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Head-Body Motion Coordination for Human Aware Robot Navigation

Harmish Khambhaita1, Jorge Rios-Martinez2, and Rachid Alami1

Abstract— Mobile robots equipped with a pan-tilt head need
to use gaze direction to manifest its navigational intents for
more acceptable human-robot interaction. We frame control of
such gaze behavior as multi-criteria decision-making problem,
and provide a solution to synchronize gaze control with robot’s
navigation planner. This approach is useful in the context of
robot navigation, where it may be inapt to display only a
predefined gaze pattern due to the dynamic nature of the scene.
By enabling two behaviors, look-at-path and glance-at-human,
we demonstrate the effectiveness of our approach on a real
robotic platform in a path crossing scenario. Furthermore, we
discuss results of a video based user study conducted with
126 participants showing improved communication of robot’s
navigational intentions with the proposed approach.

I. INTRODUCTION

Human-aware navigation planners already provide safe
and socially acceptable motion of a robot [1]. Furthermore,
directional cost functions [2] have shown to increase leg-
ibility of robot motions, where a robot attempts to solve
spatial conflicts by adjusting velocity instead of path when
possible. This approach is preferred by the human coun-
terparts, however, it is not enough to reduce hesitation of
humans and to ensure legibility and acceptability of the robot
behavior. We use the modality of robot gaze to give explicite
information about robot’s future plans and goals, and show
how it enhances human-robot interaction during navigation.
Specifically, our robot continuously looks ahead at its path to
help humans anticipate its immediate navigation plans. It also
performs a saccade like behavior towards a human partner
to convey that the robot has seen her/him and it is going to
avoid possible path conflicts. By taking navigation and gaze
planner as a whole, our system can be used to produce more
acceptable and legible robot behavior.

It is well known that humans predominantly use the
modality of gaze as a cue for understanding intentions and
mental states of others. “Even in the absence of any overtly
executed action, observers can still read other people’s motor
intentions, provided they can see a model’s face, in particular
his or her gaze direction” is concluded by Castiello [3] in
one of the most influential studies of human intention recog-
nition. Besides, research in human behavioral psychology
reveals that the constant alignment of the head with walking
direction, as well as alignment of gaze with other humans and
with static objects for the purpose of obstacle avoidance [4]
are the prominent gaze behaviors associated with locomotion.
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Fig. 1: A typical sequence of events during human-robot
path crossing scenario. (1) The robot starts looking at the
path. (2) A human enters in the area, and the robot detects
a possibility of interference; the robot turns its head towards
him. (3) After acknowledging the human, the robot turns its
head back towards the path and slows down at the same time.
(4) The human passes in front of the robot, the interaction
episode ends.

How a robot with a pan-tilt head unit could simultaneously
achieve such motions is still an open issue.

We propose the formulation of head motion control on
a mobile-robot platform as a multi-criteria decision-making
problem and solve it using the analytic hierarchy pro-
cess, which is a novel contribution of this paper. We also
provide implementation specifics for a synchronized head-
behavior module that exhibit look-at-path and glance-at-
human (see III-B) behaviors. A video-based pilot user study
that evaluates our approach in real-world scenario is an
additional key contribution.

Based on the behavioral psychology findings, on the onset
of our investigation, we imagined a typical sequence of
events involved in a human-robot path crossing situation as
shown in Fig. 1. To achieve such interaction, we will now
look into relevant parameters and social context, explored so
far, associated with effective gazing behavior.

II. RELATED WORK

The larger part of nonverbal human-robot interaction lit-
erature belongs to the studies of robot gaze and its utility
for social signaling. Researchers have successfully used
robot gaze to increase attention and thus engagement of



users [5], [6]. Moreover, sometimes deliberate delays [7] or
premeditated motion patterns [8] are required to capture the
attention of the partner. On the other hand, gaze direction
can also communicate attentiveness and visual awareness of
the robot [9]. Human-like head movements, adapted to the
context of an interaction task, can help improve the fluency
of the interaction. When well synchronized with rest of the
body, gaze can even manifest forethought to improve robot’s
readability [10]. That being discussed, implementations of
particular gaze behaviors lack generality and remain largely
ad-hoc in nature.

A plurality of the robot gaze research is dedicated to situ-
ated interactions. It is only lately the community have begun
to explore the effects of robot gaze in navigation context.
Fiore et al. [11] have found that gaze affects the intensity
of perceived emotional states when interacting with the
cues of proxemics in a human-robot path crossing scenario.
Nonetheless, their findings indicate that gaze of the robot is
not as important a social signal for that particular scenario,
meaning the gaze have no interactive effects on perceived
social presence. This findings could be the consequence
of the timing of particular gaze behavior execution, where
the robot head was orienting towards human only in the
beginning of an interaction episode. Our results, presented
in Sec. IV-C, beg to differ in this regard. May et al. [12]
have compared head orientation and visual light indicators
for communicating turning signals, where a pre-scripted be-
havior controlled the head orientation. Their results indicate
a positive impact on comfort felt by humans using both
communication modalities, with participants favoring the
indicators. It is, however, difficult to show the extent of
turning direction with such indicators. Lu [13] have also
tested a scripted glance behavior during the task of jointly
navigating in a hallway, robot looking at passing humans for
a certain amount of time and then looking back in front of
the robot. However, they remain inconclusive whether the
behavior was effectively giving the person acknowledgment
that the robot saw them.

Search for the essential gaze control parameters leads us
to follow the research on the gaze behavior associated with
human locomotion. Humans initiate turning of head in the
direction of travel before the body during locomotion. This
anticipatory nature of the head orientation is known for a
long time [14]. It is also evident that the head orientation
control is initiated several meters before the turn [15]. With
a series of experiments Bernardin et al. [16] have quantified
the anticipation, they have observed that at normal walking
speed the gaze shifts by 500 to 700 milliseconds in advance
compared to the body. Besides that, the angle for gaze
anticipation into the heading direction increases with the
increasing curvature of the path. A recent user study by
Unhelkar et al. [17] supports these findings and points out
that in addition to head orientation, body velocity is also
statistically important for anticipating a turning motion in
humans. Kitazawa and Fujiyama [4] have investigated gaze
patterns in a collision avoidance scenario with multiple
pedestrians moving in a wide hallway shape area. Observed

participants were fixating their gaze on other pedestrian and
static obstacles for avoiding a collision. Reported average
distance of fixation was 3.97 m (SD = 0.54) for approaching
participants and 1.9 m (SD = 0.71) for leading participants
(average time for the fixation is not reported). Furthermore,
during the experiment the participants fixated their gaze on
other pedestrians when it was really necessary for collision
avoidance. Put succinctly, the two most significant factors
for the robot gaze are the direction of the path and other
humans in the proximity.

Because there are multiple factors to take into account for
controlling the robot’s head direction during navigation, the
decision for switching the head direction becomes complex.
A behavioral framework developed by Srinivasan et al. [18],
makes use of the social context for efficient generation of
head behaviors. Authors have classified several types of
social head gaze behaviors based on previous studies in
human-robot interaction literature. We have adopted their
proposed vocabulary in our implementation.

Zaraki et al. [6] have attempted a layered approach putting
an attention layer between perception and gaze control
layers. The attention layer selects the human that exhibits
highest weighted sum of individual social features, and
the robot turns its gaze toward the selected human. The
specialized function for our glance-at-human task (see III-
B) is inspired from this work. Only recently Yoo and
Kim [19] have used a multi-criteria framework for gaze
control, analogous to our proposal in Sec. III-A, however for
a static robotic head. Their proposed algorithm considers all
possible discrete gaze (pan and tilt) positions in the visual
field as a candidate goal for the head controller. Seven of
these discrete gaze positions are periodically selected as
criteria, based on certain factors that affect the human gaze,
e.g. faces, objects. Fuzzy measures reflecting user-defined
weights of the factors are applied to the criteria points and
the point with the maximum value is used for directing the
head. Since these criteria points are of the same type as other
candidate points, the solution process is comparable to that
of a prioritization method, which is the critical difference
from our proposed method. As one will see in Sec. III,
we use several candidate gazing functions to select the
most pertinent one depending on current perceptual inputs.
Each function independently generates gazing points while
respecting the timing constraints required by particular head
behaviors. Our criteria to evaluate these candidate gazing
functions are dynamically rated on perceived social context.

III. APPROACH

Different studies have shown that multiple, often compet-
ing, objectives are involved in human head gaze behavior.
Selection of gaze direction depends on the prominent ob-
jective in the current social context that robot derives from
its perceptual events. We make use of four social head gaze
behaviors, summarized by Srinivasan et al. [18], which are:

• Communicating Social Attention, where robot shows
interest by looking at a human.



• Manifesting an Interaction, where gaze turns towards
objects relevant for current task, for instance obstacle-
avoidance.

• Projecting Mental State, which includes expression of
motion intent.

• Establishing Agency, where head gaze reinforces
human-like aliveness.

These social behaviors are the criteria upon which we
evaluate each of the available alternative functions for point-
ing the robot gaze. Process of updating the most relevant
social behavior is usually continuous and rapid, especially
for mobile robots as they navigate through highly dynamic
environments like shopping malls, museums or airports.
Notably, previous work appears to neglect this high dynamic
nature of robot gaze behavior.

A. Framework

We see generation of overall robot head behavior during
navigation task as a multi-criteria decision-making problem.
One can think of a robot having multiple choices for pointing
its head, e.g. looking into the direction where it is going to
move the next moment; or looking at an object to act upon;
or simply moving the head down to express an emotion of
sadness etc. The choice of the best among several alternatives
requires evaluating each alternative against a set of criteria
indicative of the social gaze behaviors. These criteria are
sometimes common among multiple situations. However the
importance of these criteria may change as the situation, goal
or task changes. This importance is quantified with weights
(a list of user-defined scalar values).

Distinctive choices for gazing points usually originate
from different types or sources of information. For example,
human detection module provides the position of a human to
look at. Similarly, manipulation planning module can provide
information about the next object to grasp. However, often
there are more than one alternatives that arise from the same
source of information. Consider a situation where there are
multiple humans in front of the robot, who should the robot
look at? Selection within these alternatives is subjected to
dedicated computation methods. Thus, we propose a scheme
where information from distinct sources is processed using
definite behavioral functions. Each of the behavioral function
takes a set of candidate 3D points (C) belonging to the
same source and computes a single candidate point (pf ) for
directing the robot gaze. Therefore, these functions are of
the following signature,

f : C ⊂ R3 ×D → R3 × Rk

where, D is set of domain-dependent parameters and k is
the number of criteria under consideration.

The analytic hierarchy process (AHP), introduced by
Saaty [20], finds a solution for multi-criteria decision-making
problem by assessing and prioritizing the options. It uses
a multi-level hierarchical structure of objectives, criteria,
sub-criteria, and alternatives. Solution using AHP involves
paired comparison of involved criteria, which gives us the
weight vector (wj). At present, however, we only consider
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Fig. 2: Illustration of angles involved in computation of
gazing point for the robot head. αmaxGMA

: maximum gaze-
movement angle, αvis: visibility angle, θrbase
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one level of criteria for our purpose. Once the weight
vector is computed, an alternative is chosen that receives
the maximum score,

Phead = argmax
pf

k∑
j=1

vj(pf ) · wj

where vj(pf ) is a value vector assigned by the behavioral
functions, it represents importance of the candidate point pf
with respect to ecach criteria.

B. Behavioral Functions

A well-designed implementation is needed to demonstrate
capabilities of the framework. To this end, we have imple-
mented two gaze behaviors that we found most pertinent for
social navigation:

• look-at-path: looking at the planned navigational path.
• glance-at-human: acknowledging humans with a short

glance.
We will now detail the associated behavioral functions along
with the underlying communication architecture.

1) The look-at-path behavior: Standard practice in nav-
igation planning is to differentiate between generation of
a geometric path with a static map of the environment
(global-planning), and computation of the motor commands
avoiding dynamic obstacles (local-planning). For look-at-
path functionality, we use output trajectory from the local-
planning module, as it gives us the best estimate of where
the robot is going in the immediate future. This functionality
corresponds to two social gaze behaviors, Projecting Mental
State and the Establishing Agency. Therefore, the alternative
point provided by this functionality has a higher score (1.0
during the experiments) for the corresponding attributes.

Angle between the movement direction and the gaze
direction is defined as gaze-movement angle (GMA) by
Park et al. [21], illustrated in Fig. 2. Limits on this GMA
value define an information process space (IPS), which is
a conceptual area that determines the spatial boundary for
observing humans. IPS is the area which humans use for



avoiding potential collisions and shown to depend on the
current velocity. We likewise enforce limits on robot GMA to
enforce naturalness of head motions. When the path-planner
gives a trajectory in which the last point of the trajectory is
outside this maximum allowed GMA (αmaxGMA

), we limit
the robot pan-angle to remain withing the IPS.

2) The glance-at-human behavior: When the robot de-
tects humans in its environment, a second function is acti-
vated for calculating an alternative gazing point, that leads
the robot to perform a saccade like behavior towards the
human. Each of the behavioral functions provides only one
alternative for the decision process. Hence, when multiple
humans are detected, the robot favors the one that requires
the most urgent attention. Both relative position and velocity
of detected humans are taken into account for ranking which
human to look at first, step-5 in algorithm Alg. 1. This
ranking scheme is inspired from the experiments of Kitazawa
and Fujiyama [4], which shows that it is preferable to look
at the human which is coming towards the robot compared
to the one who is going away. The ~r and the ~h represent the
position vectors for the robot and the human respectively.

Furthermore, we need to keep track of humans that are
already acknowledged by the robot (in set HL), to avoid
triggering multiple saccade behaviors on new position up-
dates. We have defined a visibility angle αvis, the human is
considered acknowledged once found within this angle and
tracking-id of the human is added to the set HL. Triggering
of further saccade behavior is suspended during an active
saccade. This relatively straightforward procedure for dealing
with human tracking updates is written down in Alg. 1. The
procedure HumansUpdate receives a list of position of
currently tracked humans (H), current robot position (~r) and
positions of robot joints (J ). The algorithm returns single
human (hL) position for the robot to perform a saccade
behavior towards that human.

Algorithm 1 HUMANSUPDATE(H, ~r, J )

1: [θrpan

hL
, θrbase

hL
] = COMPUTE ANGLES(J , hL)

2: if θrpan

hL
< αvis or θrbase

hL
> αmaxGMA then

3: HL ← HL ∪ hL

4: else
5: hL = argmax

h∈H\HL

(~r−~h)·(~̇r−~̇h)
‖~r−~h‖2

6: end if
7: return hL

Three of the social gaze behaviors, Establishing Agency,
Communicating Social Attention and Manifesting an Inter-
action afford this glance-at-human functionality, therefore,
respective attributes are set to a higher value (1.0 during the
experiments). We do not prune the head-tilt angle (β) in this
function, the limits of which are enforced by the head-tilt
motor controller. On each point-head request the head motor
controllers compute the pan- and the tilt-joint velocities with
a hyperbolic function that is proportional to the difference
of current (J ) and required joint states.

Human
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Fig. 3: Architecture of the proposed head behavior scheme.

C. Implementation

For path planning, we have adopted the widely used and
tested “move base”1 navigation framework on our robot.
As a local-planner we have used a modified version of
directional-cost based algorithm developed by Kruse et
al. [2]. This human-aware path planning algorithm makes
the robot slow down when a collision with a human is
predicted, avoiding abrupt changes in the path direction.
Since the look-at-path behavior is tightly coupled with the
local-planning module, sudden changes in the path direction
would result in an unwanted trembling head motion. The
directional cost-based algorithm avoids such abrupt change
in motion direction and, therefore, it is particularly useful
for our application.

We employed OptiTrack2 motion capture system for hu-
man tracking, which publishes positions and velocities of
detected humans (denoted by set H) at a certain frequency
(10 Hz during our experiments3). We have also developed
a simple velocity-obstacle based human pose prediction
module to support the human-aware path planning. Overall
architecture schema for joint control of head and base of
the robot is illustrated in Fig. 3. The Head Behavior module
is developed as original contribution for this work. Other
modules of the framework are comprised of our previous
work and widely used open-source ROS modules.

As the local-planner is responsible for dynamic obstacle
avoidance. At every iteration it generates a trajectory (a series
of 2D points) and computes velocity commands for the robot
base controller. The Head Behavior receives this planned
trajectory, and selects the endpoint of the trajectory to
compute the next gazing point for the look-at-path behavior.
We add a scalar constant value to the Z-coordinate to adjust
the height of the gazing point, and thus the head-tilt axis.

The Head Behavior software module is well integrated

1http://wiki.ros.org/move_base
2http://www.optitrack.com
3Although the motion capture system delivers data at higher frequency

(about 100 Hz), we apply a moving average filter and re-sample the filtered
data at 10 Hz to have better estimate of velocities.



with the ROS4 framework and tested on a service robot that
was deployed for duration of three weeks at Amsterdam-
Schiphol airport for guiding passengers [22]. Nevertheless,
the module is not limited to that particular robot. In fact,
any robot with a head-pan and head-tilt joints would benefit
from it5.

D. Synchronization
Synchronization between head- and body-joints of the

robot, as well as between robot joints and tracked human
positions is very important to achieve a desired and mean-
ingful behavior, which requires substantial engineering and
programming efforts to accomplish. Perhaps this is one of
the reasons, why we see a big disproportion in the imple-
mentations of gazing behaviors among static and dynamic
situations.

With our implementation, we were able to achieve the
desired collaboration in human-robot path crossing scenario
as shown in Fig. 1. Time-series plot of commanded and
actual pan-angles is presented in Fig. 4, for a scenario in
which human moves across the robot’s path in front of the
robot. The robot starts with moving and looking towards its
navigational plan; it executes the glance-at-human behavior
when the human appears on the scene, and after finishing
the glance behavior the robot again turns its head towards
the plan until it reaches the goal position.
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Fig. 4: An example time-series plot of commanded gaze
points (point-head) and the angle between the front position
of robot base and head-pan axis (head-pan). Marker-points
indicate change of behavioral functions.

IV. EVALUATION

Based on the design of head behaviors, we anticipate
that human’s perception of the robot motion will improve
both in interactive and non-interactive situations. We set-up
a video based user study to determine whether it is true that
the proposed head movements visibly improves the robot
motion quality. Hypotheses for the outcome of the study were
following:

• Hypothesis 1: Anticipatory head movements during
navigation will positively affect the perception of the
robot’s navigation intents.

4http://www.ros.org/
5Source code for the module is available at https://github.com/

harmishhk/hanp_head_behavior

• Hypothesis 2: Head behavior with both of the look-
at-path and glance-at-human functionalities will be
evaluated as more favorable over no head movements.

Hypothesis 1 is related to objective improvement in robot
motion, whereas the Hypothesis 2 is linked to the subjective
improvement since it concerns participants’ subjective choice
about the robot behavior.

A. User Study Design

There is a precedent for video based studies performed
with real [23] as well as a simulated [10] robot for human-
robot interaction. Results of the study by Syrdal et al. [23]
suggest that video prototyping is an excellent source to gain
insights regarding user experiences related to the assessment
of the human-robot interactions. Furthermore, the video
prototyping allowed us to engage geographically diverse set
of participants while providing a consistent experience for
each of them. This study was conducted in four different
languages and with participants from three different coun-
tries.

We deployed the Head Behavior modules on a custom de-
signed service robot platform, equipped with a two degrees-
of-freedom head. Head pan joint can fully turn towards the
back of the robot, while tilt joint is physically limited to
move up to 30◦ up and down from the straight looking
position. Head of the robot has two passive eyes that can
only move horizontally to the left and the right, however,
they were not used in our analysis. The robot is also equipped
with a display in the back, which was switched off during
the recording.

We recorded seven videos in an experimental area of
about 5.5 by 9 meters. Surrounding place to the experimental
area was partially covered with large wooden boards to
reduce any distraction caused by it. Lighting conditions were
maintained same throughout the recording. And the audio
was removed from the video before it was shown to the
participants. During experiments the weight for Establishing
Agency criteria was assigned to w = 0.9, remaining weights
were set to value 1.0. We mentioned that the total distance
where the robot looks depends on the immediate path of
the robot, in these experiments the robot was planning for
a time-window of 4 seconds and thus watching the point
where it will reach 4 seconds in the future. These values were
empirically found to be most suitable for our task, however,
they can be learned and adapted on-line.

The first four of these videos did not involve any human.
Here the task of the robot was to move from the start
position as shown in Fig. 5a to one of the end positions,
either going towards the door or the corridor. For both of
the goal positions, we recorded two videos, one with the
look-at-path behavior and other without (head position fixed,
looking straight ahead). After recording, all four videos were
cropped until the frame where the body of the robot starts
moving towards the goal direction. Only when the look-at-
path behavior was enabled, the robot head starts moving at
the marked position in Fig. 5a.
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Fig. 5: Illustrative layout of the experiment space, (a) for
recording videos without human and (b) for videos with
human.

Last three videos were recorded where a human played
the role of an interferer who crosses the robot path as shown
in the Fig. 5b. The human was tracked with four passive
reflective markers placed on a light-weight helmet, that the
human wore. The three videos were recorded with following
three conditions:
(A) All of the head-behavior functions disabled.
(B) Only the look-at-path function enabled.
(C) Both the look-at-path and gaze-at-human enabled.

All of the videos in the study were recorded with two
viewpoints6, one in the front of the robot and another in
the back, denoted by c1 and c2 respectively in Fig. 5.
Each experiment was shown to the participants from both
viewpoints. These videos were embedded in a web-page7,
after watching each video, the participants were requested
to answer a question on the same web-page. A short intro-
ductory message about the study procedure was displayed
before showing the videos.

B. Procedure

The study procedure was divided into two parts.
• Part 1, where we only manipulated the look-at-path

behavioral condition.
• Part 2, where we manipulate both the look-at-path and

glance-at-human behavioral conditions.
For the first part, participants were randomly assigned to

watch videos where the actual navigation goal was one of
the two positions shown in Fig. 5a. This way we remove
any effect on the goal direction caused by the experimental
setup or the robot appearance. Once assigned to an option,
participants watched one video where movements of the
robot head were disabled and another video of robot ex-
hibiting the look-at-path behavior. The order of the videos

6Videos used for the user study: http://bit.ly/hbmc_video
7An example of on-line form: http://bit.ly/hbmc_form

(a) without look-at-path behavior (b) with look-at-path behavior

(c) robot at goal 1 (d) robot at goal 2

Fig. 6: Condition and goals look-at-path behavior.

was counterbalanced across participants. After watching each
video, they were posed with the following question.

• Where is the robot going?
To respond to this question, participants were asked to choose
one of the two goal positions, as shown in Fig. 6c and 6d.

As discussed earlier, to remove the influence of robot’s
body-movements on participants’ answers, we stopped the
video just at the moment where the body starts turning
towards the goal position, Fig. 6a and 6b show the snapshots
of these moments. Participants’ response to these videos will
be used to test the Hypothesis 1. It should be noted that
we have added a couple of virtual obstacles in the planning
cost-map to “force” the path planning system to produce a
path that makes the robot move straight forward for a certain
distance before initiating the goal-directed turning motion.

The second part of the procedure concerns the Hypothesis
2. Participants were shown three videos with the conditions
A, B, and C, as listed before. Again, the order of the videos
was counterbalanced across participants. After watching all
three videos, the participants were asked to choose which
behavior of the robot they like the most and the least. Once
participants register their liking, we requested them to see the
videos with condition A (no head behavior) and condition C
(both look-at-path and glance-at-human behaviors enabled)
once more, in counterbalanced orders. After watching each
video, participants were asked to rate their responses to the
following statements on a five-level Likert scale ranging from
strongly disagree (= 1) to strongly agree (= 5):

• Q1: The robot noticed the person.
• Q2: Robot’s actions were clear for the person.
• Q3: Robot’s behavior was often in direct response to

person’s behavior.
• Q4: Person did not receive robot’s attention.
These statements are adapted from the social presence

measure introduced by Harms and Biocca [24]. Since our



study captures a third person’s perspective, we have se-
lected only four (of total six) dimensions, removing the
dimensions that measure affective and emotional aspects of
the interaction episode. The four selected dimensions are
co-presence (Q1), perceived message understanding (Q2),
perceived behavioral interdependence (Q3), and attentional
allocation (Q4).

C. Results

We collected data from N = 126 participants between age
17 and 59 (Mean = 27.82, SD = 6.44) who volunteered
for the video based user study. Out of 126 participants, 67
choose to answer in English, 36 in French, 20 in Spanish
and 3 in German.

For the first two videos we manipulated the behavioral
condition look-at-path, our aim was to get an objective mea-
sure of improvement in robot motions. Results are plotted in
Fig. 7a, where we see an increase in the ratio of participants
who inferred the correct goal when look-at-path condition
was true. The difference in participants’ predictions of the
robot goal is significant according to McNemar’s chi-squared
test (χ2(DF = 1, N = 126) = 50.704, p < 0.0001).
Since the length of videos with and without look-at-path
behavior was same, these results show that, in given amount
of time, the look-at-path behavior results in a more accurate
perception of robot’s navigational goal. Therefore, we found
support for Hypothesis 1 concerning accuracy. The results
also confirm that in absence of any cue the probability of
successful prediction of the robot goal is equivalent to what
is expected due to chance.

For the second part of the user study involving a human-
robot path crossing scenario, the box plot of participants’
liking about above listed three behaviors, A (the robot head
looking straight), B (the robot head looking at its path) and
C (the robot head looking at path and throwing a glance
at the human) are plotted in Fig. 7b. The Friedman rank
sum test reveals significant differences in participants’ liking
about the three types of robot motions, (χ2(DF = 2, N =
126) = 50.683, p < 0.0001). Moreover, the post hoc analysis
with Wilcoxon signed rank test shown significant differences
between all three pairs of conditions as well. That means,
the participants significantly preferred the robot motions
condition-C over the other two variants.

Fig. 7c shows participants’ responses to the social-
presence-measure questionnaire among four selected di-
mensions8. We see significant improvement along the co-
presence dimension with C-condition. Complementary to
this, we also see an increase in perceived attention given
to the human by the robot (note the negative nature of
Q4 for attention allocation). Both of the above mentioned
results indicate an increase in robot’s awareness towards the
human. Participants’ response towards Perceived message
understanding measure hints at overall enhancement in flu-
ency of the interaction episode. The dimension of perceived

8The comparisons are annotated with significance levels using “*”, *:
p < 0.05, **: p < 0.01, ***: p :< 0.001
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Fig. 7: Results of the user study.

behavioral interdependence also shows little improvement,
meaning the robot being more responsive to the human
presence. These results in combination with participants’
ranking partially support the Hypothesis 2.

D. Limitations

There are several limitations present in the design of this
study. It gives us a third-person’s perspective on human-
robot interactions, which is not sufficient to adequately assess
the quality of the interaction episode with all dimensions of
the social-presence-measure test. The results are nonetheless
meaningful, as suggested by Syrdal et al. [23] it gives
valuable insights regarding user experiences related to the
assessment of human and robot interactions.

A comprehensive study should also include auditory clues
and multiple humans, which could directly affect the per-
ceived safety of individual participants. The context of the
experiment, a path crossing scenario within a relatively small
area, limits the generalizability of our results. Subsequent
experiments would need to involve other shared navigation
situations to further elaborate the relationships between a
robots head expressions and how these are interpreted as
cues for its navigational intents.

V. CONCLUSION

We reviewed literature on gaze behaviors from multiple
disciplines including human-robot interaction, psychology,



neurobiology, and computer simulation. Based on our re-
view, we put forward a plausible framework to determine
dynamically an optimal gazing point, in which we formu-
lated the robot gaze selection as a multi-criteria decision-
making problem and solved it with the use of an analytic
hierarchy process based algorithm. The proposed algorithm
first employs dedicated functions to provide gazing points
based on different sources of information. Each candidate
functions are then globally evaluated on account of perceived
social context. Along with the framework, we provided
implementation details that testify our proposal. Lastly, to
assess the resulting gazing behavior of the robot, we carried
out a video based user study that supports our hypotheses
and suggests improvements in participants’ perception of the
robot motions both objectively and subjectively.

We plan to explore other behavioral functions, e.g. robot
acknowledging a group of people, showing certain emotions
while navigating, and functions that explicitly take affor-
dances of the environment into account. A machine learning
based approach for dynamically adapting the criteria weight
vector coupled with higher level perception modules is also
an exiting avenue for the future work. In the user study,
we did not include any placebo behavior (for example robot
looking at random points), testing such behavior against the
proposed approach and with a first-person user study will
also be considered for the future work.
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