
HAL Id: hal-01576291
https://laas.hal.science/hal-01576291

Submitted on 22 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experience Report: Log Mining using Natural Language
Processing and Application to Anomaly Detection
Christophe Bertero, Matthieu Roy, Carla Sauvanaud, Gilles Trédan

To cite this version:
Christophe Bertero, Matthieu Roy, Carla Sauvanaud, Gilles Trédan. Experience Report: Log Min-
ing using Natural Language Processing and Application to Anomaly Detection. 28th International
Symposium on Software Reliability Engineering (ISSRE 2017), Oct 2017, Toulouse, France. 10p.
�hal-01576291�

https://laas.hal.science/hal-01576291
https://hal.archives-ouvertes.fr

Experience Report: Log Mining using Natural
Language Processing and Application to Anomaly

Detection

Christophe Bertero, Matthieu Roy, Carla Sauvanaud and Gilles Tredan
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Email: firstname.name@laas.fr

Abstract—Event logging is a key source of information on
a system state. Reading logs provides insights on its activity,
assess its correct state and allows to diagnose problems. However,
reading does not scale: with the number of machines increasingly
rising, and the complexification of systems, the task of auditing
systems’ health based on logfiles is becoming overwhelming for
system administrators. This observation led to many proposals
automating the processing of logs. However, most of these
proposal still require some human intervention, for instance by
tagging logs, parsing the source files generating the logs, etc.

In this work, we target minimal human intervention for logfile
processing and propose a new approach that considers logs as
regular text (as opposed to related works that seek to exploit
at best the little structure imposed by log formatting). This
approach allows to leverage modern techniques from natural
language processing. More specifically, we first apply a word
embedding technique based on Google’s word2vec algorithm:
logfiles’ words are mapped to a high dimensional metric space,
that we then exploit as a feature space using standard classifiers.
The resulting pipeline is very generic, computationally efficient,
and requires very little intervention.

We validate our approach by seeking stress patterns on an
experimental platform. Results show a strong predictive perfor-
mance (≈ 90% accuracy) using three out-of-the-box classifiers.

Keywords—Anomaly detection, logfile, NLP, word2vec, machine
learning, VNF

I. INTRODUCTION

Gathering feedback about computer systems states is a
daunting task. To this aim, it is a common practice to have
programs report on their internal state, for instance through
journals and logfiles, that can be analyzed by system admin-
istrators.

However, as systems tend to grow in size, this traditional
logging method does not scale well. Indeed, scattered software
components and applications produce heterogeneous logfiles.
For instance, logging methods such as the common syslog, are
extremelly flexible in their syntax (see the RFC [7]). Also,
different logfiles may gather information with distinct types
of information. For instance rule-based logging [4] traces the
start and the termination of applications functions, while syslog
event logging collects system activity. Each of them tends to
describe a partial view of the whole system. In particular,
[3] shows that event logging, assertion checking, and rule-
based logging are orthogonal sources for system monitoring.

Moreover, each partial view of the system, even when using
the same logging method (or protocol), may not use the
same keywords to express normal or erroneous behaviors. This
plethora of available logfiles burdens log summarization.

As a result, source code analyzes and communications with
application developpers are necessary for troubleshooting or
auditing systems [17]. Notwithstanding, such non automatic
processes are not acceptable in large computing system be-
cause troubleshooting for reconfiguration must be handled on-
line. To address these challenges, a large number of studies
proposed approaches to automate and scale up log analysis (
[5], [8], [17], [23], [24]). Most approaches require however
cumbersome log processing, for instance by manually tagging
important events, or by parsing the source code functions to
assess the fixed and variable parts of log events.

The contribution of this paper is to propose a new approach
departing from this research line and considering log mining
as a natural language processing task.

This approach has two main consequences, i) we lose a
part of the context by under-exploiting the specificities of each
structured sentence according to a predefined pattern and, most
importantly, ii) our approach is agnostic to the format of the
logfiles. Thus, while considering sets of logfiles as languages,
we gain the ability to use modern Natural Language Processing
(NLP) methods. In other words, we trade accuracy for volume,
preferring the ability to inaccurately process large volumes
of logfiles instead of accurately processing some tediously
preprocessed logs.

As such, the question we explore in this work is: “What can
off-the-shelf Natural Language Processing algorithms bring to
log mining? ”. We more particularly focus on such questions as
“is my system in state A or state B? ”. The proposed approach
is rather simple and brutal. Instead of precisely tracking the
events related to a transition from A to B, we collect large
amounts of log events related to systems in states A and B.
We then transform the logs into multidimensional vectors of
features (using NLP algorithms) and train a classifier on the
resulting data. The resulting pipeline is a relatively standard big
data application, where we target the realization of classifiers
providing accurate information about the target system state.
We believe this approach is specifically interesting due to the
expensive expertise usually required to preprocess the logs.

We show in this paper, through a series of experiments, that
with minimum setup effort and standard tools, it is possible

1

to automatically extract relevant information about a system
state. We more particularly use the word2vec algorithm of
Google [16] for log mining, which is an algorithm for learning
high-quality vector representations of words. It notably has
been used for NLP in some previous works but not for the
analysis of logfiles.

Through experiments, we illustrate the potential benefits of
our approach, by providing answers to system administrators’
questions when data is massively available. As an illustrative
example, we focus on the detection of stress related anomalies
over a broad range of configurations. More specifically, we
deployed on a virtual cloud environment a virtual network
function running a panel of three applications, namely a proxy,
a router, and a database, to which we applied a large variety
of stress patterns by means of fault injection (high CPU and
memory consumption, high number of disk accesses, increase
of network latency and network packet losses). We show that
by simply analyzing the results of NLP processed logfiles, it
is possible to detect stressed behaviors with ≈ 90% accuracy.

In the following, we first present in Section II the rationale
of our log mining approach, and describe our use of fault injec-
tion for validation purposes in Section II. Then, in Section III
we define our case study, the experimental platform on which
we deployed it, and the implementation of our approcah on this
platform. Section IV presents some promising experimental
results. In Section V we discuss our results, and analyze
their threats to validity. Section VI describes related works
regarding NLP and log mining for detection purposes. Finally,
we conclude this paper in section VII.

II. APPROACH

A. General approach overview

The approach proposed as the contribution of this paper is
presented in Figure 1.

Consider a set of logfiles related to a given system. Each
of these logfiles contains a varying amount of lines, each line
consisting of one application of the system reporting an event.
Each log event (line) is a list of words.

As we consider logfiles as a natural language, we analyze
these logfiles using Natural Language Processing tools. As
such, we first remove all non alphanumeric characters (as
required by word2vec) and replace them by spaces, namely
sed ’s/[ˆa-zA-Z0-9]/ /g’.

Secondly, we use word2vec from [16], a popular embed-
ding tool employed by Google to process natural language.
In a nutshell, word2vec produces a mapping from the set
of words of a text corpus (a set of logfiles in our case) to
an euclidean space say T . In the case of a 20-dimensions
space T ⊂ R20. Thus, each word of an event gets assigned
coordinates in a vector space. The enjoyable property of
word2vec is its ability to produce meaningful embeddings,
where similar words end up close, whereas words that are not
related to each other end up far away in the embedding space.

Once each word has been mapped to the embedding space
T , we define the position of a log event as the barycenter
of its words. Following a similar scheme, once all log events
from a given logfile have been mapped to points, we define

Normal System Stressed System

Injection

Character filtering Character filtering

word2vec

p p

Binary Classifier

f̂

X|A X|Ā

{p(x)}x∈X|Ā
Ā train

{p(x)}x∈X|A
A train

Unknown System

Character filtering

p

f̂

≥ 1/2

x

p(x)

f̂(p(x))

AĀ

Fig. 1: General approach overview. Left: Training. Right:
Inference.

the position of this logfile as the barycenter of the position of
its log events. Hence, at the end of the process, each logfile is
mapped to a single point in T . This drastic compression has
one major interest: it produces a compact and useful input
to traditional classifiers. Assuming X represents the set of
all possible logfiles, such mapping can be represented as a
function:

p : X → T

x 7→ p(x).

Now, assume that one has access to a large set X of
observations (logfiles) on the system, corresponding to two
states that we would like to characterize, say A and Ā. Let
X|A and X|Ā be the corresponding logfiles sets. By the above
described process, every observation x ∈ X = X|A∪X|Ā can
be assigned to a coordinate p(x) ∈ T .

In a third step, we train a classifier, named f̂ hereafter, on
p(x|x ∈ X|A). A typical such classifier f̂ is an approximation
of the ideal separation function:

f : T → [0, 1]

p(y) 7→ P(A|y).

The training of a classifier requires an available set of
labeled data. These labels may be for instance: normal and
anomalous. In cases that labeled data is not available, one
can generate them by monitoring a system while experiencing
normal and anomalous behaviors. Since anomalous behaviors
are undesired events and, as such, usually not frequent in

2

recent systems, they need to be synthesized using techniques
such as fault injection. In this paper, we generate sets of
normal and anomalous behaviors in a controlled manner using
fault injection techniques for all anomalous behaviors, as
represented in Figure 1.

Once the training is finished, the resulting classifier is used
to provide, given any new production logfile x, an inferred
state (anomalous or not) f̂(p(x)) that we claim is a good
approximation of the actual stress status of the system, i.e.,
P(A|x) ' f̂(p(x)). It is actually expressed as a probability
and we need to set a limit over which a system is categorized
as stressed, say 1/2 as in Figure 1. In the case x contains
unencountered words, those are simply ignored.

III. CASE STUDY AND EXPERIMENTAL PLATFORM

A. Case study

We hereby present our case study on virtual network
function (VNF) called Clearwater1 as well as the workload
generator used during our experiments to simulate actual users
of this target system. This case study was used in our preivous
work [19] for anomaly detection based on monitoring data.

It constitutes a meaningful case study in that it deploys
several components of different roles (e.g., router, proxy and
database). While we apply our approach with no specific
configuration nor a priori knowledge of the implementations
for each component, we consider that our approach has good
chances to generalize to various case studies.

1) Description: The service is an open source VNF named
Clearwater. It provides voice and video calls based on the
Session Initiation Protocol (SIP), and messaging applications.
Clearwater encompasses several software components and we
particularly focus our work on Bono, Sprout, Homestead
shown in Figure 2.

Bono is the SIP proxy implementing the Proxy-
Call/Session Control Functions. It handles users’ requests and
routes them to Sprout. It also performs Network Address
Translation traversal mechanisms.

Sprout is the IMS SIP router, receiving requests from
Bono and routing them to the adequate endpoints. It imple-
ments some Serving-CSCF and Interrogating-CSCF functions
and gets the required users profiles and authentication data
from Homestead. Sprout can also call application servers
and actually contains itself a multimedia telephony (MMTel)
application server, whose data is stored in another Clearwater
component not presented in this work (when calls are config-
ured to use its services).

Homestead is a HTTP RESTful server. It either stores
Home Subscriber Server (HSS) data in a Cassandra database
and masters data (i.e., information about subscribed services
and locations), or pulls data from another IMS compliant HSS.

Bono, Sprout, and Homestead work together to control
the sessions initiated by users and handle the entire CSCF.
Our case study encompasses these three components, each one
being deployed on a dedicated virtual machine (VM) of our
virtualized experimental platform (see Section III-B).

1http://www.projectclearwater.org/about-clearwater/

Homestead

Bono

Ellis
Provisioning

web interface

Homer

Ralf

Sprout
SIP

HTTPHTTP

SIP

HTTP

XCAP

HTTP

HTTP

Injection target

Workload generator
SIPp

Service

Fig. 2: Clearwater deployment.

2) Workload: IMS workloads can be emulated by means
of the SIPp benchmark2. The benchmark contains a workload
that can be configured with a number of calls per second
to be sent to the IMS, and a scenario. The execution of a
scenario corresponds to a call. A scenario is described in terms
of SIP transactions in XML. A SIP transaction corresponds
to a SIP message to be sent and an expected SIP response
message. A call fails when a transaction fails. A transaction
may fail for two reasons: either a message is not received
within a fixed time window (i.e., the timeout), or an unexpected
message is received. Unexpected messages are identified by the
HTTP error codes 500 (Internal Server Error), 503 (Service
Unavailable) and 403 (Forbidden).

The scenario run for our experimentations simulates a
standard call between two users and encompasses the standard
SIP REGISTER, INVITE, UPDATE, and BYE messages. The
scenario is available online3. Timeouts are set to 10 sec as in
similar experimental campaigns [2].

3) Fault injection for training and validation: Fault injec-
tion is used in our study for collecting logfiles representing
both normal behaviors and stressed behaviors of a target
system, in order to provide them as inputs for the training
and validation of the classifiers. We emulate errors by means
of injection tools that implement systems stressing. These tools
were used in our previous work [19].

We call the orchestration of several executions of the target
system in presence or not of error emulations an experimental
campaign. In the following we present the errors that our
injection tools emulate and describe the execution of an
experimental campaign.

Error emulation. We emulate the following five types of
errors, which we will be referring to as CPU, memory, disk,
network packet loss, and network latency errors respectively:

(1) high CPU consumption,
(2) misuse of memory, i.e., increase of memory consumption,
(3) abnormal number of disk accesses, i.e., large increase of

disk I/O accesses and synchronizations,
(4) network packet loss,
(5) network latency increase.

CPU errors. Abnormal CPU consumptions may arise
from programs encountering impossible termination conditions
leading to infinite loops, busy waits or deadlocks of competing
actions, which are common issues in multiprocessing and
distributed systems.

2http://sipp.sourceforge.net/index.html
3https://homepages.laas.fr/csauvana/sipp\ scenario/issre2016\ sipp\

scenario.xml

3

Memory errors. Abnormal memory usages are common
and happen when allocated chunks of memory are not freed
after their use. Accumulations of unfreed memory may lead to
memory shortage and system failures.

Disk errors. A high number of disk accesses, or an
increase of disk accesses over a short period of time, emulate
disks whose accesses often fail and lead to an increase in disk
access retries. It may also result from a program stuck in an
infinite loop of data writing.

Network packet loss and latency errors. Such errors may
arise from network interfaces of the target system or from
the network interconnection of the virtualized infrastructure
hosting the system. We emulate packet losses and latency
increases. Packet losses may arise from undersized buffers,
wrong routing policies or even firewall misconfigurations.
Latency errors may originate from queuing or processing
delays of packets on gateways or at the target system level.

From the definition of these error types, an important exper-
imental parameter is the injection intensity, i.e., the expected
impact magnitude of the different injections from users points
of view. In our study, we present results for the detection
of errors with high intensities. In other terms, experimental
campaigns perform injections that strongly affect the target
system capability to answer users requests.

Table I presents the intensity levels that we calibrated for
our Clearwater case study.

Error type Unit Intensity level

CPU % 90
Memory % 97

Disk #process 50
Network packet loss % 8.0

Network latency ms. 80

TABLE I: Injection intensity levels.

Regarding the memory, disk and CPU injections, the in-
tensity values of errors are constrained by the capacity of the
operating systems (OSs) on which are deployed the applica-
tions of our case study. In other words, the intensity levels
correspond to the maximum resource consumption allowed by
the OS before killing the execution of the injection agent.

Considering the remaining types of injections, the corre-
sponding intensity levels is set so as to lead to around 99% of
unsuccessfully answered requests when applied in at least one
VM. The unsuccessfully answered requests rate can be known
from the workload logfiles.

Experimental campaigns. The experimental campaign
is conducted using a customizable main script that either
launches normal or anomalous executions of the target system.
The experimental campaign either launches normal or stressed
executions of the target system. An execution, be it normal
or anomalous, produces one logfile for each VM of our target
system.

We define a campaign to run as many normal executions
as the number of stressed executions. The selected number of
stressed executions is configured to represent all combinations

of different injections (i.e., the injection of each error type, in
each VM).

When running an anomalous execution, the configured
injection starts after t seconds from the target system boot
time, where t is randomly selected in a preconfigured interval.
This process adds randomization to the set of collected logfiles,
a prerequisite for the generalization of our results.

Additionally, consecutive executions of a campaign are
separated by the reboot of all VMs of the target system and
the workload in order to be sure to restart from a clean and
unpolluted state.

As a result, the parameters of an experimental campaign are
as follows: i) target VMs listed in l vm, ii) error types listed
in l type, iii) an injection duration set in inject duration, iv)
a clean run duration set in clean run duration, v) an interval
of values defining after which time an injection can start after
a reboot set in interval.

Moreover, a campaign is executed as follows. Each error
type is injected in a first VM, then in a second VM, etc. with
reboots of the target system and the workload before each
new execution. The stressed executions are orchestrated as
explained in algorithm 1. Then the same number of normal
executions are performed.

Algorithm 1 Orchestration of stressed executions of the target
system in an experimental campaign

Input: l vm, l type, inject duration, interval,
clean run duration

start workload() . Clean run
for vm in l vm do . Runs with injections

for err in l type do
start workload()
rand time = random int(interval)
sleep(rand time)
inject = Injection(err, inject duration)
inject in vm(vm, inject)
stop workload()
reboot vms()

end for
end for

B. Experimental platform

In the following, we first present the platform on which
we run experiments. Then we describe the implementation
required to carry out our experiments namely the injection
agents, experimental campaign parameters, and the collection
of logfiles.

1) Platform: We deployed our target system on a virtual-
ized platform. The platform is composed of a cluster including
two hypervisors and several VMs. Four VMs are deployed
for our target system: one VM runs the workload and the
other three respectively host the components Bono, Sprout
and Homestead of Clearwater. The workload VM also has
the means to control the experimental campaign launch. Two
other VMs are respectively used to store logfiles collected
from the target system and to analyze the stored logfiles. The
deployment of the VMs is illustrated in Figure 3.

4

Hypervisor 1 Hypervisor 2

VM
Monitoring

module

Service

VM
Data

processing
module

VM
Workload

OS/hypervisor
observations

Injection
agents

Alarm(s)

Requests

Error injection

Injection
agents

Injection
agents

VMVMVM

+
Injection

...

Platform

Fig. 3: Virtualized platform.

The platform is a VMware vSphere 5.1 private cloud
composed of 2 servers Dell Inc. PowerEdge R620 with Intel
Xeon CPU E5-2660 2.20 GHz and 64 GB memory. Each server
has a VMFS storage. Each VM deployed for the target system
implementation has 2 CPUs, a 10 GB memory, a 10 GB disk
and runs the Ubuntu OS. VMs are connected through a 100
Mbps network.

2) Fault injection: Injections in the target system are
carried out by injection agents installed in these VMs. There
is one injection agent for each error type in each VM of a
target system. Agents are run and stopped through an SSH
connection orchestrated by the campaign main script. They
emulate errors presented in Section III-A3 by means of a
software implementation.

CPU and disk errors are emulated using the stress test tool
stress-ng4. CPU injections run 2 processes (there are 2
cores in each VM) running all the stress methods listed in the
tool documentation. The percentage of loading is set according
to the intensity level of the injection.

Disk injections start several workers writing 50 Mo and 50
workers continuously calling the sync command, with an ionice
level of 0. The number of writing workers is set according to
the intensity level of the injection.

Memory injections are run by means of a python script
reserving memory space while continuously checking whether
the amount of memory space reserved by the script corre-
sponds to the amount set by the intensity level of the injection.

Finally, we use the Linux kernel tools iptables and tc for
the injection of network latencies on the POSROUTING chain,
and iptables on the INPUT chain for the injection of packet
losses. All network protocols are targeted.

3) Experimental campaigns parameters: An experimental
campaign corresponds to the execution of a customizable main
script that starts the workload of our target system, and either
makes clean run of this target system or makes runs while
performing injections in the target system VMs.

The parameters of the experimental campaigns we run are
as follows. The injection duration is calibrated so as to affect
several instances of workload executions (an execution lasts
less than 1 sec). We calibrated the injection duration to be
10 min long in order to collect around 5000 lines of logfile
for each clean run and injection. Also, we calibrated the clean
run duration to be 30 min. Finally, we calibrated the start of
injections to be randomly selected in the interval from 1 to 10
min. This interval allows the VMs to stabilize after a reboot.

4http://kernel.ubuntu.com/∼cking/stress-ng/

Apr 18 06:44:37 cw-011 restund[1368]: stun
server ready
Apr 18 06:44:37 cw-011 bono[1284]: 2005 -
Description: Application started. @@Cause:
The application is starting. @@Effect:
Normal. @@Action: None.
Apr 18 06:45:01 cw-011 CRON[1521]:
(root) CMD (/usr/lib/sysstat/sadc 1 1
/var/log/sysstat/clearwater-sa‘date +%d‘ >
/dev/null 2>&1)

Fig. 4: Example of syslog events.

Our experimental campaign parameters are summarized in
Table II.

Campaign parameters
• l vm = {Bono, Sprout,Homestead}
• l type = {CPU,memory, disk, latency, packet loss}
• injection duration = 10 min
• clean run duration = 10 min
• interval = [1 : 10] min

TABLE II: Injection campaign parameters of the four
experimentations.

4) Logfiles collection: The logfiles that we use in this study
are generated by the Linux-based Ubuntu OS using syslog,
the standard tool for message logging. Events are logged
with a predefined pattern containing in that order the date
of the event issue, the hostname of the equipment delivering
the event, the process delivering the event, a priority level,
the id of the process delivering the event and finally the
message containing free-formatted information. For instance,
no performance metrics of the system are logged. A example
of syslog events is provided in Figure 4.

Results of previous studies [3] show that syslog event
logging is the more suitable method to use in this context,
although a combination of the several methods increases the
failure coverage. The syslog facility has the advantage to gather
several applications events.

During experimental campaigns, logfiles are collected by
means of agents (they are represented by orange squares in
Figure 3) and stored in a database for later analysis.

IV. RESULTS

In this section, we quantitatively study the effectiveness of
the presented approach by presenting the analysis results over
660 logfiles. After briefly introducing the considered metrics,
we will detail the obtained results.

The main research question we seek to answer is: Using
only syslog files as input, how accurately can our algorithm
distinguish Stressed and non Stressed systems? The secondary
questions are i) how sensitive are the results to the parameters
used to calibrate the models of our approach? and ii) what is
the ability of our approach to issue quick decision on a system
state?

5

A. Materials and Metrics

Using the testbed presented in Section III-B we generate a
set of 660 logfiles that will constitute the basis of our models
training. Exactly half of these (330) originate from normal
unstressed system executions. The other half captures systems
with injected faults. More precisely, we ran 22 replications
for each of the 5 injection campaigns over each of the 3 target
VMs of our case study, for a total of (22∗3∗5) = 330 stressed
logfiles.

Word2Vec training: To establish the word2vec training
set, we use the concatenation of all 660 logfiles from which
we removed all non alphanumeric characters.

word2vec, originally designed for NLP tasks, can be
tuned with a number of different options. The most important
parameter is the embedding space dimension dim(T), its im-
pact is detailed in Section IV-B2. The other parameters mostly
allow to setup filters in order to optimize the computation.
We deactivated all of them to keep the maximum amount
of information available to the classifier. Finally, from the
two methods proposed in the implementation of word2vec,
namely skip-gram and cbow (defining whether the source
context words should be predicted from target words or the
opposite5), we chose cbow because of its simplicity, in order
to provide an “as-simple-as-possible” solution.

Given the relatively small size of our text corpus (com-
pared to all the English texts available on the web, namely
word2vec’s original usecase), and the well known efficiency
of the word2vec implementation, the overall computation
is tractable on a standard computer (see Section IV-B3).
Therefore, the philosophy behind implementation choices is
the following: keep it simple, and keep the maximum amount
of information.

From word coordinates to logfile coordinates: The
output of word2vec is a file containing the coordinates
of the 233k distinct words of our training corpus in T . To
transform logfiles into coordinates in T , we explored two
standard strategies:

bary In the barycenter approach, we first compute the position
of each line of a logfile, defined as the average position
of all the words it contains. Then, the position of the file
is defined as the average of all its line:

p(f) =def 1/|f |
∑
l∈f

1/|l|
∑
w∈l

p(w).

tfidf Term frequency - inverse document frequency is a stan-
dard metric of information retrieval. Compared to the
barycenter approach, words are weighted by their fre-
quency in the document. That is, a frequent (common)
word will proportionally have less weight than a rare word
when computing the average position of a logfile. We
relied on the scikit-learn6 standard implementation
of the function.

The output of this step is a matrix of 660×dim(T) entries
decorated with their corresponding target labels (stressed,
unstressed system).

5See one implementation explaination https://www.tensorflow.org/tutorials/
word2vec. Last read on 13/08/2017.

6http://scikit-learn.org/

Classifiers: Binary classifiers are amongst the most com-
mon and understood classifiers in machine learning. We re-
stricted our study to three simple and state of the art ap-
proaches: Naive Bayes, Random Forests and Neural Networks.
We relied on the following scikit-learn library imple-
mentations: Random Forest Classifier, MLP Classifier, and
Gaussian NB. All these algorithms belong to the class of super-
vised algorithms. In other words, they require labeled training
data, although we could have used unsupervised approaches
such as the ones tested in [8], i.e., Principal Components
Analysis and Invariant mining.

Again, the philosophy of our approach is to refrain from
fine tuning those implementations and to assess the global
strategy as a hole. We therefore used the default parameters
on all these algorithms.

Classifier Assessment: To assess the classification accu-
racy, we used the standard 10-fold validation approach. We
first randomly divided the training set in 10 equal sized chunks.
Each possible group of 9 chunks was used to train our classifier
while the remaining chunk was used as a test.

Let {Xi}1≤i≤10 be a partitioning of X into 10 chunks. Let
Xj be the tested chunk, and let Tj (resp. Fj) be the subset of
stressed (resp. unstressed) logs of Xj . The set of true positives
TPj for Xj is defined as:

TPj = {x ∈ Xj s.t. f̂j(x) ≥ 1/2 ∧ x ∈ Tj}.

Logs that belong to stressed machines and to which the
classifier f̂j (trained using ∪i 6=jXi) assigned a probability
greater than 1/2 of being stressed are true positives for Xj .
Similarly, the set of false positives FPj for Xj (logs belonging
to unstressed machines but detected as more likely stressed) is
defined as:

FPj = {x ∈ Xj s.t. f̂j(x) ≥ 1/2 ∧ x ∈ Fj}.

Notice that the true negative and false negative sets are
symmetrically defined.

To get a closer look at f̂j , one can use Receiver Op-
erating Characteristics (ROC). That is, let s ∈ [0, 1] be a
“safety level” one wants to apply to f̂ -based decisions. Let
Xs

j = {x ∈ Xj , f̂j(x) ≥ s} be the subset of Xj containing
only the logs detected as stressed with probability at least
s. For each value of s, it is thus possible to define a true
positive rate TPRs = |Xs

j ∩ Tj |/|Tj | and a false positive rate
FPRs = |Xs

j ∩ Fj |/|Fj |. The graphical representation of the
obtained {FPRs, TPRs} couples provides a precise visual
description of f̂ ’s performance, as in Figure 5 that will be
presented shortly hereafter.

B. Results analysis

In the following, after exploring the detailed results ob-
tained using a typical trained classifier, we study the impact
of the embedding host space dimension. We then study the
runtime overhead of our approach.

1) Accuracy: Figure 5 presents the ROCs obtained on a
typical configuration. More precisely, in this setup, we used
dim(T) = 20 and explored various aggregation/classifier
configurations. The results are very good, with Neural Network

6

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ●

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P
R

Embedding Vectorizer
bary
tfidf

classifier
● NaiveBayes

NeuralNet
RandomForest

Fig. 5: Receiver Operating Characteristic of 3 classifiers, for
dim(T) = 20. This plot shows the True Positive Rate of

every classifier as a function of the False Positive Rate of the
same classifier.

and Random Forest exhibiting a strong classification accuracy
(> 95% AUC). The aggregation technique (i.e., based on tf-
idf or barycenter) has little impact. Naive Bayes performs
considerably better than random (77% and 81% AUC for tf-idf
and barycenter resp.), but is visibly less precise than the other
two classifiers. These very good results confirm the soundness
of the approach.

One can have a more detailed look at the origin of misclas-
sifications. Table III exhibits the confusion matrix of Neural
Network (using barycenter and dim(T) = 20). Although
around 90% of the targets get correctly categorized, one can
see that the errors are slightly leaning towards false positives
(that is, an unstressed system is wrongfully categorized as
stressed). Although this is not the purpose of this study, it is
possible to exploit this imbalance for an overall better classifi-
cation accuracy (for instance by raising a 1/2 limit over which
a system is categorized as stressed). The stress patterns are
not very homogeneously detected, with Latency stress being
7 times more efficiently detected than CPU stress. However,
because of the accuracy of the considered classifier, these
results only concern a small number of events, and therefore
have a low statistical power. Table IV presents the misclassified
entries by application: all three applications (namely Bono,
Sprout and Homestead) yield to similar classification accuracy.

TABLE III: Confusion matrix for the Neural Network
classifier, using dim(T) = 20, and barycenter: detailed by

stress type

Stress Type Detected As Stressed (True) Detected as Unstressed (False)

No Stress 0.115 0.885
Packet loss 0.939 0.061
Latency 0.985 0.015
Memory 0.939 0.061
Disk 0.970 0.030
CPU 0.893 0.106

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

5 10 20 50 100 200 500
dim(T)

A
U
C

Embedding Vectorizer
● bary

tfidf

classifier
●

●

●

NaiveBayes
NeuralNet
RandomForest

Fig. 6: Area Under the ROC Curves (AUC) capturing the
performance of our classifiers, as a function of the number of

dimensions of the embedding space

TABLE IV: Confusion matrix for the Neural Network
classifier, using dim(T) = 20, and barycenter: detailed by

application

Target Machine Requests Number of misclassifications Success Rate (%)

Bono 220 19 91.4
Sprout 220 17 92.3
Homestead 220 20 90.9

2) Parameters sensitivity: We here focus on two choices of
importance: the dimension of the embedding space dim(T),
and the classifier algorithm. To compare our classifiers, we
use the Area Under Curve (AUC) measure. In a nutshell,
it measures the area under the ROC of a classifier. That
is, an AUC of 1 denotes a perfect classification, while an
AUC of 0 denotes a worse than random prediction. It is also
commonly presented, given a random positive (stressed) and
random negative (unstressed) example, as the probability for
the classifier to rank the negative example below (that is, less
stressed) the positive example. The ROC AUC is know to well
summarizes ROC curves [1].

Figure 6 provides the AUC measures for our 3 consid-
ered classifiers for various embedding space dimensions. As
expected, increasing the number of dimensions increases the
classification accuracy: more information helps. This increase
is however very limited: apart from Neural Network, where
increasing dimensions from 5 to 20 has a visible impact,
classifier accuracies all stay stable for dim(T) > 20. This
is good news, as such parameter can be hard to tune a priori.

More generally, this figure confirms the previous observa-
tions: classification is very accurate, especially using Neural
Network and Random Forest, with AUCs consistently scoring
above 0.95.

3) Timing performance: When selecting a classifier, the
expected classification accuracy is the most important criteria.
However, in operational contexts, another crucial criteria is
the computational complexity of both training and prediction.

7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

10.0

5 10 20 50 100 200 500
dim(T)

ti
m

e
(s

)

Embedding Vectorizer
● bary

tfidf

classifier
●

●

●

NaiveBayes
NeuralNet
RandomForest

Fig. 7: Training wall time of the classifiers on 660 instances,
for varying embedding space dimensions. Notice the log-log

scale.

To provide some insights, we recorded wall clock times of
the training of machine learning models (Figure 7) and of
individual prediction of these models (Figure 8) operations.
Those were performed on classical Macbook Pro with 16 GB
of RAM and a quad-core Intel i7.

Interestingly, these figures provide a new perspective on
our classifiers. Results confirm the reputation of each of those
models: Naive Bayes is very simple, it is quickly trained and
provides fast answers. Neural Network is a considerably more
complex model whose training requires significantly more
time. However, once trained it is able to answer reasonably
fast. Contrariwise, Random Forest is quickly trained but re-
quires considerably more time to issue predictions. Issuing a
prediction requires on average 66ms (resp. 5ms and 11ms)
for Random Forest (resp. Naive Bayes and Neural Network).

Not surprisingly, increasing dim(T) comes with a compu-
tational cost (as it increases the number of features on which
each model is trained), but since Section IV-B1 shows that
dim(T) = 20 is already sufficient to obtain accurate results,
we conclude that this approach is computationally tractable.
The most prominent decision is the choice of the classifier: al-
though the simplest possible classifier (Naive Bayes) provides
cheap and reasonable answers, more efficient classifiers like
Random Forest or Neural Network will cost a bit more, either
at training time, or at prediction time.

To conclude, this results section explored the performance
of three state of the art classifiers exploiting the log positions.
These classifiers exhibit a strong performance for a reasonable
cost. The most important parameter, the dimension of the host
space dim(T), is not very sensitive: values ranging from 20
to 200 will roughly deliver the same performance. Although
many parameters could be precisely tuned to optimize the
classifiers, we believe these good results obtained using mostly
default values of COTS tools already validate the soundness
of our approach. More precisely, these show the extremely
powerful effect of the word2vec embedding applied to logs:
it allows to summarize each logfile to a single point in T while

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

0.02

0.04

0.06

5 10 20 50 100 200 500
dim(T)

ti
m

e
(s

)

Embedding Vectorizer
● bary

tfidf

classifier
●

●

●

NaiveBayes
NeuralNet
RandomForest

Fig. 8: Time taken for a trained model to issue one
prediction. Notice the log-lin scale.

keeping enough information to allow an efficient classification.

V. DISCUSSION

Our approach leaves one common question of all machine
learning approaches intact: how general are the learned mod-
els? In other words, are the classifiers built in this context able
to provide accurate answers in different contexts, application
environments, under different injection campaigns? Although
this question is definitely of interest, we argue its scope goes
well beyond this paper. Philosophically, this study shows that it
is easy to train efficient classifiers. But informally, a classifier
is only as good as its training data. The availability of labelled
training data can clearly limit the applicability of our approach.
The advantage of fault injection if to gather relevant labeled
datasets in a short time period. Although it enables to evaluate
our approach in a straghforward manner this implemention can
be cumbersome. However, while we rely on fault injection
to gather datasets, other sources exist : user-based feedback,
crowed sourced datasets, and crash reports of large scale
deployments.

In our previous work [19] we analyzed monitoring coun-
ters such as CPU consumption or number of disk accesses
for anomaly detection. Results from counter-based detection
showed a good predictive performance that is yet not fully
aligned with the results of this study. For instance, latency er-
rors were significantly harder to detect. In this study, we show
that by solely mining syslog files we could detect anomalies
with high accuracy for all types of anomalies. Consequenlty,
we believe our approach is largely promising. As for future
work, we plan to study an hybrid approach leveraging both
logging and counter-based data in order to further evaluate
their potential complementarity. what type of logs enhance or
weaken the efficiency of our approach.

Finally, results presented in this paper show that our
approach detects with the same accuracy the stresses injected
in either type of application of our case study (i.e., proxy,
router and database). In other words, the analysis of system
related logs such as syslog is an efficient way to summarize

8

application behaviors for stress detection with no regard to the
type of application. We believe however that syslog events are
not enough to derive application dataflows that may allow to
detect other types of anomalies or more importantly for admin-
istrators, to diagnose the origin of an anomaly. Consequently,
we need to explore in future work other types of logs, notably
the ones generated by our case study application.

VI. RELATED WORK

In this study, we use a word2vec-based method for log
mining with a validation-purposed application of detecting
stressed behaviors in computing systems. word2vec is a
method for learning high-quality vector representations of
words. It has been used for NLP in some previous works but
not for the analysis of logfiles. In comparison, our previous
work [19] focuses on anomaly detection based on monitoring
data collected by means of a specific software agent, deployed
beforehand on target machines, and providing numerical met-
rics on the system behavior. Here we exploit the default
system-produced textual logs to predict stress. Beside the
deep technical differences, our approach allows different use-
cases, like post-mortem analysis of the behavior of the several
processes being executed in the targeted systems.

Consequently, in the following we present separately sev-
eral works related to NLP and other works related to logfiles
analysis for detection purposes.

NLP applications. In the literature, most of the NLP
algorithms are used for document processing [26] to isolate
references of a given subject in a document and detect the
sentiments of the writer, or to exploit tweets [11] to detect
cyber-attacks such as distributed denial of service.

To the best of our knowledge, relatively few works exploit
NLP for a different purpose than document analysis. We
provide here a quick summary of these non-traditional uses of
NLP. In [15], the authors use a NLP technique called Latent
Semantic Indexing to identify source code documents that
match a user query expressed in natural language. They use
the same technique in [14] to detect similar piece of code (i.e.,
duplicated functions) in software systems code. In addition,
Latent Dirichlet Allocations are used for a similar purpose
in [20]. NLP is also applied on network packet payloads for
network intrusion detection in [18]. In [10], customers accesses
to businesses URLs are analyzed using a word2vec-based
method to propose better services to customers. Finally, NLP
is also used to detect design and requirement debts [13] from
comments of ten open source projects.

Log mining for detection purposes. Although some
works propose new methods to generate relevant log events as
in [4], logfiles still gather a wide range of events and evaluating
their information in the execution context or weighting their
gravity is still intricate. For instance, the authors of [17]
analyze a wide range of logs with engineers and compare
events signaling failures to the engineers feedback on actual
failures. It turns out that the number of actual failures is lower
than the failures reported by logs. Also they point out that
syslog message severity level is of ”dubious value”, and that it
is essential to take into account the operational context during
which log events are collected. Nevertheless, logfiles analysis
for anomaly (e.g., crash, fault, OS stressing...) detection in

computing systems has been widely studied and it is still an
active research field, in particular when considering the ever
more complex recent computing systems.

Execution traces of streaming applications are analyzed in
[9] in order to detect anomalies. The authors analyze traces
by means of the merging pattern mining method applied on
patterns of events (i.e., lines of traces). Then they build a graph
representing the dataflow between the different computing
units of the application. Likewise, in [21] the authors analyze
the temporality of execution traces in order to derive system
states from their estimated control flows. The authors of [25]
also work on the ordered nature of logfiles. They exploit
time series potentially hidden behind logs events for failure
symptoms detection. They use a probabilistic modeling using
a mixture of Hidden Markov Models (HMM) to represent
different time windows (i.e., sessions) of logs event. They
propose a new method for the learning of the HMM mixture
working online.

Automatic techniques based on machine learning or statis-
tics algorithms have been widely used for this matter, as
in [6] where the authors propose a new approach for disk
failure prediction. More precisely, they analyze by means of
a Support Vector Machine (SVM) model, sequences of syslog
events based on syslog tag numbers sequences or key strings
in events. In [22], the author proposes a new algorithm for
the clustering of log events and implements a tool based on
it named SLCT. Logfiles parsing is exploited in [24]. The
parsing uses log patterns identified from a static analysis of
source code. Then, two types of features are computed from
the entire available logfiles, and they are fed to the PCA-based
anomaly detection algorithm for an offline detection. A log
extractor for anomaly detection is studied in [12]. The extractor
uses log clustering based on the Levenshtein editing distance
to evaluate the similarities amongst log events strings (i.e.,
two strings are close together if there is a minimal number
of actions to change the first string into the other). Templates
are then extracted from log clusters. Finally, a sequence of
log events matching patterns is created and feed to a machine
learning algorithm. The Naive Bayes, and Recurrent Neural
Networks are evaluated.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we tackled the problem of anomaly detection
by mining logs produced by running systems. Differently
to previous studies, we develop a linguistic approach by
considering logs as regular plain text documents. This enables
to exploit recent NLP techniques to extract information from
the grammatical structure and context of log events. Logfiles
are represented as a set of features that can be processed by
standard machine learning algorithms. As such this approach
shifts the burden of log preprocessing toward the collection
of representative datasets. It is a good trade when data is
massively available like in recent distributed systems.

Our experimental campaigns on different components of a
VNF rely on fault injection to synthetize anomalous behaviors
and collect relevant datasets on demand. We more particularly
focus on the case of stress detection and show that strong
predictors (≈ 90% accuracy) are easily trained with no human
intervention in the loop. Even though we focus on stress

9

detection in this work, our approach is fitted for computing
systems administrators for the online detection of any type of
anomaly.

As for future work, we plan to explore unsupervised clas-
sifiers that would not restrain our approach scope to labelled
training data and mostly known anomalies. Syslog files are
used in this study, however we plan to inquire about what
type of logfiles (e.g., dmesg, application logs...) enhance or
weaken the efficiency of our approach. Also, we plan to extend
our study to more precise online event troubleshooting while
combining this detection approach with our previous work on
counter-based detection [19].

REFERENCES

[1] A. P. Bradley, “The use of the area under the roc curve in the evaluation
of machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[2] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on, Nov 2015, pp. 93–99.

[3] M. Cinque, D. Cotroneo, R. D. Corte, and A. Pecchia, “Characterizing
direct monitoring techniques in software systems,” IEEE Transactions
on Reliability, vol. 65, no. 4, pp. 1665–1681, Dec 2016.

[4] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, June 2013.

[5] M. Farshchi, J. G. Schneider, I. Weber, and J. Grundy, “Experience
report: Anomaly detection of cloud application operations using log and
cloud metric correlation analysis,” in Software Reliability Engineering
(ISSRE), 2015 IEEE 26th International Symposium on, Nov 2015, pp.
24–34.

[6] R. W. Featherstun and E. W. Fulp, “Using syslog message sequences
for predicting disk failures,” in Proceedings of the 24th International
Conference on Large Installation System Administration, ser. LISA’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–10.

[7] R. Gerhards, “The Syslog Protocol,” RFC Editor, RFC 5424, March
2009.

[8] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Oct 2016, pp.
207–218.

[9] O. Iegorov, V. Leroy, A. Termier, J. F. Mehaut, and M. Santana,
“Data mining approach to temporal debugging of embedded streaming
applications,” in 2015 International Conference on Embedded Software
(EMSOFT), Oct 2015, pp. 167–176.

[10] R. Kanagasabai, A. Veeramani, H. Shangfeng, K. Sangaralingam, and
G. Manai, “Classification of massive mobile web log urls for customer
profiling analytics,” in 2016 IEEE International Conference on Big Data
(Big Data), Dec 2016, pp. 1609–1614.

[11] R. P. Khandpur, T. Ji, S. Jan, G. Wang, C.-T. Lu, and N. Ramakrishnan,
“Crowdsourcing cybersecurity: Cyber attack detection using social
media,” arXiv preprint arXiv:1702.07745, 2017.

[12] C. Liu, “Data analysis of minimally-structured heterogeneous logs : An
experimental study of log template extraction and anomaly detection
based on recurrent neural network and naive bayes.” Master’s thesis,
KTH, School of Computer Science and Communication (CSC), 2016.

[13] E. Maldonado, E. Shihab, and N. Tsantalis, “Using natural language
processing to automatically detect self-admitted technical debt,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[14] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” in Proceedings 16th Annual International Conference
on Automated Software Engineering (ASE 2001), Nov 2001, pp. 107–
114.

[15] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in 11th Working
Conference on Reverse Engineering, Nov 2004, pp. 214–223.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[17] A. Oliner, “What supercomputers say: A study of five system logs,” in
Proceedings of DSN 2007, 2007.

[18] K. Rieck and P. Laskov, “Detecting unknown network attacks using
language models,” in Proceedings of the Third International Conference
on Detection of Intrusions and Malware & Vulnerability Assessment,
ser. DIMVA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 74–90.

[19] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,”
in 27th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27, 2016,
2016, pp. 196–206.

[20] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “Topicxp: Exploring
topics in source code using latent dirichlet allocation,” in 2010 IEEE
International Conference on Software Maintenance, Sept 2010, pp. 1–6.

[21] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Salsa:
Analyzing logs as state machines,” in Proceedings of the First USENIX
Conference on Analysis of System Logs, ser. WASL’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 6–6.

[22] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations
Management (IPOM 2003) (IEEE Cat. No.03EX764), Oct 2003, pp.
119–126.

[23] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto,
“Online failure prediction in cloud datacenters by real-time message
pattern learning,” in Cloud Computing Technology and Science (Cloud-
Com), 2012 IEEE 4th International Conference on, Dec 2012, pp. 504–
511.

[24] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 117–132.

[25] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining,
ser. KDD ’05. New York, NY, USA: ACM, 2005, pp. 499–508.

[26] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack, “Sentiment analyzer:
extracting sentiments about a given topic using natural language pro-
cessing techniques,” in Third IEEE International Conference on Data
Mining, Nov 2003, pp. 427–434.

10

