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Passive and chipless packaged sensor for the wireless pressure monitoring 
in harsh environment 

J. Philippe, C. Arenas, D. Henry, A. Coustou, A. Rumeau, H. Aubert, P. Pons 
LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France 

Summary 
A new millimetre-wave passive and chipless packaged sensor for wireless pressure monitoring in 
harsh environment is proposed. This sensor uses a planar microstrip resonator coupled with a high 
resistivity silicon membrane. The remote interrogation of this sensor is performed from a Frequency-
Modulated Continuous-Wave (FMCW) radar. Prototypes have been designed and fabricated using 
photoresist intermediate layer for the silicon membrane bonding. Radar measurements on two sensors 
validate a 6dB full-scale response for 1.4 bar overpressure. Depression measurements demonstrate the 
transducer hermeticity and a measured sensitivity of 1.6% per bar on the millimetre-wave resonant 
frequency. 
Motivation and results  
Wireless, batteryless and chipless (without electronic circuit) sensors are a promising solution for the 
remote measurement of physical quantities in high radiation or extreme temperature environment 
or/and when the battery replacement is difficult or induces high costs. Electromagnetic sensors at 
millimetre-wave frequency are good candidates and the authors have demonstrated the proof-of-
concept from several transducers [1] using Frequency-Modulated Continuous-Wave (FMCW) radar 
interrogation up to 58 meters [2-3].  
In this communication, the authors focus on a practical application case in which pressure is 
monitored in nuclear plant building. The objective is to validate a packaged transducer that fits the 
pressure specification (≅ 1.4 bar of overpressure) and operates in the frequency band of our radar 
(22.8GHz/24.8GHz). In our previous studies, we used a coplanar waveguide (CPW) microwave 
resonator whose resonant frequency was modified by the displacement of a silicon membrane. 
However, this configuration required a CPW-to-microstrip line transition (Figure 1) which creates 
undesirable spurious modes. By removing this transition we show here the possibility to reach a full-
scale radar response up to 10dB (Figure 2). 
The new design of the transducer with microstrip resonator is shown in Figure 3 and Figure 4. A 
0.5µm thick aluminium layer is used to fabricate a half-wavelength coupled line resonator on a 500µm 
thick borosilicate glass wafer. A 100µm thick high resistivity silicon membrane is then bonded over 
the resonator using low-loss photoresist (≅ 10µm thick). This bonding solution allows a quite simple 
process providing a sufficient hermeticity for experimentally validating the prototype performances. 
The simulated transducer response is given in Figure 5 where the resonant frequency shift is plotted 
versus the distance between the silicon membrane and the resonator. The electromagnetic simulation 
was performed assuming a planar silicon membrane deflection. For the full-scale pressure, a 9µm 
membrane deflection is expected leading to a resonant frequency shift of 9%. Transducers were 
fabricated using two different photoresist thicknesses (12µm and 3µm) and allow validating a 6dB 
full-scale radar measurement range (Table 1).  
Figure 6 shows the fabricated transducer inside its packaging. The reflection coefficient parameter S11 
is measured in a controlled vacuum chamber in order to check the hermeticity of the transducer 
(Figure 7). Figure 8 shows that the resonant frequency shift depends quasi-linearly on the depression 
with a sensitivity of 1.6%/bar up to 1 bar. The next steps will be the radar measurements under over-
pressure indoor and then outdoor. 

Word count: 488 

References 
[1] P Pons and al.: Electromagnetic transduction for wireless passive sensors, Eurosensors, Sept 2012, Krakow, Poland 
[2] H. Aubert and al.: Wireless Sensing and Identification based on RADAR Cross Sections Variability Measurement of 

Passive Electromagnetic Sensors, Annals of telecommunications, vol. 68, no7-8, Aug 2013 
[3] D. Henry and al.: Long Range Wireless Interrogation of Passive Humidity Sensors using Van-Atta Cross-Polarization 

Effect and 3D Beam Scanning Analysis, IEEE International Microwave Symposium, June 2017, Honolulu, Hawaii. 

Corresponding author 
PONS Patrick, LAAS-CNRS, 7 Avenue Roche 31077 Toulouse, 05-61-33-64-63, ppons@laas.fr 



Topic : Sensors for factory of the future 

12 mm
 

 

Figure 1: View of microstrip/CPW line inside the 
packaging (bottom) and packaging cover (top) 
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Figure 2: Cut-planes of a 3D millimeter-wave radar 
image obtained from a packaged 50Ω microstrip 
line loaded by a short-circuit (left) and by the 
50Ω  matched impedance (right)  
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Figure 3: Dimensions of the microstrip planar 
resonator 
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Figure 4: View of sensor layers 
 
 
 
 
 
 
 

Table 1: Shift of the reflection coefficient S11 at the 
input of the planar resonator and radar echo 
amplitude between two [silicon membrane / 
resonator] distances (12µm and 3µm)  
 

Shift of S11 @ 23.8 GHz 4.8 dB
Shift of S11 in [22.8GHz/24.8GHz] band 5.9 dB
Shift of radar echo 6.1 dB  
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Figure 5: Simulated resonant frequency shift versus 
the distance between the Si membrane and the 
planar resonator 
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Figure 6: View of the packaged sensor 
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Figure 7: Measured S11 parameter versus frequency 
for various depressions from 50mbar to 1 bar 
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Figure 8: Measured resonant frequency shift versus 
depression  
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