
in section 3.2. Basic statistical learning techniques are quite useful, in particular for object recognition,
but they are not specific to robotics. Let us review here two approaches that are more specific to
robotics: reinforcement learning and learning from demonstration.

6.1 Reinforcement Learning

Reinforcement Learning (RL) refers to methods that improve the performance of a learner by direct
interaction with the world [70, 117]. It is based on a trial and error approach. A robot learns how to
act by maximizing the long term perceived benefit of its actions. Generally in RL, the learner has no
teacher providing examples of good behaviors in certain situations or advices about how to choose
actions. The only feedback given to the robot at each step is a scalar: the reward associated with the
performed action. As long as the robot has not tried all feasible actions in all encountered situations,
it will not be sure that it uses the best actions. Reinforcement learning has to solve the compromise of
exploration vs exploitation: the robot must make the most of what it already knows to maximize the
benefit of its behavior. To find the best one, it must explore the options that are not known enough.

To introduce the approach, consider the very simple case where a single action solves completely
the task at hand and has no impact on the next task. Suppose a stationary environment and nonnegative
rewards. Let ri(a) > 0 be the reward received after running an action a at the ith time. We can
estimate the quality Q(a) of an action a that has been executed ka times by its average award:

Q(a) =

{
q0 if ka = 0,
1
ka

∑ka
i=0 ri(a) otherwise.

(9)

This estimate is maintained by incremental updates:

Q(a)← Q(a) + α[rka+1(a)−Q(a)],with α =
1

ka + 1
(10)

27

When ∀a, ka → ∞, the choice of the action which maximizes the sum of rewards is given by
argmaxa{Q(a)}. However, as long as the exploration of alternatives has not been sufficient, the robot
will use other options, according to various heuristics. One may define a function Selecta{Q(a)} by
one of the following methods:
• Selecta{Q(a)} = argmaxa{Q(a)} with probability (1 − ε), and a randomly drawn action other

argmaxa{Q(a)} with probability ε, where ε is decreasing with experience,

• Selecta{Q(a)} chooses an action according to a probabilistic sampling distribution, for example,

with Boltzmann sampling, according to a probability distribution given by e
Q(a)
τ , where τ is de-

creasing with experience.
When the environment is stationary, the update of Q(a) with Equation 10 after executing an action a
becomes increasingly weak with large ka. If the environment is not stationary, we can keep α < 1
constant. Note also that the initialization value q0 fosters exploration if q0 is high with respect to other
rewards. For example, if q0 = rmax, the maximum reward, new actions will be preferred to those
already tested.

With these basics notions, let us now consider the interesting case where a task is performed by
the combination of several actions, each interfering with the following ones, influencing the overall
success of the task and the sum of rewards. The framework generally used is that of Markov decision
processes introduced previously (Section 4.3). The robot seeks to learn an optimal policy that max-
imizes the value V (s) over all s. This value is estimated from the observed rewards of the chosen
actions. A major problem is how to distribute rewards over the entire task. Indeed, the rewards give
an immediate return in the short term, while the quality of achievement of the task to be maximized
is described by the long term sum of rewards over some horizon.

One approach is to learn the MDP model then to apply planning techniques to find the optimal
policy and use it. Learning a model means collecting enough statistics through an exploratory phase
to estimate the probability distributions P (s′|s, a) and the rewards r(s, a). An interesting applica-
tion of this direct approach combines a model learning technique with a receding horizon planning
algorithm [91]. It was illustrated for learning indoor navigation skills, combining different motion,
localization and control modalities. The approach is applicable to any task for which the robot has
several alternative methods whose performance depend on local features of the environment. The
performance function is difficult to model. It is learned as an MDP whose state space is an abstract
control space, which focuses on the features of the environment and current task context (including
the method in use); actions correspond to available methods for performing the task. The state space
is of small size (a few thousands states) which allows computing an optimal policy at each step of a
receding horizon planning.

This direct approach requires a costly exploratory phase to estimate the model. It is often better
to start performing the task at hand, given what is known, while continuing to learn, i.e., combine
the two phases of acquiring a model and finding the best action for the current model. Q-learning
algorithm meet this objectives while avoiding to build explicitly the MDP model.

Let us use the MDP notation introduced earlier, in particular r(s, a) is the observed reward after
performing action a in state s, and Q(s, a) is the estimated quality a in s at current time. Q∗(s, a), as
given by Equation 8, is unknown but it can be estimated by the expression:

Q(s, a) = r(s, a) + ξ
∑

s∈F (s,a)

P (s′|s, a)maxa′{Q(s′, a′)} (11)

The basic idea of the Q-learning algorithm (17) is to perform an incremental update ofQ(s, a), similar

28

to Equation 10. This update does not use the unknown probability parameters of the model, but the
quality of successor states s′, as observed in the current experience. This update is given in line (i) in
the algorithm below.

Q-learning
until Termination do
a← Selecta{Q(s, a)}
execute action a
observe r(s, a) and resulting state s′

Q(s, a)← Q(s, a) + α[r(s, a) + ξmaxa′{Q(s′, a′)} −Q(s, a)] . (i)
s← s′

Figure 17: Q-learning algorithm

The values of Q(s, a) are initialized arbitrarily. The function Selecta{Q(s, a)} favors
argmaxa{Q(s, a)} while allowing for the exploration of non maximal action with a frequency de-
creasing with experience. The parameter α ∈ [0, 1] is set empirically. When it is close to 1, Q follows
the last observed values by weighting down previous experience of a in s; when it is close to zero,
the previous experience is more important and Q changes marginally. α can be decreasing with the
number of instances (s, a) encountered.

A variant of this algorithm (known as “ SARSA” for State, Action, Reward, State, Action) takes
into account a sequence of two steps (s, a, s′, a′) before performing the update of the estimated quality
of a in s by Q(s, a) ← Q(s, a) + α[R(s, a) + ξQ(s′, a′) − Q(s, a)]. One can prove the asymptotic
convergence of these two algorithms to optimal policies.

Other model-free reinforcement learning algorithms proceed by updating the value function V (s)
rather then the function Q(s, a). Updates are performed over tuples (s, a, s′) in a similar way:
V (s)← V (s) + α[r(s, a) + ξV (s′)− V (s)]. This algorithm called TD(0), is combined with a
Select function permitting exploration. It is part of a family of algorithms TD(λ) which perform
updates over all states, with a weight depending on the frequency of meeting each state.

Let us also mention the DYNA algorithm and its variants that combine learning and planning:
it maintains and updates an estimate of probabilities P (s′|s, a) and rewards r(s, a); at each step two
updates are performed, a Q-learning type withQ(s, a)← r(s, a)+ξ

∑
s′ P (s′|s, a)maxa′{Q(s′, a′)},

for the current s and a, and a Value-Iteration type for other couples (state, action) chosen randomly or
according to certain priority rules, taking into account new estimates. Here, the experience allows to
estimate the model and the current policy. The estimated model in turn allows to improve the policy.
Each step is more computationally expensive than in Q-Learning, but the convergence occurs more
rapidly in the number of experimental steps.

Reinforcement learning is widely used in robotics, but it is rarely implemented with explicit state
space and tables of values V (s) or Q(s, a). The state space is generally continuous; it includes the
configuration space of the robot and its environment. Even if one manages to discretize the state space
appropriately (e.g., in grid type environment approaches), the astronomic size of S makes the explicit
representation of S impractical. Moreover, the above algorithms are used to learn a good behavior
for states encountered during learning phase, but they are not useful for states that have never been
encountered: they do not allow to generalize. If one uses a continuous state space with a metric
distance, one can make the reasonable assumption that nearby states are typically associated with
close estimates of V (s) or Q(s, a), and thus use similar policies. Parametric approaches implement
this idea.

29

Here S and A are described by two vectors of state and control variables. Let θ = (θ1, . . . , θn)
be a vector of parameters. We assume that Q(s, a) can be approximated parametrically by Qθ(s, a),
as a function of θ. This function is given a priori, e.g., a linear function of state and control variables.
Learning involves estimating the parameters θ of this model. Q-Learning algorithm is the same as
above, except that the update (i) does not change values in a table, but the parameters of Qθ(s, a).
The process generally involves minimizing the mean squared error of Q with respect to Q∗. The
latter is estimated at each iteration from the last observed update. The gradient algorithm follows this
formulation:

θ ← θ − 1

2
α∇θ[r(s, a) + ξmaxa′{Qθ(s′, a′)} −Qθ(s, a)]2

← θ + α[r(s, a) + ξmaxa′{Qθ(s′, a′)} −Qθ(s, a)]
∂Qθ(s, a)

∂θ

(12)

This last expression replaces the (i) in the previous algorithm for each parameter θi. A similar formu-
lation can be obtained for the estimate of Vθ.

Reinforcement learning with a parametric approach is used with success in robotics. It has been
implemented in simple applications, for example to stabilize an inverse pendulum or to play darts, and
in more complex demonstration, such as helicopter acrobatic flying [1, 31]. One of the main problems
of these approaches is defining the action rewards.

Indeed, the previous algorithms indicates improperly “observe r(s, a)”. But rewards are seldom
directly observable by the the robot. One must provide the means to estimate the reward according
to what is perceived. Sometimes the function r(s, a) is easy to specify, for example as the deviation
from equilibrium for a stabilization task, or the deviation from the target for tracking task. But often
it is not, for example, how to specify the rewards of elementary actions for the task of driving a car?

This issue leads to the inverse reinforcement learning problem [2]. Here, the teacher gives the
optimal behavior, the problem is to find the corresponding reward function that generates this behav-
ior. In the case of an explicit finite MDP, the problem reduces to the following formulation (derived
directly from Equation 8): we know π∗(s) for all s; we can express Q(s, a) as a function of the
unknown values of r(s, a) and we want Q(s, a) to be maximal for a = π∗(s). This formulation is
under-specified: it has infinitely many solutions that are of no interest. It is extended with an addi-
tional criterion, for example maximize the expression:

∑
s[Q(s, π∗(s)) − maxa6=π∗(s)Q(s, a)]. The

problem is solved by linear programming.
In parametric approaches we also define rewards rθ as a function (usually linear) of state and

control variables and seek to estimate its parameters. The previous formulation is not directly ap-
plicable because π∗ is known for a small number of state samples. However the main constraint
that the distribution of states generated by rθ must be the same as the one provided by the teacher
leads to a formulation that one can solve iteratively. Each iteration combines two steps, a quadratic
programming optimization criterion and a dynamic programming similar to Value-Iteration.

As the reader has certainly noticed, these approaches are akin to the techniques used for inverse
problems. They are also related to learning from demonstration techniques, discussed next.

6.2 Learning from Demonstration

As underlined above, the specification of the reward functions needed in reinforcement learning is
far from obvious. Moreover, it is rare to have a fully observable Markov state space. We know
how to transform a state space into a Markovian one, but this requires significant engineering and
adds generally unobservable components. The complexity of learning and planning techniques in

30

partially observable MDP is prohibitive. Moreover, the experimental complexity (in the total number
of needed trials) is generally much more expensive in robotics than the computational complexity.
Reinforcement learning requires for converging a very large number of experiments. Finally, it is
common that the task to learn cannot be treated as a simple sequence of pairs (state, action). It
requires a plan or a control structure, such as repeating a subsequence of actions until a termination
condition. For these reasons, learning from demonstration is a good alternative when the robot can
benefit of the demonstrations of a teacher.

In learning from demonstration (see the survey of Argall et al. [7]), a teacher gives to the robot
the appropriate actions in well-chosen settings. This allows the teacher to control the learning process
and gradually focus learning on the most difficult part of the task. The robot generalizes from the
teacher demonstrations and learns the required behavior, which can be expressed as a policy in simple
cases, or as a mapping from sensory states to plans in the general case. Learning from demonstration
is akin to supervised learning. However in supervised learning, the teacher provides directly correct
labels for training cases. Learning from demonstration involves other issues about how to map the
teacher’s sensing and acting spaces to those of the robot learner.

In the simplest setting, learning from demonstration reduces to acquiring the correct behavior
from teleoperated training cases. The teacher acts directly in the actuator space and the proprioceptive
sensor space of the robot. The latter learns actions directly as its own control environment. These
approaches have resulted in many implementations, such as those presented by Sigaud and Peters
[106] or Peters and Ng [95].

In the general case, the teacher acts with its own actuators rather than those of the robot to illustrate
the movements and manipulations she wants to teach. The robot observes the teacher from outside.
In order to learn, the robot must build up a double mapping:
• a sensory mapping to interpret the observed demonstrations, and

• a control mapping to transpose the demonstrated actions to its own actuators.
This double mapping is very complex. It often limits learning from demonstration and requires the
teacher to have pedagogic skills, that is, to understand at a low level how the robot will be able to map
the teacher demonstrations in its own actuation capabilities.

Moreover, learning from demonstration can be performed with or without the acquisition of a
task model. The first case corresponds generally to inverse reinforcement learning. In the latter
case, learning can give rise to the acquisition of a sensory-motor mapping. Here, the techniques use
supervised learning, by classification or regression. Finally, learning can also lead to the acquisition
of a mapping from sensory states to plans. These can be obtained by plan recognition methods. Plans
can also be synthesized from the teacher specifications of operators and goals (final and intermediate)
associated with observed sensory states.

Approaches relying plan recognition and synthesis allow to address a significantly more general
class of behaviors that can be demonstrated by a teacher and acquired by a robot (including iterative
actions and control structures). They also permit extended generalization since they lead to acquire
basic principles and use the robot planning capabilities. They are finally more natural and easier for
the teacher, since the teacher’s actions are interpreted in terms of their effects on the environment
rather than their sole order in a sequence of commands. They are illustrated for example in the work
of Nicolescu and Mataric [94], Rybski et al. [103], but remain at a quite preliminary stage.

31

7 Integration and software architecture

Beyond the physical integration of mechanical, electrical, electronic, etc. systems, a robot is also a
complex information processing system, from data acquisition to electronic commands. It integrates,
various processing paradigms from real time control loops, with a hierarchy of response time, up to
decisional functions conferring the autonomy and robustness required by the variability of tasks and
environments. The integration of these processes should be based on architectures that defines how
to articulate all these components, how they communicate and how they share data and computing
resources. In any case, they must provide development methodologies to allow programming, inte-
grating and testing of the different modules. They should provide tools and libraries to facilitate the
development and deployment of the various components on the robot, especially those of interest to
us: planning and execution control.

7.1 Architecture Paradigms

Most robot architectures are developed following different paradigms:

Reactive Architectures The reactive architectures, popularized by the subsumption architecture
of Brooks [22], are conceptually simple. They are composed of modules which connect sensors and
effectors through an internal state machine. These modules are hierarchically organized with the out-
puts of some which can inhibit or weight the outputs or the composition of others. These architectures
were relatively popular because they are a priori easy to setup. They do not require a model of the
world (the world is its own model) and are adapted to reactive simple tasks, without planning. A robot
like the Roomba which has most likely been developed following this concept, achieves its task plan.
But there is no quality nor efficiency objective formally pursued. Ultimately, these architectures still
remain popular and are used in mono task applications. But for application associated to the variabil-
ity of tasks and environments, the programming and setting of inhibitors/weights quickly becomes
infeasible.

Hierarchical Architectures The hierarchical architectures and layered architectures remain the
most popular in robotics. They propose to organize all robot software in two or three layers, from
the functional level up to the decisional level (planning and acting). The former includes the sensory-
motor functions to control sensors, effectors, and to perform the associated processing. In some
instances, an intermediate level is used for execution control to verify safety conditions. Tools are
typically associated with these architectures to ease the integration of the different components. Thus,
the LAAS architecture [67] relies on GenoM to develop functional modules (see Figure 18), and
various tools (R2C, OpenPRS, Transgen, IxTeT) for execution, supervision and tasks planning. The
CLARATy architecture provides C++ basic classes which facilitate the development of the functional
layer. TDL and ASPEN/Casper respectively implement the acting and the planning component.

Architectures Teleo-Reactive More recently, teleo-reactive architectures such as IDEA [44] and
T-ReX [100] have emerged. They propose to decompose the problem in agents rather than in layers.
Each agent 6 consists of a planner/actor tandem. It produces plans by establishing sequences of tokens
on timelines representing the evolution of the state variables of the system, and ensures their execution.
Planning is performed by a temporal planner (e.g. Europa [48] or APSI [49]) based on Allen [5]

6Agents are called reactors in the T-ReX terminology.

32

temporal intervals logic. These agents are organized depending on the relevant state variables. Each
agent has an adapted latency, execution period and planning horizons. They communicate between
them by sharing some timelines (with priority rules on which agent can change value on a shared
timelines) with a dispatcher responsible for integrating the new values of token depending on the
execution.

These architectures have two advantages. They have a unified agent architecture model (even
functional modules are expected to be developed using this paradigm). They use the same model-
ing language, providing an overall consistency of models. This architecture has been deployed in a
number of experiments, notably: an autonomous underwater vehicle [84], and on the PR2 robot from
Willow Garage [83].

However, the deployment of these approaches is hindered by two problems. The first is perfor-
mance. Agents are seldom able to properly plan fast enough (e.g. in less than a second), to be used to
model functional modules. The second is the difficulty to develop the model (e.g. writing compatibil-
ities and constraints), especially when modeling non-nominal cases.

Finally, not in these categories, there are reactive hybrid architectures that add one or more plan-
ners to reactive modules. The role of the planners is to propose plans to configure, via a coordination
system, the activities of the reactive modules. The difficulty is to write this coordination module.
Beaudry et al. [11] illustrate a proposal in this regard that combines a motion planner and an HTN
planner which explicitly manage time; this approach seems promising for non-critical applications.

7.2 Robustness, Validation and Verification

The robustness of the software deployed on a robot poses a major problem. A first step is to robustify
key components to overcome the environmental hazards, sensory noise, and the great variability of
environments. One can require that a functional module, handling a sensory-motor function, knows
his range of use. It should know and recognize when its data cannot be properly used, to allow
corrective actions to be taken. For example, a component that makes stereo vision will recognize
when its cameras are not properly calibrated; similarly, monitoring the torque on the wheel, a module
that manages locomotion should detect wheel slippage or wheel blockage. Similarly, the components
responsible for decision making and using formal approaches (e.g., constraints based, proposition
logic,etc.) should ensure that the produced plans will not lead to undesirable states.

However, the composition of these components, as robust as they individually are, does not lead
directly to an overall safety properties of the robot. For example the component taking scientific
images and the locomotion component can both be correct, but all possible executions of these two
components together may not be acceptable, e.g., the parameters to capture high-resolution images
while moving are constrained (to avoid blurry images). The safety and robustness of embedded real-
time systems [62] has been an active field for many year. With respect to robotics, one has also
to consider the requirements for decisional autonomy. Modeling languages, such as UML [69] and
AADL [39], can be used. They provide tools and specification methods. But we need to go further
with formal approaches that provide validation and verification.

In the robotics domain, one should mention Orccad [112] and MAESTRO [34], which are based
on the synchronous languages paradigm (Esterel) and have been used to implement robotic controller.
Simmons et al. [110] propose a model checking approach to verify the robot controller written in the
TDL language [109]. Within the LAAS architecture, the R2C [99] models all the constraints that
we want to ensure and it formally checks at runtime that the commands sent by the decisional level
are consistent with the model and the current state of the robot. Some research are also interested

33

in verifying that the code executed by the functional modules of a robot formally satisfy its logical
specification [50] (at the cost of logically annotating all the code used in the module).

More recently, some work around GenoM intended to produce a formal model of the entire func-
tional layer of a robot [15]. The modeling is based on the BIP formalism (Behavior, Interaction,
Priority) [10] and exploits the fact that each GenoM module is an instance of a generic module (see
Figure 18).

posters

Execution Tasks

Execution Service

Control &
Functional

IDS

Requests Reports

Control Task

Control Service

Figure 18: The internal organization of a GenoM module. The control flow is organized as follows:
the control task receives requests and starts the execution of corresponding services in the execution
tasks. When execution is complete, the control task returns a report to the caller. Writing or reading
posters provide the data flow between the modules.

The BIP formalism [10] provides a methodology to model embedded systems from (i) atomic
components; (ii) connectors that define the interactions possible between the ports of atomic compo-
nents; and (iii) a priority relation, to select among the valid interactions. An atomic component is
defined by: (i) a set of ports P = {p1, . . . , pn} which are used for synchronization with the other
components; (ii) a set of states S = {s1, . . . , sk} representing states where the component awaits
synchronizations; (iii) a set of local variables V , and (iv) a set of transitions. A transition is a tuple of
the form (s, p,Gp, fp, s

′), representing a step from state s to s′. The transition may modify the local
variables when executing the function fp : V → V . A transition is valid iff the guard Gp (boolean
condition on V) is true and the interaction on p is possible. For example, the transition empty to full
in Figure 19 is possible if x > 0, and if the interaction in is possible. The variable y then takes the
value f(x). The transition from full to empty has not guard, but requires an interaction on port out.

In this approach, all the components of a generic GenoM module are modeled in BIP. All modules
of the functional layer are obtained by recomposition of these basic BIP models. It should be noted
that the executable code associated to the state of the original GenoM service automata are now within

34

emptystart full

in out

in, 0 < x, y ← f(x)

out, ,

Figure 19: A simple example of an atomic BIP component comprising two states and two transitions.
Transition from empty to full is associated with an interaction on port in, a boolean condition 0 < x,
and a change of the value of y. The transition in the other direction requires only an interaction with
the out port.

the f(x) transitions function in the BIP model. This approach is extended to the complete functional
layer of a robot, and provides an extremely fine grained formal model of the system considered (e.g.,
the state in which each component is, the possible interactions at any time, etc.). This model is then
used by the BIP Engine (an automata player which checks online guards and interactions of the entire
model, and fire the valid transitions) to control the execution on the actual robot. This model can
also be verified and validated with formal tools like D-Finder [14]. This formal verification method
composes component invariants φi which define for each component a logical property it satisfies, and
the interaction invariants Ψ that logically define the possible interactions γ between the components
considered. The extraction of these invariants is automatic. The inference rule:

if (
∧
i

φi) ∧Ψ⇒ Φ then ‖γ{Bi}i < Φ >

specifies that if the conjunction of invariants (
∧
i φi) ∧ Ψ (overestimation of the reachable states)

implies a formula Φ, then the parallel composition ‖γ{Bi}i also satisfies Φ.
This method allows, among other things, to verify that there is no deadlock in the system or to

check safety properties. Note that this technique based on components and interactions invariants can
potentially take into account search spaces larger than the ones model checking techniques can handle.

8 Conclusion

In this paper, we presented an overview of the state of the art at the intersection of two broad fields
which are Robotics and Artificial Intelligence. We reviewed models and techniques for addressing
problems of planning and execution control of movements and tasks, interaction and learning. We
discussed how to integrate decision-making functions with sensory-motor functions within a robot
architecture. Most of these issues have been outlined very synthetically. Some were slightly detailed
to provide the reader with illustrative frequently used representations and algorithms.

As underlined in the introduction, robotics is a multidisciplinary field. Significant progress in
robotics can be expected from major advances in its basic disciplines. Further, robot can be a catalyst
research target to advance these disciplines. For example, a light and fast mechanical gripper with high
dexterity, an inexpensive accurate 3D range sensor, or an image recognition algorithm with broad and
reliable performances for ordinary objects that can be found in a house or store, will substantially
enrich the functional capabilities of current platforms.

35

But, as we have also pointed out, robotics research is primarily integrative. One can certainly
make progress in terms of basic components for the handling some particular task or environment.
But the autonomy of a machine when facing a diversity of environments and tasks requires progress
in the integrated perception - decision - action control loop.

This loop is at the core of research in robotics. It requires explicit models of objects at vari-
ous levels, from their physical appearance to their functions. It also requires models of activities,
events and processes that constitute the environment and its agents, including the robot. It requires
knowledge representations adapted to these models. These models are mathematically heterogeneous,
that is continuous/discrete, symbolic/numeric, geometric/topologic, deterministic/stochastic, etc. In
robotics, the term “knowledge representations” is necessarily plural. It also requires a variety of learn-
ing techniques to acquire and improve these models. This is the research agenda, for which we have
reviewed the progress over the past two or three decades, and on which more work remains to be done.
This agenda is as relevant to self-contained robots, which integrate all their components on a single
platform, as well as to distributed robots. Distribution is also an important item of this agenda. It
concerns the distribution of cognitive functions over the components and functions of a single robot,
as well as the distribution of robotics functions over a networks of sensors, actuators and processing
resources on a large scale.

It can also be argued that the perception - decision - action control loop is at the core of AI re-
search. Continues progress is being made in all individual subfields of AI. For example, statistical and
hybrid techniques have led to dramatic advances in automatic natural language processing, illustrated
for example by the victory of the WATSON system in the question/answer game “Jeopardy” [41].
Representations coupling first-order logic and uncertainty management, such as probabilistic first or-
der logic [86], open remarkable opportunities, especially for the problems of planning and learning
that we discussed here.

But the AI objective, namely to understand, model and implement intelligence, is seen by many
researchers as being expressed in the perception - decision - action control loop. Consider the problem
of “anchoring”, i.e., maintaining a mapping between a symbol and the sensory data related to the
same physical object [32], or the more general problem of “symbol grounding” [60], i.e., associating
a symbol, in its context, to a signified content, object, concept or property. These problems requires
the coupling of cognitive mechanisms to sensory-motor functions able to interact independently with
the world to which symbols refer (the level T3 of the Turing test of Harnad [61]). For both fields, the
coupling of Robotics and AI remains a very fertile research area.

References
[1] Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2006). An Application of Reinforcement Learning to Aerobatic

Helicopter Flight. In Neural Information Processing Systems (NIPS), pages 1–8.

[2] Abbeel, P. and Ng, A. Y. (2010). Inverse Reinforcement Learning. In Sammut, C. and Webb, G. I., editors, Encyclopedia
of Machine Learning, pages 554–558. Springer.

[3] Alami, R., Clodic, A., Montreuil, V., Sisbot, E., and Chatila, R. (2006). Toward Human-Aware Robot Task Planning.
In AAAI Spring Symposium: To boldly go where no human-robot team has gone before, pages 39–46.

[4] Alami, R., Fleury, S., Herrb, M., Ingrand, F., and Robert, F. (1998). Multi-Robot Cooperation in the MARTHA Project.
IEEE Robotics and Automation Magazine, 5(1):36 –47.

[5] Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2):123 – 154.

[6] Antonelli, G., Fossen, T. I., and Yoerger, D. R. (2008). Underwater Robotics. In [105], pages 987–1008.

36

[7] Argall, B., Chernova, S., Veloso, M. M., and Browning, B. (2009). A Survey of Robot Learning from Demonstration.
Robotics and Autonomous Systems, 57(5):469–483.

[8] Barry, J. L., Kaelbling, L. P., and Lozano-Pérez, T. (2011). DetH*: Approximate Hierarchical Solution of Large Markov
Decision Processes. In International Joint Conference on Artificial intelligence (IJCAI), pages 1928–1935.

[9] Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to Act Using Real-Time Dynamic Programming. Artificial
Intelligence, 72(1-2):81–138.

[10] Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling Heterogeneous Real-Time Components in BIP. In International
Conference on Software Engineering and Formal Methods (SEFM), pages 3–12.

[11] Beaudry, E., Létourneau, D., Kabanza, F., and Michaud, F. (2008). Reactive planning as a motivational source in a
behavior-based architecture. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1848–1853.

[12] Beetz, M., Jain, D., Mösenlechner, L., and Tenorth, M. (2010). Towards Performing Everyday Manipulation Activities.
Robotics and Autonomous Systems, 58(9):1085–1095.

[13] Beetz, M. and Mcdermott, D. (1997). Expressing Transformations of Structured Reactive Plans. In European Confer-
ence on Planning (ECP), pages 64–76. Springer Publishers.

[14] Bensalem, S., Bozga, M., Nguyen, T.-H., and Sifakis, J. (2009). D-Finder: A Tool for Compositional Deadlock
Detection and Verification. In Computer Aided Verification (CAV), pages 614–619.

[15] Bensalem, S., de Silva, L., Ingrand, F., and Yan, R. (2011). A Verifiable and Correct-by-Construction Controller for
Robot Functional Levels. Journal of Software Engineering for Robotics, 1(2):1–19.

[16] Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific, Vol. 1 and 2.

[17] Bhattacharya, S., Likhachev, M., and Kumar, V. (2010). Multi-agent path planning with multiple tasks and distance
constraints. In IEEE International Conference on Robotics and Automation (ICRA), pages 953–959.

[18] Bohren, J. and Cousins, S. (2010). The SMACH High-Level Executive [ROS News]. IEEE Robotics and Automation
Magazine, 17(4):18 –20.

[19] Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D., and Slack, M. (1997). Experiences with an Architecture
for Intelligent, Reactive Agents. Journal of Experimental and Theoretical Artificial Intelligence, 9(2/3):237–256.

[20] Bonet, B. and Geffner, H. (2006). Learning Depth-First Search: A Unified Approach to Heuristic Search in Determin-
istic and Non-Deterministic Settings, and Its Application to MDPs. In International Conference on Automated Planning
and Scheduling (ICAPS), pages 142–151.

[21] Brenner, M., Hawes, N., Kelleher, J., and Wyatt, J. (2007). Mediating Between Qualitative and Quantitative Rep-
resentations for Task-Orientated Human-Robot Interaction. In International Joint Conference on Artificial intelligence
(IJCAI), volume 7.

[22] Brooks, R. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation,
2:14–23.

[23] Buffet, O. and Sigaud, O., editors (2008). Processus Décisionnels de Markov en Intelligence Artificielle. Trait IC2,
vol.1 et 2. Hermes - Lavoisier.

[24] Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., and Thrun, S. (1998). The
Interactive Museum Tour-Guide Robot. In National Conference on Artificial Intelligence (AAAI), pages 11–18.

[25] Cambon, S., Alami, R., and Gravot, F. (2009). A Hybrid Approach to Intricate Motion, Manipulation and Task
Planning. International Journal of Robotics Research, 28(1):104–126.

[26] Cao, H., Lacroix, S., Ingrand, F., and Alami, R. (2010). Complex Tasks Allocation for Multi Robot Teams under
Communication Constraints. In 5th National Conference on Control Architectures of Robots, Douai, France.

37

[27] Chatila, R. and Laumond, J.-P. (1985). Position referencing and consistent world modeling for mobile robots. In IEEE
International Conference on Robotics and Automation (ICRA), pages 138–145.

[28] Chaumette, F. and Hutchinson, S. (2008). Visual Servoing and Visual Tracking. In [105], pages 563–583.

[29] Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G. (2000). Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling. In AI Planning and Scheduling (AIPS).

[30] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and Thrun, S. (2005). Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT Press.

[31] Coates, A., Abbeel, P., and Ng, A. Y. (2009). Apprenticeship learning for helicopter control. Communication ACM,
52(7):97–105.

[32] Coradeschi, S. and Saffiotti, A. (2003). An Introduction to the Anchoring Problem. Robotics and Autonomous Systems,
43(2-3):85–96.

[33] Corke, P. I., Roberts, J. M., Cunningham, J., and Hainsworth, D. (2008). Mining Robotics. In [105], pages 1127–1150.

[34] Coste-Maniere, E. and Turro, N. (1997). The MAESTRO Language and its Environment: Specification, Validation
and Control of Robotic Missions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
volume 2, pages 836 –841 vol.2.

[35] Dias, M., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-Based Multirobot Coordination: A Survey and Analysis.
Proceedings of the IEEE, 94(7):1257 –1270.

[36] Erdmann, M. and Lozano-Pérez, T. (1987). On Multiple Moving Objects. Algorithmica, 2:477–521.

[37] Erol, K., Hendler, J., and Nau, D. S. (1994). UMCP: a Sound and Complete Procedure for Hierarchical Task-Network
Planning. In AI Planning and Scheduling (AIPS), pages 249–254.

[38] Estrada, C., Neira, J., and Tardós, J. D. (2005). Hierarchical SLAM: Real-Time Accurate Mapping of Large Environ-
ments. IEEE Transactions on Robotics and Automation, 21(4):588–596.

[39] Feiler, P. H., Lewis, B. A., and Vestal, S. (2006). The SAE Architecture Analysis & Design Language (AADL) A
Standard for Engineering Performance Critical Systems. In IEEE International Symposium on Computer-Aided Control
Systems Design, pages 1206–1211.

[40] Feron, E. and Johnson, E. N. (2008). Aerial Robotics. In [105], pages 1009–1029.

[41] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E.,
Prager, J., Schlaefer, N., and Welty, C. (2010). Building Watson: An Overview of the DeepQA Project. AI Magazine,
Fall:59–79.

[42] Fikes, R. (1971). Monitored Execution of Robot Plans Produced by STRIPS. In IFIP Congress.

[43] Fikes, R. and Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving. Artificial intelligence, 2(3-4):189–208.

[44] Finzi, A., Ingrand, F., and Muscettola, N. (2004). Model-Based Executive Control Through Reactive Planning for
Autonomous Rovers. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1, pages
879–884.

[45] Firby, R. J. (1987). An Investigation into Reactive Planning in Complex Domains. In National Conference on Artificial
Intelligence (AAAI), pages 202–206. AAAI Press.

[46] Flint, A., Murray, D., and Reid, I. (2011). Manhattan Scene Understanding Using Monocular, Stereo, and 3D Features.
In Proc. International Conference on Computer Vision.

[47] Fong, T., Kunz, C., Hiatt, L., and Bugajska, M. (2006). The Human-Robot Interaction Operating System. In ACM
SIGCHI/SIGART Conference on Human-robot interaction, pages 41–48.

38

[48] Frank, J. and Jónsson, A. (2003). Constraint-Based Attribute and Interval Planning. Constraints, 8(4):339–364.

[49] Fratini, S., Cesta, A., De Benedictis, R., Orlandini, A., and Rasconi, R. (2011). APSI-Based Deliberation in Goal
Oriented Autonomous Controllers. In 11th Symposium on Advanced Space Technologies in Robotics and Automation
(ASTRA).

[50] Frese, U., Hausmann, D., Luth, C., Taubig, H., and Walter, D. (2009). The importance of being formal. Electronic
Notes in Theoretical Computer Science, 238(4):57–70.

[51] Ghahramani, Z. (1997). Learning Dynamic Bayesian Networks. Lecture Notes In Computer Science, 1387:168–197.

[52] Ghallab, M. and Alaoui, A. M. (1989). Managing Efficiently Temporal Relations Through Indexed Spanning Trees.
In International Joint Conference on Artificial intelligence (IJCAI), pages 1297–1303, San Francisco, CA, USA.

[53] Ghallab, M. and Laruelle, H. (1994). Representation and Control in IxTeT, a Temporal Planner. In AI Planning and
Scheduling (AIPS), pages 61–67.

[54] Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated Planning - Theory and Practice. Elsevier.

[55] Gini, M. L., Ohnishi, K., and Pagello, E. (2010). Advances in Autonomous Robots for Service and Entertainment.
Robotics and Autonomous Systems, 58(7):829–832.

[56] Giralt, G., Sobek, R., and Chatila, R. (1979). A Multi-Level Planning and Navigation System for a Mobile Robot: A
First Approach to HILARE. In International Joint Conference on Artificial intelligence (IJCAI), pages 335–337.

[57] Goodrich, M. and Schultz, A. (2007). Human-Robot Interaction: A Survey. Foundations and Trends in Human-
Computer Interaction, 1(3):203–275.

[58] Guizzo, E. (2008). Kiva Systems. IEEE Spectrum, pages 27–24.

[59] Hägele, M., Nilsson, K., and Pires, J. N. (2008). Industrial Robotics. In [105], pages 963–986.

[60] Harnad, S. (1990). The Symbol Grounding Problem. Physica D, pages 335–346.

[61] Harnad, S. (2001). Minds, Machines and Turing: The Indistinguishability of Indistinguishables. Journal of Logic,
Language, and Information (special issue on ”Alan Turing and Artificial Intelligence”.

[62] Henzinger, T. and Sifakis, J. (2006). The Embedded Systems Design Challenge. In FM: Formal Methods, Lecture
Notes in Computer Science 4085, pages 1–15. Springer.

[63] Hoffmann, J. (2001). FF: The Fast-Forward Planning System. AI magazine, 22(3):57.

[64] Hopcroft, J. and Tarjan, R. (1973). Efficient Algorithms for Graph Manipulation. Communications of the ACM,
16:372–378.

[65] Ingrand, F., Chatila, R., Alami, R., and Robert, F. (1996). PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages
43 –49 vol.1.

[66] Ingrand, F. and Ghallab, M. (2014). Deliberation for autonomous robots: A survey. Artificial Intelligence.

[67] Ingrand, F., Lacroix, S., Lemai-Chenevier, S., and Py, F. (2007). Decisional Autonomy of Planetary Rovers. Journal
of Field Robotics, 24(7):559–580.

[68] Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the Convergence of Stochastic Iterative Dynamic Programming
Algorithms. Neural Computation, 6(6):1185–1201.

[69] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[70] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research (JAIR), 4.

39

[71] Kaelbling, L. P. and Lozano-Perez, T. (2011). Hierarchical Task and Motion Planning in the Now. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1470–1477.

[72] Kanoun, O., Laumond, J.-P., and Yoshida, E. (2011). Planning Foot Placements for a Humanoid Robot: A Problem of
Inverse Kinematics. International Journal of Robotics Research, 30(4):476–485.

[73] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic Roadmaps for Path Planning
in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation, 12(4):556–580.

[74] Kazerooni, H. (2008). Exoskeletons for Human Performance Augmentation. In [105], pages 773–793.

[75] Konolige, K., Marder-Eppstein, E., and Marthi, B. (2011). Navigation in Hybrid Metric-Topological Maps. In IEEE
International Conference on Robotics and Automation (ICRA).

[76] Kuipers, B. and Byun, Y.-T. (1991). A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of
Spatial Representations. Robotics and Autonomous Systems, 8(1-2):47–63.

[77] Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., and Savelli, F. (2004). Local Metrical and Global Topological
Maps in the Hybrid Spatial Semantic Hierarchy. In IEEE International Conference on Robotics and Automation (ICRA),
pages 4845–4851.

[78] Latombe, J.-C., editor (1991). Robot Motion Planning. Kluwer, Boston, MA.

[79] Laumond, J.-P. (1990). Connectivity of Plane Triangulation. Information Processing Letters, 34(2):87–96.

[80] LaValle, S., editor (2006). Planning Algorithms. Cambridge University Press.

[81] Lemai-Chenevier, S. and Ingrand, F. (2004). Interleaving Temporal Planning and Execution in Robotics Domains. In
National Conference on Artificial Intelligence (AAAI).

[82] Martı́nez-Carranza, J. and Calway, A. (2010). Unifying Planar and Point Mapping in Monocular SLAM. In British
Machine Vision Conference (BMVC), pages 1–11.

[83] McGann, C., Berger, E., Boren, J., Chitta, S., Gerkey, B., Glaser, S., Marder-Eppstein, E., Marthi, B., Meeussen, W.,
Pratkanis, T., et al. (2009). Model-based, hierarchical control of a mobile manipulation platform. In 4th Workshop on
Planning and Plan Execution for Real World Systems at ICAPS.

[84] McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., and McEwen, R. (2008). A deliberative architecture for
AUV control. In IEEE International Conference on Robotics and Automation (ICRA), pages 1049–1054.

[85] Mei, C. and Rives, P. (2007). Cartographie et Localisation Simultanée avec un Capteur de Vision. In Journées
Nationales de la Recherche en Robotique.

[86] Milch, B. and Russell, S. J. (2007). First-Order Probabilistic Languages: Into the Unknown. In Inductive Logic
Programming, volume 4455 of Lecture Notes in Computer Science, pages 10–24. Springer.

[87] Minguez, J., Lamiraux, F., and Laumond, J.-P. (2008). Motion Planning and Obstacle Avoidance. In [105], pages
827–852.

[88] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem. In National Conference on Artificial Intelligence (AAAI), pages 593–598.

[89] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2003). FastSLAM 2.0: An Improved Particle Filtering
Algorithm for Simultaneous Localization and Mapping that Provably Converges. In International Joint Conference on
Artificial intelligence (IJCAI), pages 1151–1156.

[90] Moravec, H. P. (1983). The Stanford Cart and the CMU Rover. Technical report, CMU.

[91] Morisset, B. and Ghallab, M. (2008). Learning How to Combine Sensory-Motor Functions Into a Robust Behavior.
Artificial Intelligence, 172(4-5):392–412.

40

[92] Muscettola, N. (1994). HSTS: Integrating Planning and Scheduling. In Zweben, M. and Fox, M., editors, Intelligent
scheduling. Morgan Kaufmann.

[93] Newcombe, R. A. and Davison, A. J. (2010). Live dense reconstruction with a single moving camera. In Computer
Vision and Pattern Recognition (CVPR), pages 1498–1505.

[94] Nicolescu, M. N. and Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations,
generalization and practice. In Autonomous Agents and Multi-Agent Systems (AAMAS), pages 241–248.

[95] Peters, J. and Ng, A. Y., editors (2009). Autonomous Robots, Special issue on robot learning, volume 27(1-2). Springer.

[96] Pineau, J. and Gordon, G. J. (2005). POMDP Planning for Robust Robot Control. In International Symposium on
Robotics Research (ISRR), pages 69–82.

[97] Pineau, J., Gordon, G. J., and Thrun, S. (2003). Policy-contingent abstraction for robust robot control. In Uncertainty
in Artificial Intelligence, pages 477–484.

[98] Prassler, E. and Kosuge, K. (2008). Domestic Robotics. In [105], pages 1253–1281.

[99] Py, F. and Ingrand, F. (2004). Dependable Execution Control for Autonomous Robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 2, pages 1136–1141.

[100] Py, F., Rajan, K., and McGann, C. (2010). A Systematic Agent Framework for Situated Autonomous Systems. In
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 583–590.

[101] Rosen, C. A. and Nilsson, N. J. (1966). Application Of Intelligent Automata to Reconnaissance. Technical report,
SRI.

[102] Russell, S. and Norvig, P. (2010). Artificial Intelligence, A modern approach. Prencice Hall.

[103] Rybski, P. E., Yoon, K., Stolarz, J., and Veloso, M. M. (2007). Interactive robot task training through dialog and
demonstration. In Conference on Human-Robot Interaction, pages 49–56.

[104] Schwartz, J., Sharir, M., and Hopcroft, J., editors (1987). Planning,Geometry and Complexity of Robot Motion.
Ablex Series in Artificial Intelligence. Ablex Publishing.

[105] Siciliano, B. and Khatib, O., editors (2008). The Handbook of Robotics. Springer.

[106] Sigaud, O. and Peters, J., editors (2010). From Motor Learning to Interaction Learning in Robots, volume 264 of
Studies in Computational Intelligence. Springer.

[107] Siméon, T., Laumond, J.-P., Cortés, J., and Sahbani, A. (2004). Manipulation Planning with Probabilistic Roadmaps.
International Journal of Robotics Research, 23(7-8):729–746.

[108] Siméon, T., Laumond, J.-P., and Nissoux, C. (2000). Visibility Based Probabilistic Roadmaps for Motion Planning.
Advanced Robotics Journal, 14(6).

[109] Simmons, R. and Apfelbaum, D. (1998). A Task Description Language for Robot Control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 3, pages 1931 –1937 vol.3.

[110] Simmons, R., Pecheur, C., and Srinivasan, G. (2000). Towards Automatic Verification of Autonomous Systems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 2, pages 1410 –1415 vol.2.

[111] Simmons, R., Singh, S., Heger, F., Hiatt, L., Koterba, S., Melchior, N., and Sellner, B. (2007). Human-Robot Teams
for Large-Scale Assembly. In Proceedings of the NASA Science Technology Conference. Citeseer.

[112] Simon, D., Espiau, B., Kapellos, K., and Pissard-Gibollet, R. (1997). ORCCAD: Software Engineering for Real-
Time Robotics. A Technical Insight. Robotica, 15:111–115.

[113] Smith, R., Self, M., and Cheeseman, P. (1986). Estimating uncertain spatial relationships in robotics. In Proc.
Uncertainty in Artificial Intelligence, pages 435–461.

41

[114] Stachniss, C. and Burgard, W. (2004). Exploration with active loop-closing for FastSLAM. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

[115] Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3310 –3317 vol.4.

[116] Stulp, F. and Beetz, M. (2008). Combining Declarative, Procedural and Predictive Knowledge to Generate and Exe-
cute Robot Plans Efficiently and Robustly. Robotics and Autonomous Systems (Special Issue on Semantic Knowledge).

[117] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

[118] Tate, A., Drabble, B., and Kirby, R. (1994). O-Plan2: An Architecture for Command, Planning and Control. Morgan-
Kaufmann.

[119] Taylor, R. H., Menciassi, A., Fichtinger, G., and Dario, P. (2008). Medical Robotics and Computer-Integrated
Surgery. In [105], pages 1199–1222.

[120] Teichteil-Königsbuch, F. and Fabiani, P. (2005). Symbolic Heuristic Policy Iteration Algorithms for Structured
Decision-Theoretic Exploration Problems. In Workshop on Planning Under Uncertainty for Autonomous Systems at
ICAPS, pages 66–74.

[121] Teichteil-Königsbuch, F., Kuter, U., and Infantes, G. (2010). Incremental plan aggregation for generating policies in
MDPs. In Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1231–1238.

[122] Thrun, S. (2002). Robotic Mapping: A Survey. In Lakemeyer, G. and Nebel, B., editors, Exploring Artificial
Intelligence in the New Millenium. Morgan Kaufmann.

[123] Thrun, S. (2006). Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–
692.

[124] Tovey, C., Lagoudakis, M., Jain, S., and Koenig, S. (2005). The Generation of Bidding Rules for Auction-Based
Robot Coordination. In Parker, L., Schneider, F., and Schultz, A., editors, Multi-Robot Systems. From Swarms to Intelli-
gent Automata Volume III, pages 3–14. Springer Netherlands.

[125] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle Adjustment – A Modern Synthesis. In
Triggs, B., Zisserman, A., and Szeliski, R., editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture
Notes in Computer Science, pages 298–372. Springer-Verlag.

[126] Wilkins, D. (1988). Practical Planning: Extending the classical AI planning paradigm. Morgan Kaufmann.

[127] Wolfe, J., Marthi, B., and Russell, S. (2010). Combined Task and Motion Planning for Mobile Manipulation. In
International Conference on Automated Planning and Scheduling (ICAPS), volume 5, page 2010, Toronto, Canada.

[128] Wolpert, D. M. and Flanagan, J. R. (2010). Q&A: Robotics as a Tool to Understand the Brain. Bmc Biology, 8.

[129] Wolpert, D. M. and Flanagan, J. R. (2016). Computations Underlying Sensorimotor Learning. Current Opinion in
Neurobiology, 37:7–11.

[130] Wolpert, D. M. and Ghahramani, Z. (2000). Computational Principles of Movement Neuroscience. Nature Neuro-
science, 3:1212–1217.

[131] Yoshida, K. and Wilcox, B. (2008). Space Robots and Systems. In [105], pages 1031–1063.

[132] Zlot, R. and Stentz, A. (2006). Market-Based Multirobot Coordination Using Task Abstraction. In Yuta, S., Asama,
H., Prassler, E., Tsubouchi, T., and Thrun, S., editors, Field and Service Robotics, volume 24 of Springer Tracts in
Advanced Robotics, pages 167–177. Springer Berlin / Heidelberg.

42

	Introduction
	Overview of the Field
	Motion Planning, Mapping and Navigation
	Motion planning with probabilistic road maps
	Simultaneous Localization and Mapping
	Navigation

	Task Planning and Acting
	Deterministic Approaches
	Timed Approaches
	Probabilistic Approaches
	Integrating of Motion and Task Planning

	Interaction
	Multi-Robot Interaction
	Human - Robot Interaction

	Learning
	Reinforcement Learning
	Learning from Demonstration

	Integration and software architecture
	Architecture Paradigms
	Robustness, Validation and Verification

	Conclusion

