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ABSTRACT

A common approach to social distancing in robot naviga-
tion are spatial cost functions around humans that cause the
robot to prefer paths that do not come too close to humans.
However, in unpredictably dynamic scenarios, following such
paths may produce robot behavior that appears confused.
The concept of directional costs in cost functions [9] is sup-
posed to alleviate this problem without incurring the prob-
lem of combinatorial explosions using temporal planning.
With directional cost functions, a robot attempts to solve
spatial conflicts by adjusting the velocity instead of the path,
where possible. To complement results from simulations, in
this paper we describe a user study we conducted with a
PR2 robot and human participants to evaluate the new cost
function type. The study shows that the real robot behav-
ior is similar to the observations in simulation, and that
participants rate the robot behavior less confusing with the
adapted cost model. The study also shows other important
behavior cues that can influence motion legibility.

1 Introduction

Navigation among humans must not just be safe, but also
agreeable to humans. The concept of “legibility” describes
one of the qualities beside safety that make robot behavior
agreeable. Legibility expresses how easily an uninstructed
person can estimate internal states of the robot from obser-
vation. This is important for interactions as it reduces dis-
traction. Legibility is threatened by all robot behaviors that
lead to wrong beliefs and expectations about the robot. The
state-of-the-art in human-aware navigation planning does
not take into account the concepts of legibility and cues,
and can therefore produce confusing robot behavior.

Respecting a social distance around standing humans just
means preferring to keep a minimum distance from the loca-
tion of persons. But in dynamic situations the future paths
of persons have to be taken into account for social distancing
in path planning. To some degree, the future paths of hu-
mans can be predicted with various methods [16]. However
the reliability of any prediction method quickly degrades
in time, and there are necessarily many occasions of unex-
pected human motions, even more so when a robot moves
nearby. Even with rather reliable prediction, replanning
during execution is inevitable, requiring a planning process
that scales well.

Our previous publication [9] presents an adapted cost
model ContextCost that addresses those challenges. The
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straight line stalled behind the person

i ,
e P

»

Figure 1: Effects of replanning with cost model Static in
simulation. The robot is planning paths going from left to
right, a simulated person walks from top to bottom without
stopping for the robot. Taken from [9].

cost model ContextCost defines social costs for a path search
in a grid depending on the motion direction of present hu-
mans and of the potential movement of the robot. In par-
ticular it may discard social costs for approaching humans
when calculating a path, relying on the local planner to ad-
just robot velocity instead to solve a spatial conflict.

This cost model shifts the burden of respecting social dis-
tancing around moving humans from global planning to local
planning and thus makes the robot follow more goal-directed
paths in the presence of moving humans. We previously as-
sumed this increases the legibility of the robot’s navigation
intention, but we wanted to support this assumption by a
user study.

Legibility in general is increased by explicit signaling and
also any aspect of behavior that can be used as cue to the ac-
tual robot intention. Legibility is different from predictabil-
ity, which requires an observer to imagine the most likely
future state, determined by many other factors than the
robot internal state [4]. As an easy reminder of this notion
of legibility: For the task of reading text, legibility may re-
late to how easy it is to understand a given piece of text,
whereas predictability could refer to how easy it is to predict
the following text.

In robot motion, the robot motion direction and path are
natural cues for the robot’s navigational intentions, as the
natural way to move to a goal is moving forward on the most
efficient path towards the goal, which is of course the straight
line in the absence of obstacles. So legibility in navigation is
naturally driven by the cues given by the robot’s direction
of movement and path.



Figure 2: Robot (in blue) behavior with static cost models.

State-of-the art social navigation frameworks consider
proxemics for social distancing, producing paths that pre-
fer to avoid a circular region around any person in the en-
vironment. A path planner then finds a path that avoids
this region. When the human is moving this region moves
as well, so consecutive searches for a path can find different
solutions.

Figure 1 shows an inevitable problem when navigating
based on replanning with such a model of proxemic regions.
The path planner finds a path to the goal of the robot while
avoiding to approach the human moving from top to the
bottom in the figure. As the situation evolves, the human
position changes, and the robot has to replan to adapt. So,
the robot plans very different paths during the approach of
its goal, as the situation changes. The resulting directions
and path of the robot are not helpful as cues to the robot
intention. Figure 2 illustrates the resulting robot path in
such situations.

Note that temporal planning alone does not generally fix
this problem in realistic HRI. This is partly due to human
motion being difficult to predict, in particular when being in-
fluenced by the robot motion. Also most temporal planning
approaches can only be applied within boundaries. Such as
the maximum look-ahead distance of a local planner like the
Dynamic Window Approach (DWA) [6], where any conflicts
at the edge of the boundary generate undesirable robot be-
havior.

Also in temporal planning, the planner has additional de-
grees of freedom to solve a conflict by using different veloci-
ties at different times. So it does not scale well, and requires
an additional non-trivial cost function to balance optimiza-
tion based on path length, path duration, and social factors
like path legibility.

The context dependent cost model ContertCost has been
compared in simulation to human motion strategies in 2-
agent orthogonal crossing scenarios [1]. Encouraged by the
results, this paper further evaluates the cost function in a
real world setting when presenting experiment participants
to a real world autonomously moving robot.

In particular we investigate whether the phenomenon can
be reproduced on the PR2 robot when navigating with a
present person, and whether our cost function improves the
perceived quality of the motion of the PR2.

2 Related Work

The theory of proxemics describes social distancing behav-
iors of humans during interactions with other persons [7]. In
recent years research in human-aware navigation has been
based on theses proxemics rules for realizing more human
like behavior during robot motion and non motion tasks.
For detailed survey of human-aware navigation research we
refer the reader to [10].

Sisbot et. al. [19] describes the human-aware naviga-
tion planner (HANP) that provides human-aware navigation
plans considering proxemic distances around static humans
in the environment. In extension to that work, we use a
cost-map that adapts costs for moving humans based on the
compatibility of motion directions, and we use an adapted
local-planner that reduces velocity on a given path up to
zero while waiting for moving humans to pass.

The general idea of considering moving humans not as ob-
stacles to avoid, but instead considering the space around
them as “soon to be free” is also exploited by Miiller et
al. [13], who make a robot follow persons going in the same
direction rather than trying to find a way around them.

In [11] Kuderer et al. present an approach to predict fu-
ture human trajectories based on a learned set of features
that capture relevant characteristics of human trajectories
in populated environment. Predictions of human trajecto-
ries are used as robot trajectories for social motion. Other
researchers investigate temporal planning to solve spatial
conflicts in very confined areas [15, 18]. However, these ap-
proaches do not pay special attention to legibility.

In [12] the authors have carried out a video-based user
study comparing human-aware and non-human-aware nav-
igation algorithms in situations where a human crosses the
path of a robot. Users were shown first-person perspective
videos of crossing situations with a robot using different nav-
igation algorithms and asked to predict the robot motion
and rate their own emotions during the interaction shown
in the videos. Legibility was measured as a correlate of pre-
dictability.

Similar user-studies investigating optimal parameters
for robots approaching standing persons have been con-
ducted [2, 3, 22]. Sardar et al. [17] performed a user study
where a robot approached a standing person concentrating
on another task, and found significant differences in socially
normative behavior for robots and humans. Within a holis-
tic perspective on technology acceptance such as established
by Heerink et al. [8], our work focuses on functional accep-
tance. The study by Pacchierotti et al. [14] also looks at
a mutually dynamic situation of passing each other. Foka
et al. [5] also did experiments using their POMDP-based
navigation framework, but did not evaluate legibility.

3 Approach

The purpose of the user study was to evaluate the usefulness
of the adapted cost model ContextCost in dynamic realworld
situations over standard cost models with proxemics (model
Static). Both cost models use a proxemic model for social
distancing. They guide search for a path on a 2D grid by
assigning costs to grid cells, such that a search algorithm
can find the minimum connecting path between a start and
a goal cell, which is assumed to be socially optimal.

In both cost models, for each human H the costs can be
based on several different specialized functions f;, such as for
safety (as in figure 1) or visibility. For cost model Static, the
costs for each grid cell can be computed using the function

dS'ta,tic :
g.lS'tatic (Ha wz) = max(fl(H7 wl)a f2(H7 wi): EER ) fk(H7 wl))

Figure 3 illustrates the cost model ContextCost described
in more detail in [9], which is based on the concept of spa-
tial compatibility. When two paths are spatially compatible,
the robot can stay on its intended (straight) path. Only in
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Figure 3: Context dependent costs ContextCost, from [9].

incompatible situations, specific avoidance action has to be
taken. Spatial compatibility is measured by the distance dp
between a waypoint and the estimated path of the human.
The second measure is the difference in heading angles «a,
which we call directional compatibility. Using the angle «
and distance dp, we can define the incompatibility function
¢ that calculates a number € [0, 1] with which we can mul-
tiply the costs of the model Static. ¢ is defined such that
when a path segment should not conflict with a predicted
human motion, social costs do not apply.

1 ,if hd undefined

1 if dp < diow
O(H, wi, wi—1) =40 ,if dp > dhign

0 ,if o > amas

% . ﬁ ,otherwise

The arguments w;, w;_1 to ¢ as opposed to only w; under-
line why this cost function is called directional, it takes into
account from which direction (which preceding cell w;—1)
the relevant cell is to be approached.

¢ has three parameters diow, dnigh and oumas to tweak
what motions are considered compatible. We use this func-
tion ¢ to modify the cost model Static by replacing <%.uc
With SGontestcost @S Shown in equation below.

g’Contethost (H7 ’LUi,’Lqufl) = q.g'ta.ti,c (H? wZ) : ¢(H7 ’LUi,’Lqu—l)

Thus robot path direction and human direction are con-
sidered incompatible if the human and robot could frontally
run into each other. In all other cases, the motions are com-
patible, meaning it is likely the situation can work out well
if the robot just reduces its velocity on the path while the
human is in the way. So in the situation shown in Figure 1, a
robot using cost model ContextCost would not deviate from
the straight line, but instead reduce it’s velocity.

For the experiment, the “move_base” navigation frame-
work of the PR2 robot was modified. As a global planner
for “move_base” we used HANP [19] to enable human-aware
path planning, and invoke the global planner at a regular
frequency of 10 Hz. HANP was configured with one of two
cost models Soonientcost AN S5iaie aS a parameter of the ex-
periment trials.

As a local planner, for this experiment we used
a waypoint-following algorithm without general obstacle
avoidance that adapts the robot velocity to prevent colli-
sions with perceived humans. The waypoint follower causes
the robot to visit each waypoint of the global plan, by turn-
ing towards each waypoint in turn and then moving forward
to reach it (as opposed to allowing sideways or backward

motions). The strategy of velocity adaptation was varied
according to the global planning strategy. When using the
simple proxemics based cost model Static, the local plan-
ner tried to move at maximum velocity on the path, except
when a human was in front of it at 1m distance (center
to center), in which case no forward motion was allowed.
The latter is a measure to grant a minimum feeling of safety
for human participants. Using the cost model ContextCost,
the velocity was adapted by projecting the motions of the
robot and the human into the future, and selecting a veloc-
ity that would in those projections not predict their mutual
distance to decrease below 1.3 m. This value was established
in preliminary trial as yielding a distance that felt safe while
keeping the robot close enough to establish a crossing con-
flict situation.

Velocity

Normal travel : Brake : Wait :Restart

Upref

Figure 4: Idealized velocity profile scheme for 90° crossing
situations with cost model ContextCost. vprey indicates the
preferred travel velocity, vstop a velocity so low a robot is
considered not traveling.

In preliminary trials performed with a different set of par-
ticipants we faced two main challenges when controlling the
robot velocity: “stopping late” and “restarting early”. Fig-
ure 4 shows a velocity profile we imagine to be optimal for
crossing the path of a human when giving way. It describes
the velocity of moving forward, not rotations. There are
three distinct phases for braking, waiting, and restarting.
Ideally, there is no acceleration during the “Brake” phase,
and no significant acceleration during the “Wait” phase. So
the ideal robot behavior cannot merely be described in terms
of distance and velocity, but acceleration (and possibly jerk)
can have significant effect on humans nearby.

The phases should be clearly observable by the human
whose path is being crossed, and the timing of the phases
can be crucial to human comfort. In preliminary trials, the
robot would sometimes initiate the braking phase too late,
sometimes re-accelerate slightly during braking and wait-
ing phases, or initiate the “Restart” phase too early. Each
case caused some participants to feel uncomfortable, and the
discomfort was strong enough to significantly influence the
participants’ answers.

Figure ba shows the transition to the “Brake” phase.
When the robot decelerated late or had the slightest acceler-
ation motion, participants felt the situation was uncomfort-
able. We believe this is because participants fear the robot
to accelerate to full speed at the smallest symptom of accel-
eration. Since the short-time robot acceleration was caused
by noisy data and prediction, we suppressed it by adding
uncertainty to the perception data, i.e. by predicting low,
nominal and high human velocities, and selecting a veloc-
ity that avoids collisions with all three prediction models.
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Figure 5: Situations relevant for comfort while crossing with
adapted cost model ContextCost. R; and H; are position of
the robot and human at time-step ¢ respectively. Stopping
late in (a) or starting early in (b) cause discomfort.
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Cost model: | Static ContextCost
Path: Changing paths Straight line
Velocity: Maximum possible | Reduce speed to

speed without collision | keep distance

Table 1: Comparison of experiment conditions

This causes the robot to select low velocities more often,
and makes participants less nervous. Figure 5b shows the
“Restart” phase. Sometimes the participants felt uncom-
fortable expressing the robot moved “too early”. We believe
again that the participants fear the robot quickly accelerat-
ing to full speed, so we corrected this behavior by projecting
the robot position not at the desired speed, but at full speed,
which caused the robot to accelerate later, and did not dis-
comfort the participants anymore. Using both increased un-
certainty about the future human positions and projecting
the robot at full speed, the robot behavior in the crossing
situation became rather similar to the scheme in Figure 4.

The differences of the two strategies used during the ex-
periments are summarized in table 1. In the cost model
Static, the robot attempts to move always at the maximum
allowed speed and adapting the path to not cross the current
human position nor an area in front of the human. The path
frequently changes as the human moves, causing the robot
to swerve. Using the cost model ContezxtCost, the robot at-
tempts to follow a straight path to the goal, but reduces its
velocity before reaching the crossing point, and accelerates
again once the human has advanced enough.

The robot head was moving during the experiments to
avoid the impression that the robot is ignoring the human.
The control scheme turned the robot head to point at the
participant head whenever the robot head could point to-
wards the participant without deviating more than 90° from
the frontal position, and vice versa for the participant. Oth-
erwise the robot head pointed straight forward. When mov-
ing, the head moved slowly at 0.3rad/s. Based on partici-
pant remarks this appeared appropriate except in rare cases
when the robot was very close and moved in front of the
participant, in which case the gaze seemed a bit provocative,
which is similar to other results in robot gaze studies [20].
The participants were informed before the experiment that

the head will move, to prevent the discovery of this from
distracting. The robot arms remained folded during all the
experiment in the default PR2 “tucked” position. Only two
participants mentioned this afterward as a bit unnatural, as
opposed to making prompting gestures.

4 Evaluation

The user study was set up to determine whether the robot
behavior with simple static cost models in crossing situa-
tions can be reproduced in the real world, and whether the
context-dependent cost model visibly improves the robot
motion quality.

Legibility is difficult to quantify, as a robot may behave
very legible with respect to one aspect of internal state, but
at the same time obfuscate another aspect of internal state.
Therefore the experiment instead establishes a good knowl-
edge of the robot internal state for the participants, showing
how the participants can become confused by the robot be-
havior under assumptions about the robot internal state.

17 participants were given the task to act as interfering
walkers with a robot moving from one spot to another in an
area without static obstacles. The human participants were
tracked using an infrared motion capture system, based on
four passive infrared markers placed on a lightweight hel-
met the participants wore and 10 wall-mounted cameras,
as shown in Figure 7. The room has an experimental area
with offices and desks surrounding it, during the experiment
people were quietly working around the experiment area.

The participants where all given the same set of written
instructions to read. The instructions stated that multiple
different robot strategies would be used, but not how many
or what variations to expect.

The procedure was the following: In the preparation
stage, the robot and the participant moved independently
to their starting positions. The starting position of the par-
ticipant was marked on the floor. This situation can be
seen in Figure 7. When both were ready, the experiment
instructor pressed a button to start the execution phase.
This triggered the robot motion planning and also made the
robot say “go”. The participant and the robot would start
moving towards their respective goal positions at roughly
the same time. The map in Figure 6 shows the coordinates.
The participant goal was a small shelf on which lay a ques-
tionnaire. Going towards a shelf for a purpose rather than
going onto a marked spot seemed to benefit a natural walk-
ing behavior. The goal area of the participant was slightly
elevated (10 cm), and there was a low barricade with a gate
spanning 1.5m, seen in white in Figure 7. This was an ex-
isting feature of the room. The participants started their
movement at coordinates (0.5, -3.5) on the map, but would
not be visible to the motion capture system before reaching
roughly (2.5, 3.5). Again we decided to maximize the walk-
ing distance because we were mostly interested in ratings
about the robot, not human gait.

When the participants reached the shelf, they could then
immediately rate the robot behavior on the questionnaire
placed on the shelf. Once the participant and the robot had
both reached their goal positions, the execution phase ended.
Then a new cycle would begin with the preparation phase.
An instructor was present and visible during the experiment,
sitting at the desk shown in Figure 6, to react in cases of
emergencies or disturbances, but also to reassure the par-
ticipant and verify they were following the procedure. Also
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Figure 6: Top-Down view on the room layout, showing the
experiment path, the instructor’s desk, and the shelf where
the participants marked their answer after each trial

Figure 7: Experiment setup showing wall-mounted cameras
(2 out of 10), participant at start position with helmet and
passive marker (1 out of 4), robot at start position, the in-
tended paths crossing at 90°

the instructor modified the robot maximum speed between
0.45m/s and 0.55m/s according to the participant’s walk-
ing speed during the first 3 trials to create a spatial conflict
without imposing a walking speed on the participants. The
robot would approach alternately from the left or the right
hand side.

Each participant was asked to perform the same task 13
times, and was told that the first 3 cycles would not be
taken into account, but serve to get used to the situation.
The robot strategy was randomized but never the same three
times in a row. All participants were presented with both
strategies to allow them a comparative opinion.

As opposed to studies on human gait, the experiment was
interactive, meaning the robot behavior is a function of its
algorithms, the person’s behavior (in particular the walking
speed), the adapted robot maximum velocity and of noisy
technical side effects like varying WiFi network latencies.
Because of that, the captured data of the human trajecto-
ries is only of limited usefulness to interpret exact motion
patterns.

e Number of Participants: 2 female, 15 male
e Age range: 22 - 34

e Mother language: 11 French, 6 Other
e Education level: 11 Master, 5 PhD
e Robot experience: 11 None, 6 with less than 6 years

After each run, the participants were asked to rate the

robot’s performance according to predefined questions:

e Please rate the robot behavior (clear vs. confusing)

e Please rate the crossing situation (comfort):
The participants were given a Semantic Differential Scale
from 1 to 5, the extremes labeled “clear”, “confusing”, “com-
fortable”, “uncomfortable” respectively. A preliminary trial
had asked the participants to rate their “surprise”, but this
word also had positive connotations and was also rated for
the novelty of the whole situation. “clear” vs. “confusing”
seemed better to express legibility issues.

Based on the design of the cost model ContextCost, the
hypotheses for the outcome of the experiment were the fol-
lowing:

e H1: The robot behavior observed in simulation for
Static also occurs in the experiment

e H2: Participants rate path adaptation as more confus-
ing than velocity adaptation

e H3: Participants rate path adaptation as more uncom-
fortable than velocity adaptation

The alternatives are trivially negations of the given hy-
pothesis. H2 and H3 would be confirmed if significant dif-
ference between the reported ratings were found.

5 Results

We collected data from 170 valid trial runs as shown in Ta-
ble 2. Figure 8 shows summary plots of a representative
run using cost model Static, and Figure 9 shows the same
plots for a representative run using ContezrtCost. Figures 8a
and 9a show the positions of robot and human over time for
two representative samples we selected. Since we could not
measure the human position from the start, we added the
starting position as a single circle in the plot. Figures 8a
and 8f shows how the robot at a distance of 1.2m slightly
deviates from the straight line towards its left and rotates.
The human passes during that time. Once the human has
passed, the robot plans paths behind the human as shown in
figure Figure 8b, thus turning to its right before eventually
regaining the straight path. Compare that to Figures 9a and
9f, where the robot also decelerated to a minimal distance
of 1.2 m, but never rotated, and never planned anything but
a straight path as shown in Figure 9b. This difference was
already explained in [9], so here we just point out that the
same occurs in a real world experiment.

In Figure 9d at time 3.8 there is a small increase of ve-
locity. we could not pin down the cause of this, which could
be with the prediction algorithm or robot wheel control. We
point it out only to show that such a small and short accel-
eration already counted as a cue to some participants that
the robot was maybe re-accelerating.

Figure 10 and 11 summarizes participant’s answers to the
questionnaire. Each bar in the figure represents the number
of participants who answered with the value on the horizon-

| Static | ContextCost
robot start at (6, -0.5) | 39 45
robot start at (6, -6.5) | 41 45

Table 2: Conditions for the 170 valid trials.
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Figure 8: Sample 1 with cost model Static. In (a) the round

positions are the human moving from left to right. (b) shows

what the diverse plans the robot generate while moving.

tal axes for respective question. Figure 10 shows the differ-
ences in reported discomfort. The visible difference as given
by a one-way ANOVA indicates trials with cost model Con-
textCost were rated more comfortable (M=1.5, SD=0.723)
than for Static (M=2.873, SD=1.265), p < 0.001. The same
is shown for behavior clarity in Figure 11. The trials with
cost model ContextCost were rated more clear (M=1.522,
SD=0.707) than for Static (M=2.684, SD=1.215), p < 0.001.
The ratings for clarity and discomfort were also correlated
as revealed by Pearson’s R test (R=0.771, p<0.001). In
their remarks, some participants usually argued that both
values were independent. They explained that they rated
strangeness whenever the robot orientation changed (as it
only did with cost model Static), while they rated discom-
fort high when the robot passed first (only happened with
Static) or had jerky acceleration motions (only happened
with ContextCost). However, given the strong correlation
possibly most participants did not clearly separate both con-
cepts.

Hypothesis H1 is validated by the robot path behavior
we saw, as displayed in Figures 8 and 12, in comparison to
Figure 9a. The distinct responses for clarity and comfort
validate Hypotheses H2 and H3.

While the figures for strategy ContextCost are very sim-
ilar over all 90 runs, there was a lot of variation over the
runs with Static. This was due to the different exact cir-
cumstances of crossing, which depended on the motion of
the participant relative to the robot. To show some of the
variety we observed, Figure 12 shows the paths for additional

(a) Paths of human (red) and
robot (blue)
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Figure 9: Sample 2 with cost model ContextCost. Same
plots as in Figure 8.
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Figure 10: Participant ratings of situation: (1=Comfortable,
5=Uncomfortable).
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Figure 11: Participant ratings of robot behavior: (1=Clear,
5=Strange).
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Figure 12: Additional Examples with cost model Static,
showing variants of robot behavior reacting to different hu-
man behaviors

samples. In Figure 12a the participant let the robot move
first. This happened 20 out of 80 times with cost model
Static, but never with ContextCost. The minimal distance
of 0.5 m was a result of the participant passing closely be-
hind the robot, and such low distances were consistently ob-
served when participants let the robot pass first. Figure 12¢
shows a more extreme robot motion deviation as the robot
retraced its step following a path that led away from the
human. Finally Figure 12d shows a sample where the par-
ticipant hesitated several times before passing the robot.
No statistically significant differences were found compar-
ing the robot approaching from the right or left-hand side
of the human. The observed human average walking veloci-
ties mainly varied between 1.5m/s and 1.7 m/s with no clear
trend detected over trials. While Figures 9e and 8e appear
different, no pattern seemed evidence over all 170 runs.

6 Discussion

The charts in Figure 10 and 11 still show some degree of
variation over the robot clarity of motion and discomfort.
This is partially due to the fact that some participants pre-
ferred to use the full answer scale while others used only low
numbers. However from the remarks we also know that even
with the cost model ContextCost, there were symptoms the
participants disliked. This is mainly due to remaining con-
fusing symptoms in the robot acceleration behavior. As the
robot velocity depends on a linear projection of the human
motion and the robot, and the sensory data is noisy, the ob-
servable robot behavior for slowing down had tiny moments
of acceleration, which were very visible to participants and
caused mild confusion and discomfort.

As our first attempt at the experiment failed because
robot acceleration was uncomfortable, we learned that three
trial runs for warm-up may not generally be sufficient for
this kind of study, for non-technical people.

Reported discomfort by participants seemed to always be
related to uncertainty about future collisions. Participants
felt generally disturbed when the robot base moved (or ro-
tated) while the robot appeared to be “waiting for them to

pass”. Legibility of robot motion may be a quality that
only becomes relevant once humans feel sufficiently reas-
sured about their safety in the presence of a robot. Most par-
ticipants chose a very straight line to their goal, as opposed
to curving their path to accommodate the robot, very few
participants however consistently walked on paths curved
away from the robot approach direction. Two Participants
reported that when the robot base rotated (in the case of
cost model Static), they felt as if the robot tried to follow
them or join them, three participants felt that the robot was
trying to cut their way in such cases. Base rotations were re-
ported as uncomfortable when it happened very close to the
participants (due to the square shape of the robot, a rota-
tion could also cause a collision with the person’s legs), but
when it was at least 1.5 m away, no discomfort was reported.

The robot passing first (with cost model Static and the
participant walking slowly) as in Figure 12a was accepted by
some participants, others felt the robot should have stopped
for them in any case. In such cases it is also notable that
human participants pass very close behind the robot, almost
touching the robot, so there was no visible notion of social
self-distancing from the robot. This could mean that social
distancing is generally not required for such situations be-
cause the duration where two agents are very close is also
very short. However social distancing is likely to still be rel-
evant for situations of following one another, or walking side
by side, when the duration of proximity is longer. The obser-
vation that humans pass very close behind crossing robots,
but do not like being passed close by the same robot in the
inverse situation, hints at a difference in socially normative
behaviors for humans and robots as also found in [17].

As additional remark on predictability, using the adapted
cost model ContextCost, the robot behaved very similar for
each run, even when participants walked at different speeds
or hesitated. This consistency made the robot behavior also
very predictable, as consistency is generally a factor increas-
ing predictability. The predictability of the whole situation
for third party observers may also be considered, in 20 of 80
runs with Static, the participant let the robot go first, but
never did so in 90 runs with ContertCost, meaning the latter
cost model leads to better predictability of the situation as
a whole.

The study does not validate this approach for other con-
flict situations such as crossing at different angles or follow-
ing at different speeds. Such studies would require a larger
experiment area than we had available. Also the study does
not compare the straight path behavior of a robot to paths
curved “behind” the crossing human, which requires tempo-
ral planning to be found by a path planner.

It is also worth considering how the navigation approach
scales to situations with more humans. While the robot is
prone to the “freezing robot” problem [21], because in case
of doubt it reduces velocity to zero, we believe for moder-
ately crowded situations this behavior may still help to avoid
making a complex situation even more complex, given the
insecurity our participants reported to even slight changes
in robot velocity. For densely crowded situations, a fully
reactive navigation mode seems preferable.

The study has shown several cues that human observers
use to guess the intentions of the robot. While the focus was
on the path behavior of the robot, we also saw that minor
accelerations were also used as a significant cue by humans,
so those have to be avoided to prevent confusion. Possibly



the robot might require a social commitment behavior such
that it commits to stopping or moving for at least a given
time-span of one or two seconds. Cues like hectic motion of
PR2 caster wheels during low velocity, or starting of robot
cooling vents may not clearly indicate a specific robot intent,
but are confusing as cues.

7 Conclusions

The user study was performed to validate the improvement
of perceived robot motion quality when using an adapted
cost model ContextCost for path planning. The study shows
that using a real robot and uninstructed participants, a
robot will show confusing behavior when using a simple
proxemic path planner, behavior that humans will rate as
strange or confusing. For crossing situations, the study
shows that if a robot instead discards proxemic costs in the
path planner and chooses a direct line to the goal, but also
uses a local planner that adapts velocity to maintain a cer-
tain distance, the robot behavior becomes more stable, and
humans rate the robot behavior as clearer. The study also
shows that for such situations of conflict, robot acceleration
is an important source of confusing robot cues, even if it hap-
pens for very short times and at small amounts. The study
hints at the possibility that for short durations, a close en-
counter may not require social distancing at all, but safety
distancing. Also the study has revealed that for legibility, it
is not only crucial to provide useful cues to the robot internal
state (such as its intention), but to also avoid accidentally
creating misleading cues. This leads to the notion of “per-
spective taking” in path planning and local planning, such
that a robot needs not only to reason about the effects of a
planned trajectory, but also about the effects of the imagi-
nary trajectories that observers predict for the robot, based
on cues. So the implications of this user study on legibility
extend to all other motion planning problems involving the
presence of humans.
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