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Abstract

We analyse the performance of an incentive scheme for two-hop DTNs in which a
backlogged source proposes a �xed reward to the relays to deliver a message. Only
one message at a time is proposed by the source. For a given message, only the �rst
relay to deliver it gets the reward corresponding to this message thereby inducing a
competition between the relays. The relays seek to maximize the expected reward for
each message whereas the objective of the source is to satisfy a given constraint on
the probability of message delivery. We show that the optimal policy of a relay is of
threshold type: it accepts a message until a �rst threshold and then keeps the message
until it either meets the destination or reaches the second threshold. Formulas for
computing the thresholds as well as probability of message delivery are derived for a
backlogged source.

1 Introduction

The technology of Delay-Tolerant Networks (DTN) has been designed to support commu-
nications in environments where end-to-end paths between a source and a destination may
not be available at all time. This technology is in particular used to enable the communica-
tion between mobile nodes scattered in outermost and sparsely populated regions. In these
challenging environments, when a source node wants to transmit a message to a destination
node, it can only rarely transmit directly its message to that destination, and therefore a
di�erent approach from the one used in traditional communication networks has to be used.
The approach used in DTN is based on the so-called store-carry-and-forward paradigm. In
this approach, the source node transmits its message to each and every mobile node that it
meets. The latter nodes play the role of relays. They store the message and carry it, in the
hope that they will eventually reach the destination and be able to deliver the message. A
source can also play the role of a relay and vice versa.

Due to random node mobility and uncertainty in connectivity, DTN routing schemes
usually replicate many copies of the message . In particular, Epidemic routing is �ooding-
based in nature, as relays continuously replicate and transmit messages to newly discovered
contacts that do not already possess a copy of the message [VB00]. The advantage is
that it can be guaranteed with high probability that some copy will reach the destination,
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and with a minimum delivery delay; but the downside is that it �oods the network with
message copies, leading to a signi�cant energy consumption. Other routing schemes have
been proposed as well (see Chapter 2 of Ph.D. thesis [Che12] for a detailed description of the
di�erent schemes). For instance, in the two-hop routing scheme, which is known to provide
a good tradeo� between message delivery time and energy consumption [AHNA08], a relay
cannot forward the message to another relay, so it stores and carries the message until the
relay is in radio range of the destination.

The delivery of a message incurs a certain number of costs for a relay, in particular in
terms of energy � a scarce resource in mobile networks. It can therefore be expected that,
even though some nodes will cooperate out of altruism, many mobile nodes will behave
sel�shly, acting as "free riders" that pro�t from the resources of others for transmitting
their own messages without o�ering their own resources in exchange. Clearly, if there are
too many sel�sh mobiles nodes, the network collapses and it is no more possible to com-
municate between nodes. It is therefore crucial to design incentive mechanisms to persuade
mobile nodes to serve as relays.

Contributions: In the present work, we analyze the incentive mechanism for message
delivery in two-hop DTNs assuming a backlogged source (a source with in�nite number of
messages to send) and a �xed reward (may depend upon the message). When the source
wants to send a message, it proposes a �xed reward to each relay it meets. The reward may
vary from message to message but for a given message, the same reward is proposed to each
relay. The �rst relay to deliver gets the reward. The relay can decide to accept or to reject
the message depending on the time at which it meets the source. The cost of delivering
the message for a relay consists of a linear term which depends upon the duration the relay
carries this message as well as constant terms for receiving and transmitting the message.

One of the main questions in incentive mechanisms is to determine the value of reward
that an agent should propose. The main aim of this paper is to give the precise relationship
between the performance measures and the reward when multiple relays are competing for
message delivery. This, in turn, will help the source providing an adequate reward in order
to achieve a target delivery probability. Towards this end:

• We model the strategic message delivery game described above as a Bayesian game.
The meeting time of a relay with the source is known to this relay only and can be seen
as the private information of this relay. The other relays have a belief distribution on
this time but do not know its exact value. Such games with asymmetric information
and beliefs on the unknown information are modelled by Bayesian games.

• For the Bayesian game described above, we show that any pure Bayesian Nash equi-
libria (pure BNE) policy of a relay is of threshold type: a relay accepts a message
until a �rst threshold and then keeps it until it either meets the destination or reaches
the second threshold. Once a message is no longer accepted by the relays, the source
starts giving out the following message. The thresholds of a message depend upon its
index and the reward proposed.

• A pure BNE may not be unique. It could be symmetric, that is, each relay has the
same two thresholds (depends upon the message) for a given message, or asymmetric.
We give examples of scenarios with multiple pure BNEs. However, we shall show that
any symmetric NE is unique.
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θ0 γ1

θi: first instant message i is proposed,
and last instant message i− 1 is proposed

γi: last instant message i can exist in the network

θ1 γ2θ2 γ3θ3 γk−1θk−1 γkθk γk+1 Time

Figure 1: Message injection policy of the source at the symmetric Bayesian Nash equilibrium.

• For pure symmetric BNE, for each message, formulas for the thresholds as well as
for performance measures such as the probability of delivery and expected delay are
derived as a function of the reward proposed for this message. This analysis will be
called transient analysis, that is, for message k the quantities will depend upon k.

Figure 1 illustrates how, at the symmetric BNE, messages will be injected by the source
into the network. At time θ0, the source will start proposing message 1, which the relays
will accept if they meet the source after θ0 and before θ1. At θ1, the source will stop propos-
ing message 1 because it knows that none of the relays will accept it, and start proposing
message 2. A relay which accepted message 1 will keep it until γ1 or until it meets the
destination, whichever occurs earlier, after which it will drop this message.

Related work: There has been a large body of literature on incentive mechanisms for
DTNs. These mechanisms can be broadly classi�ed into three categories: reputation- based
schemes [MGLB00, ZXL+11], barter-based schemes [BDFV07] and credit-based schemes [ZLL+09,
CC10, ZCY03, SBEP17].

Reputation-based schemes, such as SORI [HWK04], MobiGame [WCZ11], CONFIDANT [BB02]
and RELICS [UGA10], are based on a simple principle: a node's message is forwarded only
if it has forwarded messages originated from others. This however requires each node to
monitor the tra�c information of all encountered nodes and keep track of their reputa-
tion values. In addition, these reputation values should be updated and propagated to all
other nodes e�ciently and e�ectively, which is clearly impractical due to the intermittent
connectivity between nodes.

Barter-based incentive mechanisms have also been considered to enforce fair cooperation
of all nodes. For example, the authors of [SSQZ08] propose an incentive-aware routing
protocol which is based on the Tit-for-Tat (TFT) strategy, in which each node forwards
as much tra�c for an encountered node as the latter forwards for it. In [BDFV07] and
[BDFV10], Buttyan et al. propose a mechanism which is based on the principle of barter: a
node relays the message of a neighbor if the latter relays a message of the former in return.
One of the issues with this scheme is that a message might be not delivered to its destination
if the destination has no message to forward in return.

Finally, in credit-based schemes, the credits earned by nodes from forwarding the mes-
sages of other nodes can be used to pay for the delivery of their own ones. As compared
to reputation-based schemes, these schemes do not require global information sharing, but
they assume the existence of a Trusted Third Party to manage the rewarding procedure.
Credit-based incentive schemes are often designed using concepts from Game Theory, such as
Vickrey-Clarke-Groves (VCG) auctions [ZLL+05, LWX+08] or Minority Games [CSEA+13].
Other examples of credit-based schemes are Mobicent [CC10], SMART [ZLL+09], PIS [MS10],
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INPAC [CZ10] and FRAME [LW09], among others.
For most of these schemes, it has been di�cult to obtain performance measures such as

probability of message delivery and mean time to deliver a message with the exception of
[Alt09, SBEP17].

In [Alt09], a simple reward-based mechanism was proposed in which the �rst relay to
deliver gets the reward. The author provided the expression of the success delivery proba-
bility of a packet within a �xed time τ with the assumption that a relay i will participate
in delivering the packet until a certain time. It was shown that the equilibrium policy is of
threshold type: relays participate until a certain time after which they are deactivated. All
the computations and results are for a single message. Our setting is di�erent from [Alt09]
in the following ways. In that work, the relays decided how long they participate in the
network and during this time they accepted the message with certain probability and did
not drop it. In our work, the relays can decide how long they accept they message and then
how long they keep it. This gives more freedom to the relays to make their choice. Our cost
structure is also di�erent from that in [Alt09]. The linear term in our work depends only
upon the duration the relay stores a message whereas in [Alt09] this term depends upon
the time the relay is participating. These two are di�erent because in the latter case, relays
accrue a cost even if they do not have a message. Furthermore, there is no cost of receiving
the message from the source in [Alt09]. The inclusion of this cost leads to a policy with
two thresholds in our case as opposed to a single threshold in [Alt09]. We also show how
the performance measures depend upon the reward o�ered by the source thereby giving the
source an explicit way to compute the reward so as to achieve its targeted performance.
Finally, we consider a backlogged source as opposed to a single message in [Alt09]. This
induces dependence between the policies of messages which was not there in that work.

In [SBEP17], the source o�ers rewards that depend upon the meeting time with the
condition that only the �rst one to deliver the message receives its reward. Since the
mobility model is random, a relay that meets the source later has lower probability of being
the �rst to deliver the message and hence receiving the reward. The reward proposed to
a relay is inversely proportional to its success probability, and is such that a relay always
accepts the message. The analysis relies heavily on the assumption that the relays do not
discard a message once they accept it from the source. This assumption may be realistic
in participative networks in which nodes are altruistic. On the other hand, when nodes are
sel�sh, as is the case in the present paper, they could decide to throw away a message once
it is not longer pro�table to keep it (because the probability of success is too small) and
reduce their costs. This possibility to reject or drop the messages is the main di�erence of
our work with [SBEP17], in which no strategic interaction between relays was considered.

A model similar to the one studied in this work was �rst considered in [SBP18] (which is
based on Chapter 5 of [Ser15]) in which the competition was modelled as a stochastic game.
That model was in discrete-time, restricted to two relays and a single message, and had par-
tial results on the optimal policy. The model studied in the present work is in continuous
time, for an arbitrary number of relays, and a backlogged (with possibly in�nite number of
messages) source which sequentially proposes messages. The passage from a discrete-time to
a continuous-time model introduces some technical di�culties such as decisions that can be
made at arbitrary time instants instead of just at Poisson ones. Thus, our problem cannot
be modelled directly as a continuous-time Markov Decision Processes (MDP) which would
be the natural analog of the discrete-time MDP in [SBP18]. To circumvent this problem, we
use the framework of Bayesian games which imposes certain restriction on the actions but at
the same time removes the constraint on decisions at Poisson instants. In the appendix, we
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give nonetheless a continuous-time MDP formulation and a uniformization based informal
argument that shows that same results can also be expected using this alternative method.
Preliminary results of this work without the Bayesian game formulation but with the infor-
mal MDP one have appeared in [NBP16]. The results in that paper were limited to a game
with just one message for the source. Here, we generalize the results to a backlogged source.
Also, we give conditions for the existence and uniqueness of a symmetric equilibrium, which
were not given in that paper.

Organization: The rest of this paper is organised as follows. Section 2 is devoted to
model description. In Section 3, the Bayesian game is formally de�ned and the structure
of the best response policy of a relay is shown to be of threshold type. Section 4 gives
the conditions for the existence and uniqueness of the symmetric BNE. In Section 5, we
present a method for recursively computing the thresholds of the symmetric equilibrium as
well as the probabilities of message delivery for a backlogged source. Section 6 is devoted
to simulation results. Some conclusions are drawn in Section 7.

2 Model Description

Consider a network of one source, one destination, and N relays. The source and the
destination are assumed to be �xed, whereas the relays move according to a given mobility
model. It is assumed that the mobility pattern of any two relays are independent, and
that the inter-contact times between relay i and the source (resp. the destination) are
independent and identically distributed according to an exponential distribution of rate λi
(resp. µi). The inter-contact processes of di�erent relays with the source as well as with
the destination are assumed to be statistically identical. We note that the assumption
of exponentially distributed inter-contact times is satis�ed under the Random Waypoint
Mobility model [SM04a, GNK04, SM04b, CE07] and has been observed to hold in real
motion traces [ZFX+10].

When it meets the source, a relay is o�ered a �xed reward, Rk, to deliver message k. The
reward is �xed in the sense that, for a given message, each relay is o�ered the same reward
irrespective of their meeting times. The relay has a choice to either accept the message or
not. There is no cost associated with rejecting the message. If it accepts the message, the
relay can decide to drop the message at any time in the future at no additional cost. If
during this time the relay meets the destination, then it can transmit the message to the
destination and claim the reward only if it is the �rst one to do so for this message.

The various costs incurred for accepting and storing a message are assumed to be as
follows: (i) Cr is the cost of receiving the message from the source; (ii) Cd is the cost of
transmitting the message to the destination; and (iii) Cs is the cost per unit time for storing
the message. These costs are all the same for all relays.

We illustrate the cost structure with an example. Suppose that relay i meets the source
at time instant a, accepts the message k and decides to keep it until time b, then the expected
total cost of keeping the message in the interval (a, b) will be

Cr+

∫ b

a

µie
−µi(τ−a)(Cs(x− a) + (Cd −Rk)pik(τ))dτ

+ e−µi(b−a)Cs(b− a) =: Cr +Gik(a, b), (1)
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where pik(τ) is the probability that the relay is the �rst one to deliver this message when it
meets the destination at time τ . A one-time cost of Cr is incurred for accepting the message
at a. From then on, a storage cost of Cs is incurred per unit of time either until b (that is,
for a duration b − a) or until it meets the destination. If the relay meets the destination
at time t < b and it is the �rst one to meet the destination with this message then it will
transmit the message to the destination and get the reward thereby incurring a net cost of
Cs(t − a) + (Cd − Rk)pik(τ). So, the second term is the expected cost incurred if the relay
meets the destination before b. Finally, the last term is the storage cost incurred if the relay
does not meet the destination before b. The sum of the last two terms will be denoted by
Gk(a, b) which is the expected cost of keeping the message in the interval (a, b). Note that
this cost depends on the strategies of the other relays through the success probability pik(τ).

The analysis in the paper will be done for Rk = R,∀k. This is done to make the notation
less cumbersome. The results carry over to the case when the reward depends upon the index
of the message. We shall sometimes use the notation R = R − Cd. In addition, we shall
assume that R ≥ Rmin := max(Rimin), where Rimin = Cr + Cs

µi
+ Cd. Note that Rimin is

the average cost of relay i if it were to be the only one to be competing for the message.
It is therefore natural that the reward should be larger than this average cost for any relay
to participate in forwarding. Then Rmin is the minimum required cost in order to have all
relays participate in the game.

It shall be assumed that a relay can store only one message at a time. Further, if a
relay already has a message in its bu�er, then it does not seek a new (or the same) message
until it either meets the destination or drops the message. A message can be dropped only
because it is no longer pro�table to store this message due to a small probability of success
but not because the relay meets the source. Once it has delivered or dropped the message,
the relay can seek a new one from the source.

The source has an unlimited number of messages to send to the destination, each of
which it proposes sequentially. That is, to each message the source associates an interval
of time during which it proposes this message to any relay it meets. We shall denote this
interval for message k by [θk−1, θk), where θk−1 is the last time message k−1 was proposed.

For a given relay (called tagged relay) when it meets the source, we shall assume that the
decision to accept and the duration can depend upon its history of contacts and previous
decisions but not upon the history of the other relays. While the exact history of the other
relays is not available to the tagged relay, we shall assume that it can compute a belief (or a
probability distribution) on when the other relays will meet the source for this message. This
belief will be computed based upon the statistics of the mobility model, and will be denoted
by Φ̂ik(t). An auxiliary quantity is the probability that relay i will enter into competition for
message k on or before time t, which will be denoted by Φik(t). By entering into competition
on or before time t, we mean that that there was time instant before t at which relay i did
not have any message with index smaller than k. We shall denote by φik(t) the probability

density function corresponding to Φik(t). Note that Φ̂ik(t) is the convolution of Φik(t) and an
exponential distribution of rate λi.

Let us take an example to illustrate the notion of competing for a message. Suppose
there are two relays. Relay 1 meets the source for the �rst time at some instant between θ1
and θ2 when the source is proposing message 2. If relay 2 had the message 1 at time θ1 then
we say that it is not in competition for message 2 until it has this message because even if it
meets the source it cannot accept message 2. Now suppose that relay 2 meets the destination
at some time t2 ∈ [θ1, θ2). At t2, we say that relay 2 enters into competition with relay 1
for message 2. Of course, relay 1 does not have exact knowledge of the contact history of
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relay 2 but, using the statistics of the mobility model, it can compute the probability that
relay 2 entered into competition at time t ∈ [θ1, θ2). This probability distribution will be
denoted by Φ2

2(t).
A further assumption we shall make is that the relays do not know whether there will

be any more messages in the future1. Hence, they treat each message as though it were
the last one. The policy for a message thus does not depend upon the future messages but
could depend upon the policy for the previous messages.

3 A Bayesian game approach

In this section, we shall model the strategic game between the relays as a Bayesian game
[FT91]. These games speci�cally treat models in which each player has some private infor-
mation (also called its type) and a belief over the private information of the other players.
In our game, each relay knows the time instant it meets the source but does not know the
meeting times of the other relays with the source. It however has a belief on the meeting
times of the other relays which is captured by the belief function Φ̂ik for message k and
relay i. This asymmetry in information between relays means that Bayesian games are an
appropriate model for �nding the equilibrium strategies of the relays.

A Bayesian game is de�ned by the type space, the strategy space, the common belief,
and the utility function for the relays. For message k, the set of types of relay i, Ti, is
its meeting time with the source relative to the generation instant of this message2. Thus,
Ti = [0,∞). The strategy, Si, is assumed to be [0,∞), where the strategy s = 0 implies
that the message is refused whereas s > 0 implies the message is accepted and kept until
time s or until it meets the destination (whichever occurs �rst). We shall assume that the
type of player i is a random variable with distribution Φ̂i and is independent of the types
of the other relays. This de�nes the joint belief structure for the types of the relays.

Remark The structure of the Bayesian game is such that the dependence on message k is
only through the belief distributions Φik. In the following, we shall be present a solution
of the game by assuming an arbitrary belief structure. Later on, we shall explain how to
compute the belief for message k recursively and then compute the solution for this message
using its belief. Therefore, for the sake of clarity, we shall drop the dependence on k.

We now de�ne the remaining quantity which is the utility function of the relay i, ui. It is
a mapping from

∏
i Si×Ti → R, that is, for every possible actions and types of the relays, it

de�nes the reward (or the cost) of relay i. Let ρi(τ ; si, s−i, ti, t−i) be the probability of relay
i winning the reward when it meets the destination at τ given si (resp. ti), the strategy
(resp. type) of relay i, and s−i (resp. (t−i)), the strategy (resp. type) of the other relays.
Then, the utility of relay i can be de�ned by:

ui(si, s−i; ti, t−i) =

{
0 if si = 0;

Fi(si, s−i; ti, t−i) if si > 0.
(2)

where

Fi(si, s−i; ti, t−i) = Cr +

∫ ti+si

ti

µie
−µi(τ−ti) (Cs(τ − ti) + R̄ρi(τ ; si, s−i, ti, t−i)

)
dτ + e−µisiCssi,

1The source is assumed to be backlogged but this information is not known to the relays.
2This set does not depend on the message. Hence, we drop the dependence on k.
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is the cost of accepting and keeping the message for duration si given ti, s−i, t−i. It is the
cost of action si > 0 conditioned on ti, s−i, t−i.

With this we have all the inputs (types, strategies,beliefs and utilities) necessary to
de�ne the Bayesian game and compute its equilibrium. We note that our game is one with
a continuum of types and of actions.

3.1 Pure Bayesian Nash equilibrium

A strategy pro�le for relay i is the function πi : Ti → Si that determines the strategy for
each possible type of player i. Let πi be a strategy pro�le for relay i. Then, the strategy
pro�le vector (π∗i , π

∗
−i) is a pure strategy BNE if [Mei03]

π∗i (ti) = arg min
si

∫
ui(si, π

∗
−i(t−i)); ti, t−i)dΦ̂−i(t−i|ti), (3)

for all i. From the de�nition of ui and Fi, and noting that

pi(τ) =

∫
ρi(τ ; si, s−i, ti, t−i)dΦ̂−i(t−i|ti),

(3) can be rewritten as:
π∗i (ti) = arg min

si

ūi(si, π
∗
−i; ti), (4)

where

ūi(si, π−i; ti) =

{
0 if si = 0;

Cr +Gi(ti, ti + si) if si > 0.
(5)

The existence of an equilibrium for games with continuum of types and actions is not
known in general. In [Mei03], su�cient conditions requiring the continuity of the util-
ity functions are presented. These conditions are not satis�ed in our setting because of
a discontinuity at s = 0 which arises due to the �xed cost, Cr of accepting a message.
Nonetheless, we are able to obtain the existence of an equilibrium using some properties of
the utility functions.

First, we give the structure of the best-response policy of a given relay and for a �xed
strategy of the other relays. The structure of the best-response policy will then determine
the structure of the pure BNE.

Theorem 3.1. Given the strategies of the other relays, the best-response policy π∗i (t;π−i) of
relay i is a threshold-type policy: there exists a θi and γi > θi such that π∗i (t;π−i) = γi− t if
and only if t ≤ θi, and π∗i (t;π−i) = 0 if and only if t > θi. Moreover, (θi, γi) is the solution
of:

γi = sup{x : pi(x) >
Cs

µi(R− Cd)
}, (6)

θi = sup{x : Cr +Gi(x, γi) < 0}, (7)

where by convention the supremum of the empty set is 0.

Proof. See Appendix A.
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Theorem 3.1 says that, for a �xed policy of the other relays, there exists a θi such that
if the type of relay i is less than θi (i.e., if it meets the source before θi) then its optimal
strategy will be to accept the message and keep it until γi > t (unless it meets the destination
�rst). If it meets the source after θi then its optimal strategy will be to refuse the message.

Note that in Theorem 3.1, nothing precludes that γi = ∞, or even that θi = γi = ∞,
as shown in the following example. Consider the case where the strategy of the other relays
is to never accept the message. In that case, the success probability of relay i is pi(x) = 1
for all x ≥ 0, and it follows from the assumption R ≥ Rimin that γi = ∞. Moreover,
since in that case Gi(t,∞) = Cs

µi
− R < 0 for all t ≥ 0, we also have θi = ∞. Hence, the

best-response policy of player i is to always accept the message and to keep it forever. This
shows in particular that, under the assumption R ≥ Rimin, the vector of policies in which
all relays always reject the message cannot be an equilibrium of our game.

A direct consequence of Theorem 3.1 is the following structural result of any pure BNE.

Corolary 3.1. At a pure BNE, if any, all players use a threshold-type policy, that is, there
exist vectors θ and γ such that relay i uses a threshold-type strategy with parameters (θi, γi).

A pure BNE can be asymmetric or symmetric. An asymmetric equilibrium can be of
the form: relay 1 always accepts and keeps the message until it meets the destination and
relay 2 never accepts. For an example of this type of asymmetric equilibrium, assume that
λi = µi = 1 for all i. Under the given policy of relay 1, the probability of success of relay 2
at time t will be

p2(t) = e−t(1 + t). (8)

From the above equation and (6), it follows that γ2 will be �nite. Suppose that relay 2
meets the source at time 0. This is the most favorable scenario for relay 2. If it is not
pro�table to accept the message at time 0, then it will never be so later on. From (1), if
the relay meets the source at time 0, then its total cost to go if it accepts the message and
keeps it until time γ2 will be

Cr +G2(0, γ2) > Cr − R̄
γ2∫
0

(1 + t)e−2tdt > Cr − R̄
∞∫
0

(1 + t)e−2tdt = Cr −
3R̄

4

That is, if R̄ < 4
3Cr, then relay 2 will always have a positive cost of accepting and its best

response will be never to accept. Of course, if R̄ > Cr + Cs then relay 1 will always accept
if it knows that relay 2 will never accept because this reward is greater than the average
cost incurred by one relay. Thus, we have the claimed asymmetric equilibrium.

In the sequel, we let λi = λ, and µi = µ for all i. We shall study the existence and
uniqueness of only the symmetric BNE, that is, equilibria in which all relays use the same
thresholds θk and γk for message k. Using the fact that best-response policies are of threshold
type, we obtain an explicit expression of the success probability pik(t). Assuming that up to
message k − 1 only symmetric equilibria have been played, we use this simple expression of
the success probability in the following to establish the conditions under which there exists
a unique symmetric BNE.

9



4 Symmetric Bayesian Nash Equilibrium

Assume that all relays have played symmetric equilibria3 for messages 1, 2, . . . , k − 1, that
is, θij = θj and γ

i
j = γj for j = 1, 2, . . . , k − 1. A direct consequence of Corollary 3.1 is that

if all relays play their equilibrium strategies, the success probability pk(t) of a player has a
very simple structure. For y ≥ x ≥ 0, let

vx,y(s) = e−λ(x−s)+
λ

µ− λe
−µyeλs

(
e(µ−λ)x−e(µ−λ)s

)
, (9)

for s < x, and vx,y(s) = 1 otherwise. Note that if x = min(θk, t) and y = min(γk, t), vx,y(s)
represents the probability that relay j be not able to deliver the message k by time t given
that it comes into play at time s. Then, introducing

Vk(x, y) =

∫ ∞
θk−1

φk(s)vx,y(s)ds, (10)

= 1−
∫ x

θk−1

φk(s)(1− vx,y(s))ds, (11)

the quantity

fk(t) = Vk (min(θk, t),min(γk, t)) , (12)

represents the probability that a relay fails to deliver the message to the destination by
time t, either because it does not meet the source by time min(θk, t), or because it meets it
but does not meet the destination before min(γk, t). It then follows that the probability of
success of a given relay is

pk(t) = fN−1k (t) = Vk (min(θk, t),min(γk, t))
N−1

. (13)

Note that pk(t) is constant after γk, and that pk(t) = Vk(θk, t)
N−1 for all t ∈ [θk, γk]. As

a consequence, de�ning

ω =

(
Cs

µR

)1/(N−1)
, (14)

the second threshold γk is the greatest value of t such that Vk (θk, t) ≥ ω. For a given θ ≥ 0,
let

γ(θ) = sup{x : Vk(θ, x) ≥ ω}. (15)

Note that the function γ(θ) takes its values in [0,∞]. We establish in Lemma 4.1 that there
exist θmin and θmax such that γ(θ) =∞ for θ ≤ θmin, whereas γ(θ) takes a uniquely de�ned
�nite value for θ ∈ (θmin, θmax].

Lemma 4.1. Let θmin be the solution of

1 +

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s) − 1

)
ds = ω, (16)

3In the sequel, since we are treating the symmetric case, we shall not use superscripts to distinguish
relays or player. For example, we shall use pk(t) instead of pik(t) for the probability of success.
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and θmax be such that
Vk(θmax, θmax) = ω. (17)

Then, for θ �xed, the equation Vk(θ, γ) has a unique �nite solution γ ≥ θ if and only if
θ ∈ (θmin, θmax]. Moreover, γ(θ) is a strictly decreasing function of θ ∈ (θmin, θmax].

Proof. See Appendix B.1.

We use Lemma 4.1 to establish in Theorem 4.1 below the conditions under which there
exists a unique symmetric BNE.

Theorem 4.1. There exists a symmetric BNE with θ > 0 if and only if

R ≥ Cr +
Cs
µ
. (18)

Under this condition, the symmetric BNE is unique. Moreover, the parameters of the
equilibrium are �nite, i.e., θk > 0 and θk ≤ γk <∞ if and only if

1 + µ
Cr
Cs

<
(1 + b)N − 1

N b
(19)

where

b =
1

σω

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s) − e−µ(θmin−s)

)
ds, (20)

and σ = (µ− λ)/λ.

Proof. See Appendix B.2.

We remind the reader that Rmin = Cr+ Cs
µ +Cd is the minimum value that the reward R

should have for a single relay to attempt the delivery of a message. Theorem 4.1 shows that
for any value of R greater than this minimum value, the existence of a unique symmetric
equilibrium is guaranteed. Figure 2 illustrates the condition (19) for the �rst message
when N = 3, µ = 0.4, Cs = 0.5 and Cr = 4.0. In that case, the minimum value of R̄
is Cr + Cs

µ = 5.25. We note that for the �rst message we have e−λθmin = ω and thus

b = σ−1(1− ωσ).

Remark The condition (19) of Theorem 4.1 can be equivalently written as f(b) > 1+µ Cr
Cs
,

where

f(x) =
(1 + x)N − 1

Nx
.

Note that b > 0 for all σ ∈ [−1,∞) and all ω ∈ (0, 1). Using the binomial formula, it is
easy to show that f(x) > 1 + g(x) for all x > 0, where g(x) := N−1

2 x
(
1 + N−2

3 x
)
. Hence, a

su�cient condition for θk and γk to be �nite is g(b) > µ Cr
Cs
. Since g(x) is strictly increasing

over [0,∞), this is equivalent to b > y, where

y =
3

N − 2

(√
1

4
+

2

3
µ
Cr
Cs

N − 2

N − 1
− 1

2

)
,

is the unique solution of g(x) = µ Cr
Cs
. The latter su�cient condition can be written as

R >
Cs
µ

(
1

σy

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s)−e−µ(θmin−s)

)
ds

)− 1
N−1

.
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Figure 2: Di�erent possible types of symmetric BNE for 3 relays.

5 Transient analysis of the symmetric BNE

In the rest of the paper, we shall focus only on the symmetric equilibrium. First, we give
an algorithm to compute the thresholds θk and γk for message k which will then be used to
derive the probability of message delivery and expected message delay from these thresholds.

5.1 Recursive computation of the success probability

The thresholds θk and γk of a symmetric equilibrium are obtained from (6) and (7), in which
pik(t) = Vk(θk, t)

N−1 for all t ∈ [θk, γk] and all relays i. The computation of the function

Vk(x, y) however requires the knowledge of the probability density function φk(t),
∫ b
a
φk(t)dt

representing the probability that a given relay comes into play for the delivery of the kth

message between time instants a and b. In this section, we shall show how this probability
density function can be recursively computed for symmetric equilibria .

To this end, let us de�ne Ik(x, t) as the probability that a relay that comes into play at
time x will accept the kth message and will not be able to deliver it to the destination by
time t ∈ [θk, γk]. Therefore,

Ik(x, t) =

∫ θk

x

λe−λ(s−x)e−µ(t−s)ds

=
e−µt

µ− λλe
λx
(
e(µ−λ)θk − e(µ−λ)x

)
(21)

Thus, 1− Ik(x, t) is the probability that a relay will not have the kth message at time t,
either because it has not met the source, or because it has already delivered the message.
Similarly, Ik(x, t1) − Ik(x, t2) represents the probability that a relay that comes into play
at time x will meet the source before θk and deliver the message to the destination in the

time interval (t1, t2]. Finally, note also that dIk(x,t)
dt = −µIk(x, t). We use the de�nition of
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Figure 3: Evolution of Φk(t) and pk(t) with k.

Ik(x, t) as well as its above mentioned properties to prove Lemma 5.1 below, which gives a
recursion to numerically compute the density φk(t).

Lemma 5.1. For t ∈ [θk, γk],

φk+1(t) = h1(θk)δθk(t) +φk(t) + h2(θk)
{
µe−µt + e−µγkδγk(t)

}
(22)

where

h1(θk) =

∫ θk

θk−1

φk(x) {1− Ik(x, θk)} dx,

h2(θk) = eµθk
∫ θk

θk−1

φk(x)Ik(x, θk)dx.

Proof. See Appendix B.3.

Lemma 5.1 can be used for the recursive numerical computation of the density φk(t),

from which we can derive the probability of success pk(t) = (Vk (min(θk, t),min(γk, t)))
N−1

.
Figures 3a and 3b show the CDF Φk(t) and the success probability pk(t) for k ∈ {1, 2, 10},
respectively, in the case N = 3 relays, using the following parameters: λ = 1.25, µ = 0.4,
Cs = 0.5, Cd = Cr = 4.0 and R = 30.

The thresholds θk and γk can then be obtained by solving (6)-(7) using any root �nding
method, such as the bisection method, as illustrated in Algorithm 1.

5.2 Performance metrics

From the point of view of the source, the main performance metrics are the probability that
a message is successfully delivered and, provided that it reaches its destination, the expected
time to deliver it. Our �rst result in this direction is on the probability of message delivery.
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ALGORITHM 1: Computation of successive symmetric BNE

Require: φ1(t) = δ0(t), θ0 = 0
1: for k = 1, 2, . . . do
2: Compute θmin and θmax as the solutions of (16) and (17)
3: a = 0, b = θmax
4: repeat

5: c = (a+ b)/2
6: if c > θmin then
7: Compute γ(c) as the solution of Vk(c, γ) = ω
8: else

9: γ(c) =∞
10: end if

11: Gk =
∫ γ(c)
c

µe−µ(t−c)
(
Cs
µ
−RVk(c, t)N−1

)
dt

12: if Gk < −Cr then
13: a = c
14: else

15: b = c
16: end if

17: until |Gk + Cr| < ε.
18: θk = c, γk = γ(c)
19: Compute φk+1(t) with (22)
20: end for

Proposition 5.1. Assume that all relays play a symmetric equilibrium strategy with param-
eters θk and γk for the delivery of message k. Let ζk be the probability that this message is
successfully delivered, that is, the probability that at least one copy reaches the destination
by time γk. Then

ζk = 1−
(
Cs

µR

) N
N−1

, (23)

if γk <∞, whereas

ζk = 1−
(

1−
∫ θk

θk−1

φk(s)
(

1− e−λ(θk−s)
)
ds

)N
, (24)

otherwise.

Proof. From (12), the probability that all relays fail to deliver the message to the destination
by time γk is Vk(θk, γk)N , from which we deduce that ζk = 1 − Vk(θk, γk)N . If γk < ∞, it
follows from (13) and (6) that pik(γk) = Vk(θk, γk)N−1 = Cs/(µR), from which we readily
obtain (23). If on the contrary γk =∞, then (24) follows from (11) and

lim
y→∞

Vk(θk, y) = 1−
∫ θk

θk−1

φk(s)

(
1− lim

y→∞
vθk,y(s)

)
ds,

= 1−
∫ θk

θk−1

φk(s)
(

1− e−λ(θk−s)
)
ds.
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We emphasize that Proposition 5.1 can be used by the source to compute the minimum
reward R allowing to achieve a target delivery probability. If in addition the source wishes
the message to be delivered within a certain amount of time, it can use Proposition 5.2
below.

Proposition 5.2. Assume that all relays play a symmetric equilibrium strategy with param-
eters θk and γk for the delivery of message k, and let Dk be the expected delivery time of this
message. Provided that at least one copy reaches the destination by time γk, the expected
delivery time is

E [Dk|Dk ≤ γk] =
1

ζk

∫ γk

θk−1

(
Vk(min (t, θ̂k), t)N−Vk(θk, γk)N

)
dt (25)

Proof. From (12), we have P (Dk > t) = Vk(min(θk, t), t)
N for all t ≤ γk. It yields

P (Dk > t|Dk ≤ γk ) =
1

ζk

(
Vk(min(θk, t), t)

N−Vk(θk, γk)N
)
,

and the result directly follows from

E [Dk|Dk ≤ γk] =

∫ γk

θk−1

P (Dk > t|Dk ≤ γk ) dt.

We do some simulations with di�erent values of R to see how expected delay and
probability of success change with R. We take the following values for the parameters:
Cr = 10, Cs = 0.4, Cd = 4, λ = 0.8, µ = 0.4, N = 15. Figure 4b illustrates the convergence
of the expected delay as a function of R ∈ [3 × Rmin, 8 × Rmin] and k (messages 15 and
29 have almost the same expected delay). This �gure also shows that for k large the mes-
sages have a greater expected delay than the �rst messages, whereas Figure 4a shows that
the probability of success increases with R and approaches 1 as R → ∞. We do another
simulation with Cr = 2, Cs = 0.4, Cd = 2, λ = 0.2, µ = 0.1, N = 10. Figure 5a compares
the values of the probability of success obtained with Proposition 5.1 against the values
obtained through simulations, for R = 10, which yields γ = ∞, and for R = 15.33 which
gives a �nite γ. Note from (23) that for R = 5.4×Rmin the success probability is the same
for all messages, whereas for R = 3×Rmin it decreases with k. Figure 5b shows more clearly
the convergence of the expected delay with k in the case R = 3×Rmin and R = 5.4×Rmin.

6 Simulation results

In this section, we assess the applicability of our results in scenarios where some of our as-
sumptions are violated using event-driven simulations. We �rst present the results obtained
with synthetic traces in Section 6.1, beforevalidating our approach against real mobility
traces in Section 6.2.
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(a) Delivery probability (b) Expected delivery time

Figure 4: Comparison of the theoretical performance metrics of 2nd, 15th and 29th messages
against those obtained through simulations.

(a) Delivery probability (b) Expected delivery time

Figure 5: Comparison of the theoretical performance metrics against those obtained through
simulations for R = 10 (γ =∞) and for R = 15.33 (γ <∞).
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6.1 Synthetic traces

In this section, we investigate the e�ect of non-exponential inter-contact time distributions
on the accuracy of our results. For the inter-contact times, we use a truncated power-law
distribution whose probability density function is

f(x) =
α+ 1

xα+1
max − xα+1

min

xα,

for x in the interval [xmin, xmax]. For the source node, we use xmin = 15, xmax = 100 and
α = −3.5, whereas for the destination we use xmin = 10, xmax = 500 and α = −3.1. The
corresponding probability densities are shown in Fig. 6.
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Figure 6: Probability density functions of the inter-contact times with the source and the
destination.

Since inter-contact times are not exponentially distributed, we choose 1
λ (resp. 1

µ ) as the

mean residual inter-contact time with the source (resp. destination), which yields 1
λ = 14.63

minutes and 1
µ = 18.05 minutes. The values of the thresholds θk and γk are then computed

for k = 1, . . . , 12, using the above values of λ and µ and for 4 relays. It was assumed that
Cs = 0.01 and that Cr = Cd = 10. The thresholds were computed for two di�erent values
of the reward R, R = 1.2×Rmin = 24.22 and R = 12×Rmin = 242.16.

The delivery ratios of the �rst twelve messages obtained through event-driven simulations
(with 100, 000 sample paths) are compared to their theoretical values in Fig. 7a. For
R = 12×Rmin, simulation results are in perfect agreement with theoretical values, but for
R = 2 × Rmin the discrepancy is larger and can be as high as 25% for the �rst message.
The error is lower for subsequent messages. The results obtained for the expected delivery
time are shown in Fig 7b and we observe similar relative errors.

6.2 Validation against real mobility traces

To assess the applicability of our results against a real-world scenario, in which mobile nodes
are not perfectly homogeneous and inter-contact times are not necessarily exponentially
distributed, we have used GPS-based mobility traces collected by the cabspotting project4

4http://cabspotting.org
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Figure 7: (a) Delivery ratio and (b) expected delivery time of the �rst twelve messages for
inter-contact times following a power-law distribution.

in May 2008 in the San Francisco Bay Area, USA [PSDG09]. In this 30-day experiment, 536
taxi cabs were out�tted with a GPS tracking device and were sending regularly a location-
update (timestamp, identi�er, geo-coordinates) to a central receiving station.

Figure 8: The source node is located at position 37◦45′0.72′′N , 122◦23′45.6′′W , whereas the
destination node is located 4.5 Km away at position 37◦47′18.24′′N , 122◦24′25.2′W ′. Some
positions occupied by cab 47 during the experiment are also shown (1, 000 out of the 25, 000
points recorded).

We �rst chose a source node and a destination node in San Francisco, which are located
as shown in Fig. 8. Out of the 218 taxi cabs which are frequently enough in radio range of
the source and destination nodes, we identi�ed 4 taxi cabs which have more or less similar
mean inter-contact times with the source, as well as with the destination. It was assumed
that the transmission range of a taxi is 250m. Fig. 8 shows some of the points visited by
one of these taxi cabs, taxi 47.

The total number of contacts of one of the selected taxi cab with the source (resp. des-
tination) node is 93± 3 (resp. 143± 4). In Fig. 9, we show the probability distribution of
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Cab 47 106 117 217
1/λi 359.1 345.3 362.6 347.0
1/µi 233.8 234.6 236.5 236.1

Table 1: Mean inter-contact times in minutes with the source and with the destination for
the selected taxi cabs.

inter-contact times of taxis 47 and 217 with the destination. It can be seen that these prob-
ability distributions are slightly di�erent from each other and that they do not correspond
to an exponential distribution. Fig. 10 provides a similar information, but for inter-contact
times with the source, and for taxi cabs 106 and 117. The mean inter- contact times between
the source or the destination and the taxis are shown in Table 1.
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Figure 9: Probability that the inter-contact time with the destination be greater than k×30
minutes and strictly lower than (k + 1)× 30 minutes as a function of k, for (a) taxi cab 47
and (b) taxi cab 217.

The aggregate mean inter-contact time with the source (resp. destination) is 353.5 min-
utes (resp. 235.3 minutes), whereas it second order moment is 260657 (resp. 151995). Since
inter-contact times with the source (resp. destination) are not exponentially distributed, we
choose 1

λ (resp. 1
µ ) as the mean residual inter-contact time with the source (resp. destina-

tion), that is,

1

λ
=

260657

2× 353.5
= 368.7 and

1

µ
=

151995

2× 235.3
= 323.0.

The values of the thresholds θk and γk were then computed for k = 1, . . . , 12, using
the above values of λ and µ and for 4 relays. It was assumed that Cs = 0.01 and that
Cr = Cd = 10. The thresholds were computed for two di�erent values of the reward R,
R = 2 × Rmin = 46.46 and R = 12 × Rmin = 278.76. The former value of R leads to an
in�nite value of γk for the �rst twelve messages, whereas all γk are �nite for the latter value
of R.

The simulations then consist of generating meeting times of taxi cabs with the source and
the destination, then each relay deciding whether to accept or not the message and when to
drop it depending on the time at which it meets the source and the destination, and then
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Figure 10: Probability that the inter-contact time with the source node be greater than
k × 30 minutes and strictly lower than (k + 1)× 30 minutes as a function of k, for (a) taxi
cab 106 and (b) taxi cab 117.

determining which relay wins the reward. Note that since there were not enough contact
times with the source and the destination, inter-contact times were randomly drawn from
the empirical distributions obtained from the mobility traces. The value of the delivery ratio
ζk and of the expected delivery time Dk were then averaged over 100, 000 sample paths. The
simulation was performed twice for each value of R: �rst using the empirical distributions
derived from the dataset, and second using exponential inter-contact distributions with
parameters λ and µ.

The results obtained for the delivery probabilities of the �rst twelve messages are shown
in Fig. 11a. For R = 12×Rmin, simulation results are in perfect agreement with theoretical
values. For R = 2 × Rmin, we notice that the discrepancy is larger, even though it is
always lower than 4.3%. Fig. 11b shows the results obtained for the expected delivery time.
Again, the results obtained for R = 12×Rmin are far more accurate than those obtained for
R = 2×Rmin. However, the maximum error on the expected delivery time is below 5.4 %,
which might be deemed reasonable, given that the contact processes of the relays with the
source and the destination are heterogeneous and do not follow an exponential distribution.

7 Conclusions and future work

We considered a �xed reward incentive mechanism for a two-hop DTN with a single-
destination pair and arbitrary number of competing relays. The source was assumed to
be backlogged and proposes messages in a sequential way to the relays it meets. it was
shown that the equilibrium policy of the relays for each message is threshold type. That is,
a relay accepts the kth message if and only if it meets the source before a given threshold,
and once it accepts the message, it keeps this message until a second threshold. A recursive
formula for the computation of these thresholds was presented for symmetric equilibria.

Our results were obtained under a number of crucial assumptions. One of our key
assumption is that of exponentially distributed inter-contact times. Although satis�ed under
the Random Waypoint Mobility model, this assumption is not always met in practice and
it would be natural to relax it. Although the Bayesian game approach is in principle not
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Figure 11: (a) Delivery ratio and (b) expected delivery time of the �rst twelve messages.

limited to exponential inter-contact time distributions, the analysis becomes then much more
complex, in particular for a backlogged source. This avenue is being currently explored.

Another important assumption for some of our results is that the relays have homo-
geneous contact processes with the source and with the destination. In practice, it often
happens that nodes are more or less heterogeneous, with diverse behaviours per each group
of nodes. While it was proven that even in a heterogeneous setting all relays use a threshold
strategy at a BNE, it can be expected that in this case all equilibria will be asymmetric. As
discussed in Section 3, the characterisation of asymmetric equilibria is much more involved
than that of symmetric ones.

With memory space becoming cheap for modern devices, another natural generalisation
would be to assume that a relay can store more than one message. This extension however
gives rise to non-trivial questions. In particular, it is not clear which message a relay
should transmit when it meets the destination, assuming that it can give only one. It
is not necessarily optimal to transmit the most recent message. Also, the analysis of the
probability of success for a relay would be more complicated since it has to take into account
which messages other relays transmit when they meet with the destination.

Another possible direction is to introduce a message arrival process at the source, for
example the messages could arrive according to a Poisson process.

One of the assumptions required the relays to know the parameters of the game such as
inter-contact distributions and the number of players, that is these quantities are common
knowledge. In practice, it is possible that these quantities are unknown, and it may be
useful to design learning algorithms that converge to the desired equilibrium.

Extending the above models to multiple sources and destination as well as allowing the
possibility for the relays to drop a message and pick another one are also part of our future
plans.
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A Proof of Theorem 3.1

De�ne gi(t, s) = µie
−µi(s−t)

(
Cs
µi
−Rpi(s)

)
. Note that Gi(t, s) =

∫ s
t
gi(t, x)dx. That is,

gi(t, x) is the marginal cost of keeping the message at time x given that it was accepted at
time t. The crucial observation is that the sign of gi(t, s) depends only on s:

gi(t, s) < 0 ⇐⇒ Cs

µiR
< pi(s), ∀t,∀s ≥ t. (26)

We use this observation in Lemma A.1 below.

Lemma A.1. De�ne β(t) = infs≥tGi(t, s) for all t ≥ 0, and let γi be de�ned as in Theorem
3.1. Then: (a) β(t) ≥ 0 for all t ≥ γi and β(t) < 0 for all t < γi, (b) β(t) = Gi(t, γi) for
all t < γi, and (c) β(t) is strictly increasing in t in the interval [0, γi].

Proof. We �rst prove assertion (a). By de�nition of γi, pi(y) ≤ Cs
µiR

for all y ≥ γi. According
to (26), it yields gi(t, y) ≥ 0 for all t and y such that y ≥ t and y ≥ γi. Hence

Gi(t, s) =

∫ s

t

gi(t, y) dy ≥ 0, ∀s ≥ t, ∀t ≥ γi,

implying that β(t) = infs≥tGi(t, s) ≥ 0 for all t ≥ γi. Similarly, for y < γi, we have
pi(y) > Cs

µiR
. With (26), it implies that gi(t, y) < 0 for all t and y such that t ≤ y < γi.

Hence

β(t) = inf
s≥t

Gi(t, s) ≤ Gik(t, γi) =

∫ γi

t

gi(t, y) dy < 0.

We thus conclude that β(t) ≥ 0 for all t ≥ γi and β(t) = Gi(t, γi) < 0 for all t < γi, as
claimed.

24



We now prove assertion (b). We know that gi(t, y) < 0 for all t and y such that
t ≤ y < γi. This implies that for t < γi �xed, Gi(t, y) is a strictly decreasing function
of y on the interval [t, γi], so that Gi(t, y) > Gi(t, γi). Moreover, gi(t, y) ≥ 0 for all t
and y such that y ≥ t and y ≥ γi. This implies that, for t < γi �xed, Gi(t, y) is a
non-decreasing function of y on the interval [γi,∞), so that Gi(t, y) ≥ Gi(t, γi). As a
consequence, β(t) = infs≥tGi(t, s) = Gi(t, γi) for all t < γi.

Finally, in order to prove assertion (c), we note that from assertion (b), we have φ(t) =
Gi(t, γik) for all t < γi, so that β′(t) = −gi(t, t). Since gi(t, y) < 0 for all t and y such that
t ≤ y < γi, we have gi(t, t) < 0 for all t < γi, and thus β′(t) > 0 for all t < γi.

The proof of Theorem 3.1 now readily follows from Lemma A.1.

Proof of Theorem 3.1. As proven in Lemma A.1, γi is the time until which it is optimal to
keep a message conditioned on the fact that the relay decides to accept it. The decision of
a relay of type t can then be summarized as a choice between two options, s = 0 (reject the
message) or accept and keep it until γi. That is, π∗(t;π−i) = arg min

(
0, Cr +Gi(t, γ

i))
)
.

The best-response of type t, will therefore be to accept the message if and only if Cr +
Gi(t, γ

i) < 0. Again, from Lemma A.1, β(t) = Gi(t, γ
i) is increasing in t. Thus, there exists

a θi (possible in�nity) such that it is optimal to accept if t ≤ θi and reject if t > θi. If the
message is accepted, then it is optimal to keep until γi.

B Proofs of results in Section 4 and Section 5

B.1 Proof of Lemma 4.1

We shall �rst establish some properties of the function Vk(x, y) in Lemma B.1, before proving
Lemma 4.1.

Lemma B.1. For y �xed, the function Vk(x, y) is strictly decreasing in x in the interval
[0, y), and for x > 0 �xed, it is strictly decreasing in y in the interval [0,∞].

Proof. The proof directly follows from

∂Vk
∂x

(x, y) =

∫ x

θk−1

φk(s)
∂vx,y
∂x

(s) ds,

= λ e−λx
(
e−µ(y−x) − 1

) ∫ x

θk−1

φk(s)eλs ds,

which is negative for all y > x, and

∂Vk
∂y

(x, y) =

∫ x

θk−1

φk(s)
∂vx,y
∂y

(s) ds,

= −λµe
−µy

µ− λ

∫ x

θk−1

φk(s)eλs
(
e(µ−λ)x−e(µ−λ)s

)
ds,

which is also negative for all y, x ≥ 0.

These properties of the function Vk(x, y) are now used to prove Lemma 4.1.
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Proof of Lemma 4.1. Since according to Lemma B.1 the continuous function Vk(x, y) is
strictly decreasing in y for x �xed, the equation Vk(θ, γ) = ω has a solution γ ≥ θ if and
only if

lim
y→∞

Vk(θ, y) < ω ≤ Vk(θ, θ).

With (9) and (10), the LHS inequality directly leads to θ > θmin, whereas the RHS one
yields θ ≤ θmax. Hence, for θ �xed, the equation Vk(θ, γ) = ω has a solution θ ≤ γ < ∞ if
and only if θ ∈ (θmin, θmax].

To show that γ(θ) is decreasing on (θmin, θmax], note that

d

dx
Vk(x, γ(x)) =

∂

∂x
Vk(x, γ(x)) + γ′(x)

∂

∂y
Vk(x, γ(x)).

On the interval (θmin, θmax], the function Vk (θ, γ(θ)) is a constant, and its derivative is
thus 0. From Lemma B.1, both the partial derivatives of Vk are negative, from which we
conclude that derivative of γ(θ) is strictly negative.

B.2 Proof of Theorem 4.1

De�ne the function
Ĝk(θ) = Gk(θ, γ(θ)). (27)

The value of θ at an equilibrium is determined by a solution of Ĝk(θ) = −Cr. Thus, the
number of equilibria will depend upon the number of roots of the equation Ĝk +Cr = 0 on
the positive real line.

The next result gives some properties of Ĝk that are then su�cient to conclude the
unicity of the symmetric equilibrium.

Lemma B.2. On the interval [0, θmax], the function Ĝk is

(a) continuous;

(b) strictly increasing; with

(c)

Ĝk(0) =
Cs
µ
−R, (28)

Ĝk(θmax) = 0. (29)

Proof. (a) The continuity of Ĝk on the open interval [0, θmin) ∪ (θmin, θmax] follows from
the de�nition of Gk. In order to show the continuity of Ĝk it is thus su�cient to show that

lim
θ→θ−min

Ĝk(θ) = lim
θ→θ+min

Ĝk(θ).

In order to prove this, observe that we can write

Ĝk(θ) =

∫ γ(θ)

θ

gk(θ, t)dt, (30)
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where gk(θ, t) = µe−µ(t−θ)(Csµ − RVk(θ, t)N−1) is the marginal cost of keeping a message

at time t given that it was accepted at time θ. Since Vk(θ, t) ∈ [0, 1], we have |gk(θ, t)| ≤
m1µe

−µ(t−θ) for all θ and t, where m1 = max
(
R− Cs

µ ,
Cs
µ

)
. It yields

∣∣∣∣∫ ∞
θmin

gk(θ, t)dt− Ĝk(θ)

∣∣∣∣ ≤ ∫ θ

θmin

|gk(θ, t)| dt+

∫ ∞
γ(θ)

|gk(θ, t)|dt

≤ m1

{
e−µ(θmin−θ) − 1 + e−µ(γ(θ)−θ)

}
,

from which we conclude that

lim
θ→θ+min

Ĝk(θ) = lim
θ→θ+min

∫ ∞
θmin

gk(θ, t)dt,

=

∫ ∞
θmin

gk(θmin, t)dt.

where the last equality is obtained using the dominated convergence theorem. Similar
arguments can be used to establish that Ĝk(θ) converges to the same limit when θ → θ−min.
(b) We have

dGk
dθ

(θ, γ(θ)) = gk(θ, γ(θ))γ′(θ)− gk(θ, θ) +

∫ γ(θ)

θ

∂gk
∂θ

(θ, x)dx (31)

= gk(θ, γ(θ))− gk(θ, θ) +

∫ γ(θ)

θ

∂gk
∂θ

(θ, x)dx (32)

=

∫ γ(θ)

θ

(
∂gk
∂x

(θ, x) +
∂gk
∂θ

(θ, x)

)
dx,

where (32) is obtained from (31) by observing that, for θ > θmin, v(θ, γ(θ)) = ω implies
that gk(θ, γ(θ)) = 0, whereas for θ ≤ θmin, γ(θ) =∞ also implies gk(θ, γ(θ)) = 0. Since

∂gk
∂x

(θ, x) +
∂gk
∂θ

(θ, x) = −R(N − 1)µe−µ(x−θ)Vk(θ, x)N−2 ×
(
∂Vk
∂x

(θ, x) +
∂Vk
∂θ

(θ, x)

)
,

we conclude from Lemma B.1 that Gk(θ, γ(θ)) is strictly increasing in θ.
(c) Equality (28) follows from noting that Vk(0, x) = 1, and using this in (30). Similarly, (29)
is obtained by noting that γ(θmax) = θmax (from Lemma 4.1), and using this in (30).

An immediate consequence of Lemma B.2 is stated in Corolary B.1.

Corolary B.1. There is a unique solution to Ĝk(θ) = −Cr in the interval [0, θmax] if and
only if

Cr +
Cs
µ
≤ R

We are now in position to prove Theorem 4.1.
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Proof of Theorem 4.1. From Lemma 4.1 there is a unique γ for a given θ > 0 that sati�es (6).
Also, from Corollary B.1 there is unique θ > 0 that satis�es (7) if and only if Cr + Cs

µ ≤ R.
Thus, this last inequality is necessary and su�cient for the existence of a unique symmetric
equilibrium.

From Lemma B.2 and Lemma 4.1, we deduce that, for γ to be �nite the necessary and
su�cient condition is

Ĝk(θmin) < −Cr.
From (11),

Vk(θmin, x+ θmin) = 1 +

∫ θmin

θk−1

φk(s)
{(
e−λ(θmin−s) − 1

)
+

e−µx

σ

(
e−λ(θmin−s) − e−µ(θmin−s)

)}
ds

= ω
(
1 + e−µxb

)
,

where

b =
1

σω

∫ θmin

θk−1

φk(s)
(
e−λ(θmin−s) − e−µ(θmin−s)

)
ds.

Then,

Ĝk(θmin) =
Cs
µ
−R

∫ ∞
0

µe−µxv(θmin, x+ θmin)N−1dx

=
Cs
µ
−Rω

N−1

Nb

(
(1 + b)N − 1

)
.

where the last equality follows from the binomial formula.
Thus, Ĝk(θmin) < −Cr if and only if

Cs
µ
−Rω

N−1

Nb

(
(1 + b)N − 1

)
< −Cr,

which, since ωN−1 = Cs/(µR), is equivalent to

1 + µ
Cr
Cs

<
(1 + b)N − 1

Nb
,

as claimed.

B.3 Proof of Lemma 5.1

Proof of Lemma 5.1. Let us �rst consider the probability that the relay be ready for com-
peting for the delivery of the (k + 1)th message at time θk. This is only possible if it was
ready for competing for the kth message at some time x ∈ [θk−1, θk], and has not the message
at time θk. As a consequence

Φk+1(θk) =

∫ θk

θk−1

φk(x) [1− Ik(x, θk) ]dx = h1(θk).
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Consider now the probability that Tk+1 be in the interval (θk, t] for some t < γk. This can
occur if the relay was ready for competing for the kth message at some time x ∈ [θk−1, θk],
took this message from the source at some time s ∈ [x, θk] and deliver it to the destination
in y ∈ (θk − s, t − s] units of time. Another possibility is that the relay comes into play
for the delivery of the kth message after θk but before t, in which case it will be proposed
directly the (k + 1)th message. As a consequence

Φk+1(t)− Φk+1(θk) =

∫ t

θk

φk(x)dx+

∫ θk

θk−1

φk(x) (Ik(x, θk)− Ik(x, t)) dx

which upon derivation with respect to t yields

φk+1(t) = φk(t) + µ

∫ θk

θk−1

φk(x)Ik(x, t)dx

= φk(t) + µe−µth2(θk)

Finally, the only possibility for the relay to come into play at time γk is that it was ready
for competing for the kth message at some time x ∈ [θk−1, θk], took the message from the
source but was not able to meet the destination by γk. Therefore

P (Tk+1 = γk) =

∫ θk

θk−1

φk(x)Ik(x, γk)dx = e−µγkh2(θk),

C An MDP approach for the DTN game

In this section, we shall give an alternative approach based on Markov Decision Processes
(MDP) that can also be used to arrive at threshold-type equilibrium.

Let S = {0,ms, 1,md, 2} be the set of possible states for relay i. If, at some decision
epoch, relay i is in state xi ∈ S, it may choose action a from the set of allowable actions in
that state, A(xi). The interpretation of states as well as the actions available in each state
are summarized in Table 2. When message k is proposed for the �rst time by the source,
it may happen that relay i still has a previous message. In this case, the relay i is not
competing for message k until it either drops the previous message or meets the destination.
When this happens, relay i enters state 0 and now has to calculate its optimal policy.

In the following, we shall denote by xi(t) the state of relay i at time t, and by x−i(t) the
state of the other relays. We shall refer to x(t) = (xi(t),x−i(t)) as the state of the system
at time t. We emphasize that relay i does not know the state of the other relays at time 0.

The main di�culty in modelling the decision problem faced by relay i is that some actions
(namely, rejecting or dropping the message) lead to an immediate change of state, or, in
other words, correspond to an in�nite transition rate. To circumvent this di�culty, we shall
temporarily assume that when the relay makes such a decision, it stays an exponentially
distributed amount of time of mean 1

M in the same state, where M is some large constant.
Under this assumption, it turns out that the optimal decision-making problem of relay i can
be cast as an MDP, as we now explain.
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Table 2: State, action sets and costs for a relay for message k.

State Signi�cance Action set Cost
0 relay is competing for message k ∅ 0
ms relay is in contact with the source {accept, reject} Cr 1{a=accept}
1 relay has the packet {drop, keep} Cs 1{a=keep}
md relay is in contact with the destination ∅ (Cd −R)1{xj 6=2,∀j 6=i}
2 relay quits the game ∅ 0

λi
M1{a=accept} µi1{a=keep} M0 ms md1 2

M1{a=drop}

M1{a=reject}

Figure 12: Controlled Markov Chain for relay i.

It is clear that the stochastic process xi(t) corresponds to a controlled continuous-time
Markov chain, as shown in Figure 12. The cost incurred by the relay depends on its current
state, on the action it takes, as well as on the state of the other relays. In the following,
g(xi, a,x−i) denotes the cost incurred by relay i if it takes action a when the system is in
state x. The possible values of the costs are shown in the last column of Table 2.

We de�ne a control law (or policy) as a function π : R×S → A such that π(t, x) ∈ A(x)
for all x ∈ S. Given the policies π−i = (π1, . . . , πi−1, πi+1, . . . , πN ) of the other relays, the
goal of relay i is to minimize the expected cost

Ji(τ, 0;π,π−i)=E
{∫ ∞

τ

g(xi(t), π(s, xi(t),x−i(t)) dt

}
, (33)

over all policies π. In the above equation, Ji(s, x;π,π−i) represents the expected cost-to-go
for relay i under policy π if it is in state x at time s, and τ is the �rst time relay i enters
state 0. The cost for relay i depends upon the states and the policies of the other relays
only through pik (see (1)).

Let

J∗i (t, x;π−i) = lim
M→∞

inf
π
Ji(t, x;π,π−i),

be the optimal cost-to-go for the tagged relay if it is in state x ∈ S at time t when M →∞.
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Proposition C.1. When M →∞, the optimality equations read as follows

J∗i (t, 1;π−i) = min

(
0, inf
s≥t

Gik(t, s)

)
, (34)

J∗i (t,ms;π−i) = min

(
0, Cr + inf

s≥t
Gik(t, s)

)
, (35)

where Gik(t, s) is de�ned in (1).

From now on, we shall only consider the limiting regime M →∞. In words, Proposition
C.1 says that if relay i has the message at time t, its best-response is to keep it if and only if
there exists s ≥ t such that the expected cost Gik(t, s) of keeping the message in the interval
(t, s) is negative. Similarly, if relay i meets the source at time t, its best-response is to
accept the message if and only if there exists s ≥ t such that the expected reward −Gik(t, s)
o�sets the cost of receiving the message from the source. Using the optimality equations
stated in Proposition C.1, we can obtain the same structure for the best-response policy as
in Theorem 3.1.

C.1 Proof of Proposition C.1

We consider a given relay (say relay i) and establish the optimality equations of problem
(33) for this relay in the limiting regime M → ∞. The proof proceeds in two steps: (a)
assuming M is large but �xed, we �rst use the well-know uniformization technique [Put94]
to establish the optimality equations for an equivalent discrete-time MDP, and (b) we then
establish the limits of these optimality equations when M →∞.

To simplify notations, let q = λi
M , p = µi

M , p̄ = 1 − p and q̄ = 1 − q. Denoting by
Q the in�nitesimal generator of the controlled CTMC shown in Figure 12, the equivalent
discrete-time MDP has transition matrix P(a) = I + 1

MQ(a) under action a, that is,

P(a) =



0 ms 1 md 2

0 q̄ q 0 0 0
ms 0 0 1{a=accept} 0 1{a=reject}
1 0 0 p̄1{a=keep} p1{a=keep} 1{a=drop}
md 0 0 0 0 1
2 0 0 0 0 1

,
and costs-per-stage

g̃(x, a,x−i) =
1

M
g(x, a,x−i), ∀a ∈ A(x),∀x ∈ S.

Let Vn(x) be the optimal cost-to-go of relay i starting in state x ∈ S at time n, and let
q(n) denotes the probability that the relay be the �rst one to deliver the message to the
destination at that time. Note that the latter probability depends on the policies π−i of
the other relays, although we do not make explicit this dependence. Lemma C.1 establishes
the optimality equations for the states x = ms and x = 1.

Lemma C.1. Provided that R ≥ Cr + Cd + Cs
µi
, the optimal costs-to-go are given by

Vn(ms) = min (0, Cr + Vn+1(1)) , (36)

Vn(1) = min (0, Un,1, Un,2, . . .) , (37)
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where

Un,m =
µi
M

m−1∑
k=0

(p̄)k
{
Cs
µi
−Rq(n+ k + 1)

}
. (38)

Proof. Since Vn(md) = (Cd −R) q(n), the dynamic programming equation

Vn(x) = min
a∈A(x)

g̃(xn, a,x−n) +
∑
y∈S

px,y(a)Vn+1(y)

 (39)

yields

Vn(1) = min

(
0,
Cs
M
− pRq(n+ 1) + p̄Vn+1(1)

)
= min

(
0,
Cs
M
− pRq(n+ 1),

Cs
M

(1 + p̄)−

pR

1∑
k=0

(p̄)kq(n+ k + 1) + (p̄)2Vn+2(1))

)
,

which can be developed recursively to obtain

Vn(1) = min (0, Un,1, Un,2, . . .) .

The optimal cost-to-go in state ms is obtained directly from the dynamic programming
equation (39).

We note that the term Un,m in Lemma C.1 corresponds to the cost obtained if the action
"keep" is played m consecutive times starting from the current decision epoch n, until the
relay meets the destination or decides to drop the message. The optimal policy at instant
n is to retain the message if either of the Un,m is negative. Otherwise it is optimal to drop
the message.

We now turn to the second part of the proof, which is based on Lemma C.2.

Lemma C.2. Let s, t ∈ R, s > t ≥ 0. We have

lim
M→∞

UbMtc,bM(s−t)c = Gik(t, s). (40)

Proof. To simplify notation, let n = bMtc and m = bM(s − t)c. The term Un,m can be
rewritten as follows

Un,m =
Cs
µi

(1− p̄m)− µi
M
R

m−1∑
k=0

(p̄)kq(n+ k + 1),

=
Cs
µi

(
1−

(
1− µi

M

)m)
− µi
M
R

m−1∑
k=0

(
1− µi

M

)k
q(n+ k + 1), (41)
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Since m = bM(s− t)c, for the �rst term on the LHS, we have

lim
M→∞

Cs
µi

(
1−

(
1− µi

M

)m)
=
Cs
µi

(
1− e−µi(t−s)

)
.

Besides, since the discrete-time Markov chain corresponds to the original continuous-
time Markov chain observed at random times according to a Poisson process with intensity
M t, we can identify q(n+ k + 1) with pik(t+ k+1

M ), so that the second term on the LHS of
(41) can be rewritten as follows

µi
M
R

m−1∑
k=0

(
1− µi

M

)k
pik(t+

k + 1

M
).

Approximating
(
1− µi

M

)k
by e−

kµi
M , it yields

e
µi
M

m∑
k=1

µiRe
− kµiM pik(t+

k

M
)

1

M
,

which can be rewritten as

e
µi
M

m∑
k=1

f

(
t+

k

M

)
(xk − xk−1),

where f(x) = µiRe
−µi(x−t)pik(x) and xk = t + k

M for k = 0, . . . ,m. When M → ∞, the

term e
µi
M → 1, whereas the Riemann sum

m∑
k=1

f

(
t+

k

M

)
(xk − xk−1) −−−−→

M→∞

∫ s

t

µiRe
−µi(x−t)pik(x)dx.

In view of (1), summing the limits of the �rst and second terms on the LHS of (41) concludes
the proof.

We are now in position to prove Proposition C.1.

Proof of Proposition C.1. The proof directly follows from Lemmata C.1 and C.2 since

J∗i (t, 1;π−i) = lim
M→∞

VbMtc(1)

= min

(
0,min
k≥1

lim
M→∞

UbMtc,k

)
= min

(
0, inf

s
Gik(t, s)

)
,

and the result on J∗i (t,ms;π−i) is obtained similarly.
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