
HAL Id: hal-01568834
https://laas.hal.science/hal-01568834v1

Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robots Learning How and Where to Approach People
Omar A Islas Ramírez, Harmish Khambhaita, Raja Chatila, Mohamed

Chetouani, Rachid Alami

To cite this version:
Omar A Islas Ramírez, Harmish Khambhaita, Raja Chatila, Mohamed Chetouani, Rachid Alami.
Robots Learning How and Where to Approach People. 25th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), Aug 2016, New York, NY, United States.
pp.347-353, �10.1109/ROMAN.2016.7745154�. �hal-01568834�

https://laas.hal.science/hal-01568834v1
https://hal.archives-ouvertes.fr

Robots Learning How and Where to Approach People

Omar A. Islas Ramı́reza Harmish Khambhaitab Raja Chatilaa Mohamed Chetouania Rachid Alamib

Abstract— Robot navigation in human environments has been
in the eyes of researchers for the last few years. Robots operat-
ing under these circumstances have to take human awareness
into consideration for safety and acceptance reasons. Nonethe-
less, navigation have been often treated as going towards a
goal point or avoiding people, without considering the robot
engaging a person or a group of people in order to interact with
them. This paper presents two navigation approaches based on
the use of inverse reinforcement learning (IRL) from exemplar
situations. This allow us to implement two path planners that
take into account social norms for navigation towards isolated
people. For the first planner, we learn an appropriate way to
approach a person in an open area without static obstacles, this
information is used to generate robot’s path plan. As for the
second planner, we learn the weights of a linear combination of
continuous functions that we use to generate a costmap for the
approach-behavior. This costmap is then combined with others,
e.g. a costmap with higher cost around obstacles, and finally a
path is generated with Dijkstra’s algorithm.

Keywords. Human Aware Navigation, Inverse Reinforcement
Learning, Approaching People

I. INTRODUCTION

We approach people everyday and interact with them, and
it is an intuitive situation when one gathers with their friends
or family. In this intuitive behavior, we know that certain
motions or situations are not socially acceptable and we try
to avoid them. What do we do exactly? This is a simple
question, but when we refer to a robot, we have to model and
formalize its behavior, and implement it from path planner
to entire navigation process.

In this paper, two navigation strategies to approach a
human were implemented using low level information about
human’s position and orientation. The first one is a path
planner that takes into account only a relative human polar
frame as in Figure 1(a) and the second one is a costmap
layer [9] based on the same variables that can take into
account obstacles shown in Figure 1(b). The main difference
compared to other works in human aware navigation [16],
[4], [17] is that instead of a human operator giving a goal,
it is our algorithm that provides the goal to reach and the
appropriate path.

This work is partially performed within the SPENCER
project (Social situation-aware perception and action for
cognitive robots) which aims to deploy a fully autonomous
mobile robot to assist passengers at the Amsterdam Schiphol
Airport. In the approach developed in this paper, the robot

aISIR-CNRS, Université Pierre et Marie Curie, Paris, France
{islas,chatila,chetouani}@isir.upmc.fr

bLAAS-CNRS: Laboratory for Analysis and Architecture of Systems,
Toulouse, France {harmish, rachid.alami}@laas.fr

(a)

(b)

Fig. 1. a) Proposed path to approach the person. Violet line: MDP
resolution in a deterministic or the most probable transition case. Green
line: fitted curved treated with least squares and Bézier lines. b) Layered
Costmap Navigation with IRL learned layer

learns a policy from exemplary trajectories of humans ap-
proaching people to interact with them. Such trajectories
define social norms as a reference for robot behavior.

The rest of the paper is organized as follows. Section II
refers to related works. Given that our scenario is based
on learning from demonstrations using IRL techniques, we
define our model in Section III. This model is applied
to demonstrations given by an expert, in our case these
demonstrations are paths generated by a robot controlled
by a person. These demonstrations are the input of the
IRL algorithm. Learned policy from IRL output is used
to generate a path-plans in Section IV. Lastly, Section V
provides experimental results before a conclusion.

II. RELATED WORKS

In robot navigation, path planners usually minimize time
or distance. However, this is often not the case for social path
planning, because we need to respect the private and social
spaces of a person or group of people. This topic is handled
by Human Aware Navigation [6]. Some authors [5], [16]
have taken into account proxemics as costs and constraints
in the path planner to obtain acceptable paths with hard-
coded proxemics values derived from sociology. However,
these values are not necessarily true in all situations, as they

could depend on the velocities of the people, as commented
in [10].

Other works that deal with the subject of approaching
humans [14], [3], focus on tackling the problem of a task
planner, considering pedestrians’ intentions such as people
interested in approaching the robot. As for the navigation
part, they look for the robot’s path intersecting a person while
he/she moves. Shomin’s work [15] considers approaching
people in order to interact in collaborative tasks, nonetheless
they used hard-coded waypoints in order to navigate. In
our work, we focus in the way the robot shall move in
order to reach an engagement given previously generated
demonstrations. A main difference with these related works
is that we find the final position given the demonstrations
instead of hardcoding it.

Inverse Reinforcement Learning method enables a robot
to learn a policy using discrete and finite MDP (Markov
Decision Process) in which the states are derived from the
robot’s relative position and orientation with respect to the
human. Lately, IRL has been shown to teach machines to act
as humans do. For example, in the Human Aware Robotics
domain, recent works address robot navigation in crowds [2],
[17] and other social spaces [4]. These examples tackle
navigation from point A to point B while avoiding people,
not for approaching them. The closest work to ours is [13]
where they develop a method based on IRL for enabling a
robot to move among people and in their vicinity (4mx4m) in
a human-like manner. We specifically address the problem of
how to approach people to interact with them, therefore our
algorithm is able to provide a proper goal to be reached by
the robot and a social path to reach this goal. This requires
a specific model representing the space around the humans
and appropriate trajectories for homing on them.

III. MODELING STEPS

In this section, we first recall the inverse reinforcement
learning problem based on the MDP. We then introduce the
components of the MDP which composes our modeling.

A. MDP and IRL

A finite Markov Decision Process is classically defined by
the following five elements:

• A finite set of states S.
• A finite set of actions A.
• A transition probability function P (st, at−1, st−1),

which is the probability to reach state st by achiev-
ing action at−1 in state st−1. The transition ma-
trix T (S,A, S) is composed of all such probabilities
P (st|at−1, st−1) and its size is S ×A× S.

• A reward function R(st, at−1) ∈ R that depends on the
state-action pair.

• A discount factor γ ∈ [0, 1) which reflects the impor-
tance of short-term vs. long-term rewards.

Solving the MDP consists of finding an optimal policy,
which provides an action for every state that should be
selected in order to maximize the total utility.

Reinforcement Learning (RL) is a part of machine learning
in which the learner is not told which actions to take, as in
most forms of machine learning, instead it must discover
which actions yield the most reward by trying them out.
Inverse Reinforcement Learning (IRL) on the other hand,
deals with the problem of finding the reward from either an
existent policy or from a demonstrated sequence (as in our
case).

We assume that the expert from which we want to learn
can be modeled by an MDP. Our problem is defined by the
tuple 〈S,A, T,R,D, γ〉, which is an MDP plus the added D
variable which represents demonstrations given by an expert.

Nowadays, we have a collection of IRL algorithms [11],
[8], [18], [12], [1].

Since we want to find a reward function based on the
state-action pairs, we can represent a state-action pair as a
vector of features Φ(s, a) = [f1(s, a), f2(s, a), . . . , fn(s, a)],
where fi is the ith function of the state-action pair. Thus, we
can represent our reward function as a linear combination of
these features R(s, a) = wTΦ(s, a). Where w is the vector
of weights.

In general, learning the reward function is accomplished as
follows. At the very first time a random reward is created,
for this case, a random weighted vector w. At each step
i of demonstration k the reward obtained will be denoted
R(ski , a

k
i). Depending on the IRL algorithm, an optimal

policy π∗(s) is found by maximizing the probability of the
reward given the demonstrations as a posterior probability
of the likelihood of the demonstrations given the reward and
a prior function of the reward P (R|D) ∝ P (D|R)P (R)
or by maximizing the expected sum of rewards given the
demonstrations E[

∑N
t=0 γ

tR(s, a)].

B. State

For the sake of clarity, we introduce the state representa-
tion considering one person only. The robot state will be the
human-centered polar representation of the robot with respect
to the person. This representation is depicted in Figure 2.

Fig. 2. Human centered State

Two components are needed, distance d and angle θ from
the reference point. The distance component d is discretized
along a quadratic based function (Figure 3). This function
allows to easily change the state space to create various tests
and to have more precision in the region near the person.

For the state angle component θ, we divided the region
into m sections. Thus, the range between each state is a
region 2π/m of the environment.

Both parameters (distance and angle) define the state. The
state representation is, then, in Rn×m, and we have a total

number of states of S = n · m. For MDP purposes, the
conversion of this 2-dimensional matrix Rn×m needs to be
transformed in a vector which is going to represent the
state. For this work, the matrix was simply reduced into one
dimension f : Rn×m → RS by concatenating the rows.

C. Actions and Transitions

Given the state representation, we define a set of 5 actions
described below.

1) (θc, dc) : staying in the same place.
2) (θc + 1, dc) : moving forward in θc.
3) (θc − 1, dc) : moving backward in θc.
4) (θc, dc + 1) : moving forward in dc.
5) (θc, dc − 1) : moving backward in dc.
Where θc represents the current angular state and dc the

current distance from the person. An example of state tran-
sition probability is shown in Figure 4, where we represent
our polar states as an unfolded map.

The transition matrix is the agglomeration of the 5 ac-
tions for all the states. The probabilities reflect the actual
reachability of the robot. Figure 4 is representing only the
adjacent states, we have to imagine that the figure expands
in all the environment, with transition probability of zero for
all the other values not shown in the figure, and thus having
a sparse matrix of size S ×A× S.

D. Feature Representation

Two methods are developed to tackle the approaching
behavior. Naive Global Planner, in which a path planner is
created directly based on the response of the IRL algorithm
and Layered Costmap Navigation, in which a state of the art
path planner used based on [9]. In the first one, the number
of features is equal to the number of states multiplied by
the number of possible actions. In the second one Radial
Basis Functions (RBF) are used to represent the state. Each
one of these approaches is going to work differently for the
implementation.

Naive Global Planner

0 1 2 3 4 5 6 7 8
x

0

2

4

6

8

10

12

14

d
is

cr
e

te
 s

p
a

ce
 o

f
d

Fig. 3. Discretization of distance state given the quadratic based function.
Values in y axis are the ones used for Φd.

.90

.01

.01

.04

.02

.02

0

0

0

+1-1 +1-1

-1

+1

-1

+1

Fig. 4. Illustration of action “go in direction θ + 1” and its transition
probabilities to adjacent places.

In order to build the state-action vector, first we create
a base feature vector based on our number of states S, as
follows Φ(s) = [φ1(s), φ2(s), . . . , φS(s)]. In which φi(s) is
a Kronecker delta function where φi(s) = [i = s] using
Iverson bracket notation. In order represent Φ(s, a), the
technique used in [7] is applied, creating a feature vector
with size of the features Φ(s), multiplied by the number of
actions. Let’s say the action a is equal to 2, given the possible
5 actions, then Φ(s, a) = [0,Φ(s),0,0,0]. Where 0 is a zero
vector with the size of Φ(s).

Layered Costmap Navigation
The main difference with the previous case is the use of

continuous state features. Our intention is to build a costmap
for the approach scenario in which the robot navigates.

Since the states that are taken into account correspond to
the polar human representation, we set n number of random
points in the environment within a range for each axis of
rd = [0, 14] and rθ = [−π, π), where r represents range and
is given in meters and radians respectively. An example of
these random points can be seen as the crosses in Figure 8
and they represent the mean in the 2D gaussian used for the
RBF. As for the value of the standard deviation, all RBF
bins have the same value which is a quarter of the range for
each axis. Thus, the vector state representation is Φ(s) =
[φ1(scoord), φ2(scoord), . . . , φn(scoord)], where φi(scoord) is the
ith RBF and scoord is the cartesian center of the state s.
Then we set Φ(s, a) = Φ(s) given than it is intended to use
this information in a costmap, which is only represented by
the states and not the actions, differently from Naive Global
Planner.

IV. ADAPTING IRL RESULTS

Input for an IRL is the demonstrations given by an expert,
in our case, the demonstrations are the paths the expert
chose to go to a person. These paths are sampled in state-
action pairs which are converted to features described in
Subsection III-D. The output and the post-process applied
this output is described in next subsections for each planner.

A. Naive Global Planner

The result of this IRL provides the rewards to the MDP,
and by applying the optimal navigation policy in this MDP,
the robot moves along the sequence of states which forms the
optimal trajectory to approach a person. Each state (i.e. the

Fig. 5. Demonstration of the robot approaching the target person. Values of
N = 16 and M = 16 for the state space. The darker black line represents
the front of the person.

cell in the representation described in the previous section)
is represented by its center. As a result the trajectory is a
discontinuous line as shown in green in Figure 6. We hence
need to smooth this trajectory taking into account the robot
orientation and human orientation. Smoothing process is
described next and the result is also shown in Figure 6. These
trajectories are the global plan, nonetheless they do not take
into account other constraints such as obstacle avoidance.

Data Fitting:
The trajectory points are first transformed in the global

frame containing the grid map. Then the points are re-
transformed with a parametric function t such that for the
first (x, y) coordinate t = 1, for the second t = 2 and so on.
After that the points (t, x) and (t, y) are separated as two
sets of data.Next, each set of data is processed with a least
squares function approximation shown as the green dotted
line in Figure 6.

Bézier:
A smooth curve can be generated from the two fitted

functions. However, the orientation of the robot is not taken
into consideration. Bézier curves can smooth the trajectory
to respect robot orientation. We still have the parametric
function, but since Bézier uses Bernstein Polynomial, it
is inherently parametric. We use our previously presented
functions with a set of few points as control points for Bézier.
Another control point is added projecting the orientation of
the robot, thus the path starts in the direction of the robot’s
orientation. This procedure is shown in Figure 6.

B. Layered Costmap Navigation

After the learning process the w vector is set. One im-
portant aspect is that Φ(s, a) = Φ(s) and s is represented
by spatial features. Thus, a costmap can be generated in the

MDP solution

LS approximation

Bézier approximation

Fig. 6. IRL post-processing. The green line represent the result of the MDP.
The black line represents the least square approximation as a parametric
function in x and y. The red line is a Bézier curve created from the set of
points of this parametric function and the initial orientation of the robot.

environment. The cost of some area around the person is
calculated given a normalization of R(s) = wTΦ(s) for
all the coordinates in the map. Thus, s must be translated
to the polar coordinates of the human frame. Then, based
on [9], the cost is passed to the upper layer for every field
if the value is higher than the one already set in the upper
layer. Then Dijkstra’s algorithm implementation is used to
calculate the best path, being the end position of the planner
the position in which the maximum value of reward is found
in the costmap and the orientation opposite to the human.

Figure 8 shows a costmap result the weighted values of
R(s), result of the application of IRL with the demonstra-
tions given in Figure 5, this is feasible due to the representa-
tion of features as continuous functions. Even when we have
discrete states, the values of the coordinate system is in R
for distance and angle.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We employed ROS (Robot Operating System) to simulate
the human movements, allowing us to control both robot
and human behaviors (positions and velocities). We em-
ployed it to generate trajectories of robot while approaching
humans. The robot is manually controlled during different
approaching scenarios. A set of eleven demonstrations was
performed with this experimental platform for the learning
process. The path taken by the robot in different positions
with different orientations can be seen in Figure 5. This
represents the path followed by the robot in the human
reference frame. Considering people’s comfort, the robot
approached the people in order to finish its behavior in
the near-peripheral vision of the person. Nonetheless, if the

exemplary demonstrations were performed by a human in a
human environment, this behavior could differ from ours and
thus the learning output.

B. Metrics

We propose two metrics for the evaluation of the Naive
Global planner model.

We use a test-set of paths generated with our experimental
platform but not used as inputs for training the IRL algo-
rithm. This test-set consists of 30 recorded paths.

The first metric, called the Trajectory Difference Metric
(TDM), is a modified version on the Mean Square Error
(MSE). TDM evaluates every point of one trajectory to
the closest point of another trajectory, where evaluating the
closest point is the difference regarding MSE. This metric
compares the parametric function generated by our algorithm
with the trajectories of the test-set. In order to do so, all
trajectories from the test-set and those provided by the
algorithm are equally sampled. If P is the set of all points
in the test-set trajectory and Gi is one point of the generated
trajectory, GiP represents all the distances between the point
Gi and the set of points P .

The TDM is then calculated as the average value of the
minimal values of these distances:

TDM =
1

n

n∑
i

minGiP (1)

The second metric is trajectory length, expressed as the
ratio of the absolute value of the difference between the
generated trajectory length and the test-set trajectory length
to the test-set trajectory length:

lerror =
|lm − lirl|

lm
(2)

For (2) we can have the case when the IRL path is longer
than the test-set path or the other way around. This is simply
due that human behavior is not necessarily always the same.

C. Results

The results shown here are from the Naive Global planner,
given that we can measure and compare with a test set
directly.

The IRL result gives an optimal policy based on the ex-
amples given. Figure 7 represents the state values, red color
being the higher rewards and the blue the lower rewards,
the figure corresponds to the 25x25 scenario, nonetheless
the values for the 16x16 scenario have a similar pattern.
The numbers on the axes represent the discretized values of
distance between 0.5 and 14m and of orientation between 0
and 2π (hence the top and the bottom of the figure represents
orientation 0 or in front of the person). The concentration of
the maximum values lies around zero degrees at the second
discrete position d.

As shown in the figure, the learning process has produced
an optimal region near and facing the person to guide robot
navigation. The discrete representation in Figure 7 is a matrix

of rewards used to generate the optimal curves to approach
a human.

5 10 15 20 25

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Naive Global Planner learned state environment, red value is the
maximum V Value for each state. The image displayed correspond to the
25x25 grid.

Fig. 8. Layered Costmap Navigation: Costmap generated with wT Φ(s)
in an unfolded polar map. The blue + signs represent the center of all the
RBF used in this task.

TABLE I
TDM AND lerror EVALUATION OF GENERATED PATHS

16x16 vs real 25x25 vs Real
TDM (meters) 0.5423 ± 0.3089 0.5322 ± 0.2995

lerror (%) 5.5612 ± 4.5321 5.4040 ± 4.2936

Table I shows the average of the two metrics (1) and
(2) with their respective standard deviations through the 30
test-set sample trajectories. We applied the IRL algorithm
to the polar space divided in 16x16 and 25x25 discrete
values respectively, and we can see that the 25x25 divisions
performs slightly better that 16x16 divisions, for both the
TDM and the lerror metrics.

16X16 IRL Path

25X25 IRL Path

Manual Path

Fig. 9. IRL comparison at the same starting point with a manual path
sample.

Given the disparity in human motions, we can consider
that the average mean error around half a meter between the
test-set and the IRL trajectories is acceptable.

Figure 10 represents the error described in (1) for all the
samples in the 25x25 case. The x axis represents the initial
angular position of the robot given the orientation of the
person. The starting angular position could go from −π to
π. We performed this analysis in order to see the behavior in
different orientations of the robot. We can see that the error
is low in our samples in the region near zero, nonetheless in
regions near ±π, we can also find small errors.

Fig. 10. Evaluation of errors in (1) for all samples for 25x25 case. Angles
are in rd

When we compare with actual human motions, we need to
take into account that the human behavior is not completely
smooth (e.g., the blue line of Figure 9). However, the paths
generated by our method appear quite acceptable.

As discussion we could substitute Bézier with B-Splines.
The main difference between both of them is that Bézier
will start the path with the same orientation as the robot,

(a)

(b)

Fig. 11. Early stage real scenario a) Person wearing a helmet that is
detectable by OptiTrack to get his position and orientation. b) Visualization
of the computed path based on the Naive Global Planner (green line).

while B-Splines will not start at that same orientation and
this difference of orientations can be corrected with a local
planner which can be convenient for high frequency updates.

With the Layered Costmap Navigation, the robot goes to
a pertinent position (seen by the human eye) and it takes
into account the obstacles, nonetheless, in order to have a
good navigation we will probably need to add another layer
as in [5] to give a higher cost to the center of the person.
This method though, takes more computational time than the
Naive Global Planner, because we need to compute all the
cost inside the costmap area.

As an early stage test, we implemented the algorithm in
a close space with PR2 robot. The detection and tracking of
the person is achieved by an OptiTrack System. Figure 11(a)
shows a person wearing a helmet that we use for tracking.
The visual representation of the robot, human and the pro-
posed path generated by the Naive Global Planner is shown
in Figure 11(b).

Videos of the results can be seen in: http://chronos.
isir.upmc.fr/˜islas/approach/

VI. CONCLUSIONS

In this work we developed two path planning algorithms
to approach a person. First of them uses an IRL algorithm
to directly learn the social approach-paths which require
smoothing. In this algorithm we recalculate the paths as
the person moves. Also, an important feature is that in our
global planner also selects the goal, being the final position
to go and the solution of the MDP itself. Thus, both methods
provide the goal that must be reached.

For the first case, we are also able to reach almost the same
performance with our two discretized state cases, 16x16 and

25x25, while the first one needs much less computational
time for finding a solution.

Concerning the second planner, we added a layer based of
the IRL result of RBFs function to the state of the art Layered
Costmap Navigation. We could still add another layer such
as in [16], to avoid going near to the person.

We are aware of some drawbacks regarding both ap-
proaches. In which this framework only works for approach-
ing one person and not taking into account the speed of the
robot, since we let the local planner to take care of that.
Nonetheless adding one feature (speed) and using a wrapper
between global and local planner could be an interesting
future work.

This work is a first step towards IRL based Human Aware
Navigation for approaching. In the future, as stated in the
introduction, we aim to create a general framework for
approaching people by exemplary data taking into account
more people and more parameters. We also plan to have
user studies to measure the level of comfort and how natural
the behavior of the robot is while approaching people. We
also aim to implement rewards functions that can be used
in navigation planner such as RRT* instead of a costmap,
this can improve the speed of calculations and lead to better
answers. Lastly, we would like to verify convergence with
the number of exemplary demonstrations needed by different
IRL algorithms.

ACKNOWLEDGEMENTS

This research has been supported by the Euro-
pean Commission under contract number FP7-ICT-600877
(SPENCER) and by Laboratory of Excellence SMART
(ANR-11-LABX-65) supported by French State funds man-
aged by the ANR within the Investissements d’Avenir pro-
gramme (ANR-11-IDEX-0004-02).

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM, 2004.

[2] P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning to navigate
through crowded environments. In 2010 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 981–986, May 2010.

[3] Yusuke Kato, Takayuki Kanda, and Hiroshi Ishiguro. May I Help
You?: Design of Human-like Polite Approaching Behavior. In Pro-
ceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’15, pages 35–42, New York, NY,
USA, 2015. ACM.

[4] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in
human environments using inverse reinforcement learning. Interna-
tional Journal of Social Robotics, pages 1–16, 2015.

[5] Thibault Kruse, Alexandra Kirsch, Harmish Khambhaita, and Rachid
Alami. Evaluating directional cost models in navigation. In Proceed-
ings of the 2014 ACM/IEEE international conference on Human-robot
interaction, pages 350–357. ACM, 2014.

[6] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra
Kirsch. Human-aware robot navigation: A survey. Robotics and
Autonomous Systems, 61(12):1726–1743, 2013.

[7] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration.
The Journal of Machine Learning Research, 4:1107–1149, 2003.

[8] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear Inverse
Reinforcement Learning with Gaussian Processes. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 19–27.
Curran Associates, Inc., 2011.

[9] D.V. Lu, D. Hershberger, and W.D. Smart. Layered costmaps for
context-sensitive navigation. In 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2014), pages 709–715,
September 2014.

[10] M. Luber, L. Spinello, J. Silva, and K.O. Arras. Socially-aware robot
navigation: A learning approach. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 902–907,
October 2012.

[11] Bernard Michini and Jonathan P. How. Improving the efficiency of
Bayesian inverse reinforcement learning. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3651–3656.
IEEE, 2012.

[12] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. Urbana, 51:61801, 2007.

[13] Rafael Ramon-Vigo, Noe Perez-Higueras, Fernando Caballero, and
Luis Merino. Transferring human navigation behaviors into a robot
local planner. In Robot and Human Interactive Communication, 2014
RO-MAN: The 23rd IEEE International Symposium on, pages 774–
779. IEEE, 2014.

[14] S. Satake, T. Kanda, D.F. Glas, M. Imai, H. Ishiguro, and N. Hagita.
How to approach humans?-strategies for social robots to initiate
interaction. In 2009 4th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 109–116, March 2009.

[15] M. Shomin, B. Vaidya, R. Hollis, and J. Forlizzi. Human-approaching
trajectories for a person-sized balancing robot. In 2014 IEEE Work-
shop on Advanced Robotics and its Social Impacts (ARSO), pages
20–25, September 2014.

[16] E.A. Sisbot, L.F. Marin-Urias, R. Alami, and T. Simeon. A Human
Aware Mobile Robot Motion Planner. IEEE Transactions on Robotics,
23(5):874–883, October 2007.

[17] Dizan Vasquez, Billy Okal, and Kai O. Arras. Inverse Reinforcement
Learning algorithms and features for robot navigation in crowds: An
experimental comparison. In Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pages 1341–1346.
IEEE, 2014.

[18] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K.
Dey. Maximum Entropy Inverse Reinforcement Learning. In AAAI,
pages 1433–1438, 2008.

