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Control of anesthesia based on singularly
perturbed model

Sophie Tarbouriech, Isabelle Queinnec, Germain Garcia, Michel Mazerolles

Abstract This paper deals with the control of anesthesia taking into account the pos-
itivity together with the upper limitation constraints of the variables and the target
interval tolerated for the depth of anesthesia during a surgery. Due to the presence
of multiple time scale dynamics in the anesthesia model, the system is re-expressed
through a singularly perturbed system allowing to decouple the fast dynamics from
the slow ones. Differently from general approaches for singularly perturbed sys-
tems, the control objective is then to control and accelerate the fast system without
interest in modifying the slow dynamics. Thus, a structured state feedback control is
proposed through quasi-LMI (linear matrix inequalities) conditions. The characteri-
zation of domains of stability and invariance for the system is provided. Associated
convex optimization issues are then discussed. Finally, the theoretical conditions are
evaluated on a simulated patient case.

1 Introduction

The principle of general anesthesia and drug delivery control during surgery corre-
sponds to the suspension of consciousness (hypnosis), pain (analgesia) and move-
ment (immobility). Indeed, to address these three main actions, a combination of
drugs is used. In this paper we focus on the hypnosis problem only, with Propofol
used as hypnotic drug. Even if this is an old problem (notion of closed-loop control
appeared in the fifties), it remains largely open. Actually, medical practices remain
yet in open loop and several researchers from the control community have been con-
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cerned with such applications and suggested advanced control techniques to move
from open-loop control by the anesthesiologist to closed-loop control [13]. Hence,
the control of the anesthetic state of a patient consists in adjusting the perfusion of
hypnotics based on clinical indicators such as heart rate, blood pressure and BIS
(Bispectral index). The control of anesthetic drugs injection for maintaining an ad-
equate anesthetic state during surgery has been studied through several approaches.
Among them, one can, for example, cite the use of PID controllers [17], adaptive
control [11], model predictive control [9], LPV modeling and control [2], bifurca-
tion analysis [20] and set-theoretic tools [7].

As for many biological systems, the design of an adequate control law should
take into account some physical aspects such as patient variability, positivity con-
straints, output measurement availability, the presence of multiple time scales in the
dynamics... Indeed, the dynamics of the drug evolution in the patient’s body is usu-
ally described by a pharmacokinetic positive model with multiple time scales. In
this paper, we use to represent this difference the framework of singularly perturbed
systems [12]. Hence, the compartmental system describing the anesthesia model is
re-expressed through a singularly perturbed system allowing to decouple the fast
dynamics (blood, effect site) from the slow ones (muscles, fat). Differently from
general approaches for singularly perturbed systems, the control objective is then to
control and accelerate the fast system without interest in modifying the slow dynam-
ics. Furthermore, the control design has to take into account the positivity together
with the upper limitation constraints of the variables during a surgery. Thus, based
on the results in [8] and [14], a structured state feedback control is proposed through
theoretical matrix inequalities, which constitutes the main contribution of the paper.
The characterization of domains of stability and invariance for the system is pro-
vided by using some relaxation schemes in order to obtain linear matrix inequalities
(LMI) conditions. Associated convex optimization issues are then discussed.

The paper is organized as follows. Section 2.1 presents the compartment-based
model, for which the presence of multiple time scale dynamics is pointed out. Then,
the system is re-expressed through a singularly perturbed system allowing to de-
couple the fast dynamics from the slow ones. The general problem formulation is
summarized in Section 2.2 and the theoretical conditions allowing to design the
structured state feedback controller are provided in Section 3.1. Associated algo-
rithms are then proposed in Section 3.2 in order to exhibit numerical solutions. Sec-
tion 4 presents the patient case considered in order to illustrate the effectiveness,
the drawback and the trade-off of the proposed solution. Finally, some concluding
remarks in Section 5 end the paper.

Notation. For a matrix P in IRn×n, the notation P > 0 (P ≥ 0) means that P is
symmetric positive (semi) definite. For a vector x ∈ IRn, the notation x ≥ 0 means
that all the components of the vector are nonnegative. The superscript ‘T ’ stands for
matrix transposition, and the notation He(P) stands for P+PT . The symbols I and
0 represent the identity and the zero matrices of appropriate dimensions.
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2 Patient model and problem formulation

2.1 Patient model

It is well accepted that the model used to describe the evolution of drugs in a
patient’s body is a Pharmacokinetic/Pharmacodynamic (PK/PD) model, which is
based on a three-compartment model [6]. Such a PK/PD model describes the distri-
bution of the drugs between three compartments (blood, muscles and fat). Further-
more, the effect of drugs on the patient is expressed throughout the effect site, which
represents the action of drugs on the brain and is related to the concentration in the
central compartment through a first order dynamics [10], [2].

Hence, the compartmental model representing the circulation of the drug in the
body can be written as follows1:

ẋan = A0xan +B0uan (1)

with

A0 =


−(a10 +a12 +a13) a21 a31 0

a12 −a21 0 0
a13 0 −a31 0

ae0/V1 0 0 −ae0

 ;B0 =


1
0
0
0

 (2)

In the vector xan = [x1 x2 x3 x4]
′, x1, x2, x3 are the masses in grams of the drug

in the different compartments (blood, fat, muscle), x4 is the effect site concen-
tration and uan is the infusion rate in g/min of the anesthetic. The parameters
ai j ≥ 0, ∀i 6= j, i, j = 1,2,3, are the transfer rates of the drug between compart-
ments. The parameter a10 represents the rate of elimination from the central com-
partment. These parameters are functions of the patient characteristics (weight, age,
height, ...). Several empirical models give the relation between those parameters and
patient’s characteristics [5]. One can cite, for example, the models of [15] or [16]
related to Propofol (hypnotic drug) and Remifentanil (analgesic drug), respectively,
to define a typical patient and to build uncertain models to represent the inter-patient
variability.

Moreover, the depth of anesthesia indicator widely used by clinicians is the BIS
(the bispectral index), which is a signal derived from the EEG analysis. BIS quan-
tifies the level of consciousness of a patient from 0 (no cerebral activity) to around
100 (fully awake patient). The relationship between the concentration at the effect
site x4 and the BIS can be described empirically by a decreasing sigmoid function
[1]:

BIS(x4) = BIS0(1−
xγ

4

xγ

4 +ECγ

50
), (3)

BIS0 is the BIS value of an awake patient typically set to 100, EC50 corresponds to
drug concentration associated with 50% of the maximum effect and γ is a parameter

1 Tthe time dependence is omitted for simplicity of the notation.
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modeling the degree of non-linearity. Typical values for these parameters are EC50 =
3.4µg/ml and γ = 3. Let us stress that the chosen three-compartment model (1) is
one of the possible compartment models. Its simplicity and its good representativity
have motived our choice even if there exist other models of different complexity for
the Propofol - BIS relationship [13].

Finally, it is important to note that the state and the input of system (1) have to
be positive, that is to respect the following constraints:

xan ≥ 0
uan ≥ 0 (4)

It is then important to observe that the system (1) and (4) enters in the class of
positive systems. Furthermore, note that matrix A0 is a Metzler matrix [3].

2.2 Problem formulation

One important fact regarding model (1) resides in the difference of dynamics: in-
deed, the dynamics of metabolism and circulation of Propofol in the central com-
partment and the site effect is ten times faster than in muscles, and even a hundred
times faster than in fat. A classical way to address this kind of problem is to describe
the system as a singularly perturbed system [12]. Hence, based on a singularly de-
scription [14], the blood and the effect site parts are gathered in the fast subsystem
and the muscle and the fat parts in the slow subsystem. Then, system (1) can be
rewritten as follows: [

˙̄x
ε ˙̄z

]
=

[
A11 A12
A21 A22

][
x̄
z̄

]
+

[
B1
B2

]
uan (5)

with

A11 =

[
−a21 0

0 −a31

]
;A12 =

[
a12 0
a13 0

]
,B1 =

[
0
0

]
A21 =

[
εa21 εa31

0 0

]
= εA0

21;A22 =

[
−ε(a10 +a12 +a13) 0

εae0/V1 −εae0

]
= εA0

22

B2 =

[
ε

0

]
= εB0

2

(6)

where ε > 0, x̄ corresponds to the slow state and z̄ corresponds to the fast state. ε

takes small values and corresponds to the perturbation parameter. Furthermore, the
BIS is rewritten in this case as:

BIS(z̄2) = BIS0(1−
z̄γ

2

z̄γ

2 +ECγ

50
), (7)

where z̄i, i = 1,2 are the components of vector z̄.
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The following assumption holds.

Assumption 1 Matrix A0
22 is non singular. Matrix A22 is non singular for any ε > 0.

In most of studies addressing the control design for singularly perturbed systems,
the goal is to control the slow dynamics as the crucial problem [12]. In the case of the
depth of anesthesia, the most important objective is the control of the fast dynamics
because the regulation of the BIS is a direct function of the concentration at the
effect site and thus of the fast dynamics on which the administered drug directly
acts.

Moreover, during a surgery, the BIS must be brought then maintained close to
50, or at least in an interval between 40 and 60. Due to relation (7) describing the
relation between the BIS and the effect site concentration, it follows that for the BIS
equal to 50% of BIS0 the effect site concentration must be equal to EC50. Then, the
computation of the associated equilibrium point x̄e, z̄e satisfying ˙̄xe = 0 and ˙̄ze = 0
gives:

z̄e1 =V1z̄e2

z̄e2 = EC50(
BIS0
BISe
−1)1/γ

x̄e1 =
a12
a21

z̄e1

x̄e2 =
a13
a31

z̄e1

ūe = a10z̄e1

(8)

where BISe denotes the desired value of the BIS at the equilibrium and x̄i, i = 1,2
are the components of vector x̄.

Hence, we can define the error model around the equilibrium with x = x̄− x̄e,
z = z̄− z̄e and u = uan− ūe:[

ẋ
ε ż

]
=

[
A11 A12
A21 A22

][
x
z

]
+

[
B1
B2

]
u (9)

with matrices defined in (6).
The problem we intend to solve in the paper can be summarized as follows.

Problem 1. Find a structured control gain K:

K =
[

0 K f
]
,K f ∈ IR2×2 (10)

such that:

1. The system (9)-(6) controlled through the control law u = K f z is asymptotically
stable;

2. The positivity of xan and uan is ensured, or equivalently due to the change of

variables around the equilibrium point
[

x
z

]
≥−

[
x̄e
z̄e

]
and u≥−ūe.

Note that to address Problem 1, the state of the fast subsystem is assumed to be
available.
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3 Main conditions

In order to solve Problem 1, we consider in the sequel a procedure in two main
steps: 1) we design the structured control gain to ensure the closed-loop asymptotic
stability; and 2) we provide an analysis of the solution to ensure the constraints
satisfaction.

3.1 Theoretical conditions

Let us introduce the following notation:

As = A11−A12A−1
22 A21 = A11−A12(A0

22)
−1A0

21
Bs = B1−A12A−1

22 B2 = B1−A12(A0
22)
−1B0

2
(11)

From (9), the slow subsystem can be derived by considering ε = 0 and expressing z
as a function of x and u, which are denoted by xs and us, that is from Assumption 1:

zs =−A−1
22 (A21xs +B2us) =−(A0

22)
−1(A0

21xs +B0
2us) (12)

In (12), zs can be interpreted as the slow part of z. By replacing zs in the original
system, the slow dynamics reads:

ẋs = Asxs +Bsus (13)

with As and Bs defined in (11). Similarly to define the fast dynamics, the vector x
is considered as constant (that is x = xs and żs = 0) and we denote by z f = z− zs
and u f = u−us the fast part of the state and the control, respectively. Then, the fast
dynamics reads:

ż f = A0
22x f +B0

2u f (14)

If the slow control us and the fast one u f are determined, the complete control law
is given by u = us +u f .

Then by using a Lyapunov-based approach and adapting the results of [8] and
[14], we can state the following conditions to solve item 1 of Problem 1.

Theorem 1. If there exist two symmetric positive definite matrices Ws ∈ IR2×2, Wf ∈
IR2×2 and a matrix S f ∈ IR1×2 satisfying the following inequalities:

He(A0
22Wf +B0

2S f )< 0 (15)

He(AsWs−Bs(I +S fW−1
f (A0

22)
−1B0

2)
−1S fW−1

f (A0
22)
−1A0

21Ws)< 0 (16)

then the control gain as defined in (10) with K f = S fW−1
f solves item 1 of Problem

1.
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Proof. This result is based on the use of Theorem 4 in [8] adapted to our case.
Thus, we want to find a symmetric positive definite matrix W0 ∈ IR4×4 and a matrix
S0 ∈ IR1×4 such that

AεW0 +W0AT
ε +Bε S0 +ST

0 BT
ε < 0 (17)

where from (6)

Aε =

[
A11 A12
A21
ε

A22
ε

]
=

[
A11 A12
A0

21 A0
22

]
;Bε =

[
B1
B2
ε

]
=

[
B1
B0

2

]
(18)

By developing each terms of the matrix at the right-hand side of relation (17) and
by using arguments as in [8], matrices W0 and S0 can be described as follows:

W0 =

[
Ws −(A0

21Ws +B0
2Ss)

T (A0
22)
−T

? Wf +(A0
22)
−1(A0

21Ws +B0
2Ss)W−1

s (A0
21Ws +B0

2Ss)
T (A0

22)
−T

]
S0 =

[
Ss S f −SsW−1

s (A0
21Ws +B0

2Ss)
T (A0

22)
−T
] (19)

where Wf , S f are solutions to relation (15) and Ws, Ss solutions to

He(AsWs +BsSs)< 0 (20)

That corresponds to characterize a gain K = S0W−1
0 such that Aε +Bε K is Hurwitz.

From (19), one gets the following expression of K:

K =
[

Ss S f
][ W−1

s 0
W−1

f (A0
22)
−1(A0

21Ws +B0
2Ss)W−1

s W−1
f

]
=
[

SsW−1
s +S fW−1

f (A0
22)
−1(A0

21Ws +B0
2Ss)W−1

s S fW−1
f

] (21)

In order to obtain a gain K structured as in (10), one has to satisfy:

SsW−1
s +S fW−1

f (A0
22)
−1(A0

21Ws +B0
2Ss)W−1

s = 0

or equivalently
Ss +S fW−1

f (A0
22)
−1(A0

21Ws +B0
2Ss) = 0

which corresponds to

(I +S fW−1
f (A0

22)
−1B0

2)Ss +S fW−1
f (A0

22)
−1A0

21Ws = 0 (22)

By denoting K f = S fW−1
f , one can remark that relation (15) is equivalent to verify

He((A0
22 +B0

2K f )Wf )< 0

that is matrix (A0
22 +B0

2K f ) is Hurwitz and therefore non singular. Then, one can
observe that matrix (I+S fW−1

f (A0
22)
−1B0

2) is also non singular by using the inverse
matrix definition of (A0

22 +B0
2K f )

−1. Hence, relation (22) reads
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Ss =−(I +S fW−1
f (A0

22)
−1B0

2)
−1S fW−1

f (A0
22)
−1A0

21Ws (23)

From (23), if relation (16) holds then relation (20) is verified. ut

As mentioned before, we need at this stage to ensure the satisfaction of item 2
of Problem 1. Actually, considering the controller issued from Theorem 1, we have
to provide a stability analysis of the original system (1)-(2) by considering that the
input can saturate as follows: uan = sat(Kxan)). Rather than addressing the prob-
lem in a linear framework (saturation not allowed), it is preferable to consider the
problem in the saturated allowed framework. Depending on the controller designed
the global asymptotic stability (GAS) or the local asymptotic stability (LAS) of the
closed-loop system is achevied [18]. This is detailed in the following section.

3.2 Computational issues

The main drawback of Theorem 1 resides in the fact that relation (16) is nonlinear
in the decision variables due to the presence of products between some variables,
relation (15) being linear. Hence, the lack of linearity of this condition makes it
not computationally tractable to obtain a solution to Problem 1 [4]. However, some
relaxation steps can be proposed. Note that the first inequality (15) is linear in the
decision variables Wf , S f . The second inequality (16) is nonlinear in the decision
variables Ws, Wf , S f but becomes linear in Ws if Wf and S f are fixed. Hence, one can
consider the following first algorithm regarding the controller design procedure.

Algorithm 1

1. Select a desired decay rate for the fast subsystem with parameter µ f > 0.
2. Compute K f = S fW−1

f stabilizing and improving the decay rate of the fast sub-
system by solving

He(A0
22Wf +B0

2S f +µ fWf )< 0 (24)

3. Feasibility problem. Find Ws solution to

He(AsWs−Bs(I +K f (A0
22)
−1B0

2)
−1K f (A0

22)
−1A0

21Ws)< 0 (25)

4. If (25) is feasible, then K =
[

0 K f
]

stabilizes the closed-loop system by acting
on fast dynamics.
If not, then decrease the decay rate parameter µ f and go back to step 2.

Remark 1. System (1) being open-loop stable, there always exists a solution to the
feasibility linear problem (24)-(25) with K f = 0. Then, there always exists a µ f
small enough such that, for a controller issued from step 2, the LMI condition in
step 3 is feasible.

From Algorithm 1, we have in hand the stabilizing controller, and we can now man-
age the constraints. A first direction could be to adapt the conditions provided in
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[14] to our current problem. Due to the difficulties encountered to deal with the
nonlinearities appearing in the conditions, we decided here to propose an alternative
route by providing analysis conditions based on tools issued from [18] and [19], by
using the toolbox SATAW-Tool2.

Algorithm 2

1. Given the value of K f (and therefore of K) resulting from Algorithm 1.
2. Global asymptotically stability (GAS) case. Find a symmetric positive definite

matrix W ∈ IR4×4 and a diagonal positive definite matrix S ∈ IR1×1 solution to
the feasibility problem:[

W (Aε +Bε K)T +(Aε +Bε K)W Bε S−WKT

SBT
ε −KW −2S

]
< 0 (26)

3. Local asymptotic stability (LAS) case. If the global case is unfeasible, given
u0 = ūe, find a symmetric positive definite matrix W ∈ IR4×4, a diagonal posi-
tive definite matrix S ∈ IR1×1, a matrix Z ∈ IR1×4 and a positive scalar γ solution
to the optimization problem:

min − trace(W )+ γ

s.t.[
W (Aε +Bε K)T +(Aε +Bε K)W Bε S−WKT −ZT

SBT
ε −KW −Z −2S

]
< 0[

W ZT

Z γu2
0

]
≥ 0

(27)

The objective of the optimization criterion considered in step 3 of Algorithm 2 is to
maximize the region

E (W,γ) =

{[
x
z

]
∈ IR4;

[
x
z

]T

W−1
[

x
z

]
≤ γ

−1

}
(28)

which is a region of invariance and asymptotic stability for the closed-loop system.

Remark 2. The global condition does not depend on any bound u0 and formally
allows that non-symmetric bounds may be applied in practice. It also means that
any initial condition may be applied, and, typically, formally guarantees that the
controller may be applied from the patient awake state. On the other hand, the lo-
cal condition is directly related to the bound u0 = ūe, which means that, formally,
0 ≤ uan ≤ 2ūe. Moreover, only initial states belonging to the set E (W,γ) should be
considered.

Remark 3. One could also be interested in guaranteeing that, once the BIS enters the
interval [40,60], it remains inside this interval. Such a constraint could be added in
the problems (26) and (27) through the additional condition:

2 http ://homepages.laas.fr/queinnec/satawtool. html
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EWE ′ ≤ γz2
2M (29)

with E =
[

0 0 0 1
]

and z2M = max(z2min,z2max) corresponding to the bounds on
the effect site concentration−z2min ≤ z2 ≤ z2max issued from the change of variables
around the equilibrium point. However, this would result in drastically reducing the
size of the region of invariance and asymptotic stability for the closed-loop system
and would prevent to consider the patient awake state as initial state.

4 Simulations

To illustrate the approach let us consider a patient with the following characteristics:
woman, 49 years old, 68 kg and 172 cm. It corresponds to the system matrices
defined with:

[
A11 A12
Ao

21 Ao
22

]
=


−0.068 0

0 −0.004
0.138 0
0.077 0

0.068 0.003
0 0

−0.389 0
0.042 −0.456

 , [B1
Bo

2

]
=


0
0
1
0


For a target BIS of 50, the equilibrium point and associated input are given by

x̄e =
[

69.5776 809.2000
]
, z̄e =

[
36.7608 3.4000

]
, ūe = 6.7519

and the open-loop spectrum of system (1) is equal to

λbo = {−0.002, −0.043, −0.415, −0.456}

First, Algorithm 1 allows to provide solution to the first objective of Problem 1.
Considering various pole-placement constraints, the problem is feasible and one
obtains:

K1 : µ f = 1.2 K f =
[
−3.3124 −73.3247

]
λb f = {−0.003, −0.067, −2.079±0.672i}

K2 : µ f = 1.3 K f =
[
−3.9172 −102.4763

]
λb f = {−0.003, −0.067, −2.382±0.780i}

K3 : µ f = 1.5 K f =
[
−3.6796 −118.7038

]
λb f = {−0.003, −0.067, −2.263±1.317i}

K4 : µ f = 1.7 K f =
[
−4.3694 −167.6553

]
λb f = {−0.003, −0.067, −2.608±1.560i}

where λb f denotes the closed-loop spectrum. Then Algorithm 2 is used to check if
the closed-loop saturated system is globally asymptotically stable or, if not, if the
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system may be initialized from the patient awake state. It results that the saturated
closed-loop system is GAS with controller K1, but only LAS with controllers K2,
K3 and K4. With the controller K2, −xane belongs to the associated set E (W,γ) and
the controller may be safely applied with the patient initially awake. On the other
hand, with the controllers K3 and K4, −x̄e belongs to the associated set E (W,γ) but
only a percentage of −z̄e belongs to the set (40% with K3, and 7% with K4).

Numerical simulations are plotted in Figure 4. In Figure 4(a), one can see the
evolution of BIS from the patient awake state to the reference 50, in open-loop
(green) and in closed-loop with controllers K2 (blue), K3 (red) and K4 (black). The
overshoot with controller K4 in not desirable as the BIS goes temporarily below the
bound 40. Figure 4(b) presents the associated input.
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Fig. 1 Time simulation of the open-loop and saturated closed-loop systems with controllers K2,
K3 and K4

5 Conclusion

Taking benefit from the singularly perturbed systems framework, the fast and slow
dynamics present in the compartmental system have been separated. With the aim at
accelerating the fast dynamics, the design of a structured state feedback controller
has been first proposed. Second, some relaxation schemes associated to convex op-
timization problems allowed to guarantee the satisfaction of the constraints.

This work lets some questions open. In particular, one would be interested with
more complete conditions not only to deal with the fast dynamics but also to guaran-
tee that the constraints are satisfied and to initialize the system to the patient awake
conditions, in order to mathematically validate the medical strategy from induction
to maintenance. This will be the subject of future works.
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