
HAL Id: hal-01568841
https://laas.hal.science/hal-01568841

Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Social Criteria for Human-Robot
Collaborative Navigation: A Comparison of

Human-Aware Navigation Planners
Harmish Khambhaita, Rachid Alami

To cite this version:
Harmish Khambhaita, Rachid Alami. Assessing the Social Criteria for Human-Robot Collaborative
Navigation: A Comparison of Human-Aware Navigation Planners. Proc. IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-MAN), Aug 2017, Lisbonne, Portugal.
6p. �hal-01568841�

https://laas.hal.science/hal-01568841
https://hal.archives-ouvertes.fr


Assessing the Social Criteria for Human-Robot Collaborative
Navigation: A Comparison of Human-Aware Navigation Planners

Harmish Khambhaita1 and Rachid Alami1

Abstract— This paper focuses on requirements for effective
human robot collaboration in interactive navigation scenarios.
We designed several use-cases where humans and robot had
to move in the same environment that resemble canonical
path-crossing situations. These use-cases include open as well
as constrained spaces. Three different state-of-the-art human-
aware navigation planners were used for planning the robot
paths during all selected use-cases. We compare results of sim-
ulation experiments with these human-aware planners in terms
of quality of generated trajectories together with discussion on
capabilities and limitations of the planners. The results show
that the human-robot collaborative planner [1] performs better
in everyday path-crossing configurations. This suggests that the
criteria used by the human-robot collaborative planner (safety,
time-to-collision, directional-costs) are possible good measures
for designing acceptable human-aware navigation planners.
Consequently, we analyze the effects of these social criteria
and draw perspectives on future evolution of human-aware
navigation planning methods.

I. INTRODUCTION

We are witnessing a surge in social robots that are present
in our everyday lives. Robots are offering guidance to
passengers at airports [2], providing assistance to elderly
people at care centers [3], or even engaging in entertaining
experiences in public spaces [4]. Use of social robots in
these domains show that situations where human and robot
share and navigate in common space are becoming more
and more important. An even higher degree of collaboration
is necessary for fluent co-navigation, especially in confined
spaces such as narrow corridors where human and robot have
to act cooperatively and help each-other for finding their way.

Although there are several human-aware navigation plan-
ners proposed in the literature, to the best of our knowl-
edge, no substantive approach yet proposed to compare
and evaluate the planning schemes. In this paper we will
consider several normative co-navigation situations as basis
for comparing the performance of human-aware navigation
planners. Therefore, we will refrain from going in to the
implementation details (planning algorithms, robot control)
and rather focus on assessment of paths generated by the
planners and behavior of the robot during a full interactive
navigation episode. Fig. 1 shows the situations we have
designed in a simulated environment for evaluating the
planners. From our experiments with multiple planners in
different situations we have learned that parameter tuning
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Fig. 1: Canonical human-robot path crossing situations. (a)
Human and robot crossing each other’s path on a corridor.
(b) 90◦ path crossing situation. (c) Human coming out of
a room where robot needs to go, they cross each-other at
the door. (d) Similar to situation (a), however the drawer is
blocking the corridor in such a way that only one person (or
robot) can pass next to the drawer at a time.

for particular situations is essential for any planner to show
its full potential in solving the co-navigation situation.

II. RELATED WORK

A. Social cost based human-aware planning: Safe mo-
tion with respect to co-existing humans is the foremost
requirement for social robots. Consequently some of the
earlier work in human-aware navigation mainly concentrates
on generating paths that keep a safe distance from humans,
mainly by adopting the theory of proxemics [5]. The human-
aware navigation planner introduced by [6] uses an algorithm
that generates social costs in a grid-map structure around
humans to facilitate A∗-like search algorithms to find paths
that minimize such social costs. Furthermore, the authors
have proposed other social criteria like visibility: it is better
for the robot to make itself visible to the human for most
part of their trajectory, and hidden zones: robot should not
make itself appear very near from behind the human which
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Fig. 2: Trajectories generated by human-aware planners for indoor hall navigation task. (a): Directional-cost planner. (b):
AKP planner. (c): Cooperative planner. The robot and human are crossing each other’s path in a face-to-face configuration.
Since the area is relatively wide, the robot has enough latitude to move away from the predicted human path.

can shock humans. Recent surveys [7] [8] provide thorough
analysis on the use of proxemics and other social costs in
human-aware navigation planning.

One important aspect for co-operative motion is legibility,
which enables an observer to quickly infer the robot intent
and goals [9]. The directional cost model introduced by [10]
has shown to increase legibility of the robot motions, where a
robot attempts to solve a spatial conflict by adjusting velocity
instead of the path when possible. From an extensive user-
study, it is clear that humans prefer robot following this
strategy, particularly in 90◦ path crossing situations [11]. In
our comparison of human-aware planners, the first planner
we have considered implements this strategy.

Another acclaimed approach used by the human-aware
robotics researchers is the social force model [12]: a method
to describe crowd dynamics. The robot navigation planners
explained in [13] and [14] use the social force model to cope
with uncertain human motions. In the extended social force
model [15], [16] approach, every iteration of planning step
uses the human prediction information which is dependent
on the path calculated during the previous iteration. This is
the second planner we are using for our comparison. The
planning schemes based on the social force model works
nicely in large or open spaces where the robot have enough
latitude to move away from predicted human paths. However,
as we will see, it performs rather poorly in constrained
situations. An important concept brought in by these methods
is to interlace prediction of human motions within the robot
navigation planning framework. Because of superior results,
we believe that any further human-aware navigation planner
should also involve prediction of human motions in their
planning architecture.

B. A case for human-robot cooperative planning: An
elastic band [17] augmented with temporal information for
optimizing robot trajectories is introduced in [18]. In this ap-
proach, the optimization framework locally deforms the robot
trajectory that includes a series of time-difference values
between each successive poses, instead of deforming a purely
geometric path. The resulting timed elastic band makes it
easy to take kinodynamic and nonholonomic constraints into

account, formalizing the optimization problems as a non-
linear least squares problem.

We have substantially extended this work by introducing
prediction and optimization of human trajectories within the
same framework [1]. In this planning scheme the robot uses
the same environmental map to coherently plan its own
trajectory and predict plausible human trajectories, therefore
it always provides a solution where both human and robot
can move optimally. The co-navigation solution does not
include only the contributions of the robot but also of the
human, and that is why we claim that it is a human-robot
cooperative planner. However, human and robot are not
treated equally in this scheme, generally the robot takes,
when possible, all or most of the effort to avoid colliding
with humans. With this planner the robot not only can
react to the unfolding situation but it can also proactively
suggest a solution to the co-navigation situation, especially in
confined spaces. In this approach, our focus is on advanced
interactive motions from a single person to a small group
of people. For open spaces, this cooperative planner gives
comparable results to the social force model based approach.
However, in confined spaces it give arguably better results by
eliminating unnecessary detours and remaining adaptive to
the human motions. This is the third planner we are using for
comparison of human-aware navigation planners discussed in
the following section.

III. COMPARING HUMAN-AWARE PLANNERS

We have compared three human-aware navigation planner
in five customary human-robot path crossing situations. All
of the planners utilize the well-known robot navigation
architecture move_base [19], developed as a local planner
plug-ins to it1. We have constructed a simulated environment
with MORSE2 that resembles the real robotics lab at LAAS-
CNRS. Fig. 1 shows screen shots of the simulator and
situations we have designed for testing the planners. We
have used a simulated version of the PR2 robot for these

1Directional-cost: http://harmish.in/HANP/code/planner
AKP: https://devel.iri.upc.edu/pub/labrobotica
Cooperative: http://harmish.in/COOP/code

2https://www.openrobots.org/morse
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Fig. 3: Trajectories generated by human-aware planners for corridor crossing task. (a) and (d): Directional-cost planner. (b)
and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row shows snapshots of situations that happen a
few seconds before the situations shown in the bottom row. Here also the robot and human are crossing each other’s path
in a face-to-face configuration, however, in a confined space.

experiments. An advantage of simulation is that it provides a
consistent and reproducible environment for testing different
navigation algorithms. For simulating human motions, we
have developed a human navigation package, based on the
design of the move_base framework, which can simultane-
ously simulate the motion of multiple humans. This simulator
uses an A∗-like algorithm for planning global paths and a
teleportation controller as local planner, which simply moves
the humans on the global path at nominal walking velocity3.

Thus, for each situation we give the exact same start
and goal positions of the robot and human for all three
planners. As a shorthand we will use the names directional-
cost planner for the planner in [11], AKP planner for planner
in [16] and cooperative planner for planner in [1]. All of the
comparison figures show both global (in green) and local
(in red) paths of the robot. Whenever possible the predicted
human paths are also shown in the figures (in blue)4.

A. Indoor hall navigation: In the first situation we have
considered a hall size area where robot and human are
crossing each other’s path in a face-to-face configuration.
Fig. 2 shows a particular scene during the navigation task for
each planner. Here trajectories generated by both AKP and
cooperative planners make the robot move away from the
predicted human path thus keeping a comfortable distance
from the human and require minimal or no effort from the
human in the collision avoidance task. Since, the directional-
cost planner only plans in velocity, it slows down as the
human approaches near and eventually stops completely.
Once the human moves behind the robot the robot continues
on its path, thus it requires the human to go around the robot.
The directional-cost based planner relies fully on the global

3http://harmish.in/HSIM/code
4The purple cylinder shown in the AKP planner examples are the goal

positions used for the human goal prediction.

planner to generate paths. Thus, if we use the global planner
with a continuous re-planning scheme in case when the
human stops in front of the robot, the robot will eventually
change its direction as well, as soon as a new global plan is
available. However, here we are purely comparing the local
planner, so to remain fair to the other two planner we are
not using the re-planning mechanism for the global planner.

B. Corridor crossing: Second situation is quite common
in the office, airport, or shopping mall like environments.
Here the human and the robot are crossing their paths
similar to the previous situation, however, since the passage
is narrow it requires some effort from both human and robot
to avoid a collision (see fig. 3). In case of the directional-
cost planner the robot again simply slows down as the human
approaches, the local plan of the robot gets smaller. Thus,
even this behavior is understandable by the human, it requires
human to go around the robot.

The AKP planner starts properly on its path, however, as
the human comes nearby it plans a trajectory backwards.
Such back-tracking is common in social force model based
planners. A possible explanation for this behavior would be:
while the repulsive force of the walls remains same on both
sides of the robot, as human approaches the repulsive force
from human gets larger than the attractive force towards the
robot’s goal, which eventually results into the robot moving
backwards5. As we can see in the figure 3c, the cooperative
planner moves on the one side of the corridor well ahead in
time. It does so because it has predicted a human path in the
same map that requires least effort from the human in terms
of changing their current path. It should be noted that, in
this case it is necessary for both human and robot to change

5Because of backtracking and due to the design of AKP planner, only
for this planner we had to add an imaginary laser scanner on the back of
the PR2 robot in simulated environment
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Fig. 4: Trajectories generated by human-aware planners for 90◦ path-crossing task. (a) and (d): Directional-cost planner. (b)
and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row shows snapshots of situations that happen a
few seconds before the situations shown in the bottom row.

their paths to find a solution to the co-navigation problem.
Here the robot selects a solution that causes minimal change
to the human trajectory.

C. 90◦ path-Crossing: Fig. 4 shows a situation where
robot and human are crossing their paths at a 90◦ angle.
Here the directional-cost planner performs quite good as the
robot slows down when a human comes nearby, and then
the robot accelerates again towards its goal, no additional
effort required by the human here. It should be noted
that the directional-cost planner was extensively tested on
this situation, thus it generates paths that are legible and
acceptable by the humans. AKP planner initially computes a
path to cross in front of the human, but when the human
is closer to the robot, the planner eventually decided to
traverse behind the human. Here, we suspect this behavior is
due to the particular workings of random exploration based
algorithm used by the AKP planner. Nevertheless, A∗-like
path search algorithm with continuous re-planning scheme
also yields similar behavior.

The cooperative planner simultaneously changes its path
while slowing down, thus suggesting the human to pass
before itself. Since, we are using both directional and time-
to-collision constraints for this planner, this can be explained
as a combined effect of those social constraints. Therefore,
the resulting behavior remains as legible as, or arguably even
better than the directional-cost planner.

D. Passing through a door: As shown in figure 1c, often
in a door-crossing situation the human is visible to the robot
due to the window between the hall area and the room. Fig. 5
shows trajectories generated by the planners when the task
of the robot is to move inside the room while the human is
moving out. The directional-cost planner could induce “bad”
configurations, where it reaches near the door and slows
down but does not give enough space to the human to move
out of the room. This could lead to considerable effort by

the human, making them move back to create space for the
robot. The AKP planner, because of its backtracking behavior
could eventually make space for the human. However, as we
can see in fig 5d the robot goes very near to the door which
could threaten the human. With the cooperative planner the
robot prefers waiting in a place where it limits, as much as
possible, obstruction to the human motion. Instead of moving
backwards, here the robot proactively plans a path that is not
only far from the door when human is coming out, but also
the robot trajectory inherently contains a “waiting” behavior.

E. Constrained corridor crossing: The last situation we
have considered for comparison is similar to the corridor
crossing situation described in Sec. III-B, however with an
additional obstacle in the corridor. Fig. 1d depicts this situ-
ation in the simulation environment. The corridor becomes
a highly constrained space, where robot and human cannot
even pass side-by-side. Only the human or the robot can
cross the additional obstacle at a time, requiring the other to
either wait or backtrack. The additional obstacle (a drawer)
is not known to the robot, that is, it is not in its pre-built
map. Therefore, we are also showing laser scanner points (in
yellow) to better understand the robot behavior.

Here both directional-cost and AKP planner come very
near to the obstacle at the same time when the human
also reaching near it. Directional-cost planner hardly gives
enough space for the human to pass, while AKP planner
makes the robot move backwards when human comes nearby
the robot. Since with both of these planners the robot slows
down to almost standstill, they are not violating the safety
requirement. However, with both planners the human needs
to share most of the effort for avoiding a collision with the
robot. The cooperative planner performs particularly well in
this situation. As shown in the fig. 6c, the robot first moves
near the drawer, and waits for the human to pass, and then
continuous its motion towards its goal.



(a) (b) (c) (d) (e) (f)

Fig. 5: Trajectories generated by human-aware planners for the robot passing through a door. (a) and (b): Directional-cost
planner. (c) and (d): AKP planner. (e) and (f): Cooperative planner. Figures a, c and e shows snapshots of situations that
happen a few seconds before the situations b, d and f respectively.
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Fig. 6: Trajectories generated by human-aware planners for corridor crossing task with an obstacle in the middle of the hall.
(a) and (d): Directional-cost planner. (b) and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row
shows snapshots of situations that happen a few seconds before the situations shown in the bottom row.

IV. DISCUSSION AND CONCLUSIONS
We have shown capabilities and drawbacks of three dif-

ferent human-aware navigation planners. The cooperative
planner performs well in both confined and non-confined
cases. The behavior such as stopping near the door and facil-
itating human in confined corridors emerges due to the social
constraints that are integrated in the optimization framework.
Furthermore, the cooperative planner enables balancing and
tuning of the efforts between the human and the robot to
solve a co-navigation task. The inspiration for designing a
tunable navigation planner comes from previously-proposed
approaches for geometric [20] and symbolic [21] planning
systems, where the robot synthesizes a shared plan for
the human and itself. By tuning, we mean to adjust the
“elasticity” of underlying timed elastic band. Fig. 7 shows
the effect of tuning the effort between a human and a robot
for a shared navigation task. The cooperative planner is also
highly reactive at the same time, so if during a navigation
task the human decides to move on a different path than the
one suggested by the robot, the robot quickly adapts its path.

With all other parameters being equal, fig. 8 shows the

effect of the safety constraint on the robot path. With a
single parameter we can tune how far the robot moves from
the human. The cooperative planner also exploits results of
user study in [11] and introduce directional costs in the
optimization framework. The directional costs discourages
face-to-face motion and makes the robot slow down when
human and robot move opposite to each other.

A novel constraint used by the cooperative planner is
time-to-collision, defined as the projected time to a possible
future collision with a human. Recent empirical studies of
pedestrian interactions have shown that time-to-collision can
uniquely describe how humans move in public places [22].
It is also interesting to note that, the same study also
shows that the social force model rather poorly fits to the
pedestrian interaction data, and thus being a weak model to
design human-robot interactive navigation planners. Fig. 9
shows an example of how this time-to-collision constraint
affects the generated path. When time-to-collision constraint
is switched-on the robot moves early to its right signaling
that it is already avoiding possible collision with the human,
thus making the robot behavior proactive.
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Fig. 7: Balancing the shared effort between human and robot.
(a) Human and robot share equal effort. (b) The robot shares
almost full effort and moves away from predicted human
path. (c) Although never used in real world situations, it
is possible to design a rude behavior of the robot where it
expects human to make more effort for avoiding a collision.

(a) (b)

Fig. 8: Effect of the safety constraint on robot paths. (a)
Minimum safety distance between human and robot is set to
0.3 meters. (b) Minimum safety distance is set to 0.7 meters.

We learned the following lessons from this comparison:
• Directional-cost planner performs well in 90◦ path

crossing and sub-optimally in constrained situations.
• Social force model based planners can perform well

in open areas or large indoor environments, however
they suffer from unnecessary detours due to the way
repulsive and attractive forces are calculated.

• The cooperative planner performs well both in non-
constrained and constrained situations, it produces leg-
ible and cordial behaviors in confined areas.

• It is imperative for a human-aware navigation planner
to tightly couple with human motion prediction method.

Although simulation is a limited tool, repeatability of the
same experiments makes it a suitable tool for evaluating
different navigation algorithms on the same situations. We
believe that our investigation provides preliminary basis for
comparing human-aware navigation planners. Drawing fruit-
ful insights from these experiments, we think the cooperative
planner is ready for extended evaluation on the real robot.
Therefore, we are planning a comprehensive user-study to
further evaluate the cooperative planner and compare it
against other human-aware navigation planners.
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