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Abstract—A suboptimal algorithm to fixed-interval and fixed-
lag smoothing for Markovian switching systems is proposed.
It infers a Gaussian mixture approximation of the smoothing pdf
by combining the statistics produced by an IMM filter into an
original backward recursive process. The number of filters and
smoothers is equal to the constant number of hypotheses in the
posterior mixture. A comparison, conducted on simulated case
studies, shows that the investigated method performs significantly
better than equivalent algorithms.

Index Terms—Nonlinear Markovian switching systems; Inter-
acting Multiple Model (IMM) filtering and smoothing; Rauch-
Tung-Striebel formulae; Target tracking.

I. INTRODUCTION

MANY estimation or change detection problems are
stated in the context of discrete-time jump Markov

systems. Such systems are described by a bank of state space
models, sharing the same state vector and corresponding to
admissible modes of operation, together with a finite-state
Markov chain featuring the transitions between modes. At each
time k, the exact posterior probability density function (pdf)
of the state vector conditioned on the measurements up to
time k′ comes as a mixture of the set of all posterior pdfs
conditioned on the observations up to k′ and on the possible
mode sequences up to k, weighted by the posterior probability
of these mode sequences. The computational complexity thus
grows exponentially with k, so that approximations are needed
to make the problem tractable [1][2].

In the filtering context, i.e. when k = k′, the number of
hypotheses composing the above mixture can be reduced
by merging those ones which are conditioned on similar
mode sub-sequences up to time k−n. Generalized Pseudo-
Bayesian filters of order n (GPBn) fall into this paradigm.
For a bank of M models, they involve Mn filters. However,
the most standard approach is undoubtedly the Interacting
Multiple Model (IMM) filter [3], which propagates over time a
M-hypotheses Gaussian mixture approximation to the posterior
pdf at the complexity of GPB1, but with a performance similar
to GPB2. Though initially designed for linear jump Markov
systems, GPBn and IMM are widely used in the nonlinear case
[4][5]. They can rely on extended [6] or unscented [7] (mode-
conditioned) Kalman filters, or can be applied to non-Gaussian
state-space models with particle filters [8]. IMM filtering
is still an active research area, see for instance its recent
independent extensions to heterogeneous-order models, i.e. to
models which share only parts of their state vectors [9][10].

Fixed-interval smoothing refers to estimating the posterior
pdf of the state vector at each time k when measurements are
assimilated over a fixed interval of length T ≥ k. In contrast,
fixed-lag smoothing considers the estimation of the state
posterior pdf at each time k from measurements up to k+n,
where n denotes the fixed lag length. Smoothing constitutes
a fundamental problem as it helps to improve the estimation
performance in comparison to filtering, though at the cost of
some delay. In the field of target tracking for instance, deliver-
ing a location estimate by assimilating subsequent observations
drastically reduces the associated error [11]. In the single-
model non-Gaussian case, many schemes were considered, ei-
ther based on particle filters [12], [13], [14], [15] or within the
Random Finite Set paradigm [16]. Under Gaussian or Gaussian
sum approximations with jump Markov systems, closed-form
solutions to fixed-interval smoothing were proposed in [17],
[18], [19].

The aim of this work is to show how the quantities produced
by a forward-time IMM filter up to time k′ enable a closed-
form approximation of the smoothing posterior density at
times k < k′ by requiring only M filters/smoothers for a bank
of M models. The proposed method extends the papers [20],
[21] in that it enriches the original algorithm. In compari-
son, [18], [17] run M2 smoothers for a bank of M models.
Ref. [19] runs M smoothers but displays significantly lower
performances than the investigated method.

The paper is organized as follows. Section II states a fixed-
interval multiple model smoothing problem. Then, Section III
reviews the theoretical foundations of the proposed strategy
and positions it with respect to the literature. The main
result, i.e. a constructive IMM-based fixed-interval smoothing
algorithm, constitutes Section IV. Fixed-lag smoothing is con-
sidered in Section V. After simulation examples in Section VI
comparing the proposed method to the equivalent existing
algorithms [17], [18], [19], the paper ends with a conclusion
and prospects.

II. PROBLEM STATEMENT

Notations are standard. (.)T denotes the transpose operator.
P(.), p(.) and E[.] respectively term a probability, a probability
density function (pdf), and an expectation. N (x̄,X) stands for
the (real) Gaussian distribution with mean x̄ and covariance X
and N (x; x̄,X) is the associated pdf on x. The weighted
squared norm ‖a‖2

R = aT Ra, with R a symmetric positive
definite matrix, is also referred to throughout the text.
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The considered nonlinear jump Markov system admits M
modes, which constitute the set M . At each time k, mk = j or
m j

k denotes the event that mode j ∈M is in effect during the
sampling period (tk−1, tk]. The sequence of modes follows an
homogeneous finite-state Markov chain. Under the event m j

k,
the dynamics of the base (continuous) state xk and its relation-
ship with the measurement zk are described by the stochastic
nonlinear state space model

xk = f j
k−1(xk−1)+q j

k−1, zk = h j
k(xk)+ r j

k, (1)

where f j
k−1(.), h j

k(.) are given and q j
k−1,r

j
k account for dynam-

ics and measurement noises. The global (hybrid) state vector
at time k will henceforth be termed ξk = (xk,mk). ξ

j
k will stand

for (xk,m
j
k).

The (given) initial and transition probabilities of modes are

P(m j
0) = µ

j
0 ; P(mi

k+1|m
j
k) = π ji. (2)

Similarly, conditioned on mode j, the base state vector at
initial time k = 0 and the noises are assumed jointly Gaussian
and of (given) statistics, with δk,k′ the Kronecker symbol,

∀k,k′, E

 x0|m
j
0

q j
k

r j
k′

=

 x̂ j
0|0

0

0

 ; (3)

E


 x0|m

j
0−x̂ j

0|0

q j
k

r j
k

 x0|m
j
0−x̂ j

0|0

q j
k′

r j
k′

T=
P j

0|0 0 0

0 Q j
kδk,k′ 0

0 0 R j
kδk,k′

. (4)

As a result, the pdf of the base state x0 at initial time is
a Gaussian mixture. The transition and observation densities
associated to (1) and conditioned on the active mode m j

k active
in the sampling interval (tk−1, tk] write as

p(xk|xk−1,m
j
k) = N (xk; f j

k−1(xk−1),Q
j
k−1), (5)

p(zk|xk,m
j
k) = N (zk;h j

k(xk),R
j
k). (6)

As aforementioned, a mixture with an exponentially
increasing number of hypotheses (densities) would be
required in the filtering pdf at further time k, in that
p(xk|z1:k) = ∑ j0:k∈M k+1 p(xk|m0:k = j0:k,z1:k)P(m0:k = j0:k|z1:k),
where va:b is a shortcut for the sequence va, . . . ,vb between
times a and b. A similar exponential complexity in the
number of modes occurs in the exact form of the smoothing
density, be it fixed-interval (i.e. p(xk|z1:T ), with T ≥ k ≥ 0
the fixed interval length), fixed lag (i.e. p(xk|z1:k+n), with
n≥ 1 the fixed lag length) or fixed-point (i.e. p(x j|z1:k), with
j fixed and k ≥ j).

As in the single-model case [2], two views can be adopted
for fixed-interval smoothing. Ref. [22] consists in fusing the
estimates and covariances produced by a forward conventional
IMM filter and a modified backward IMM filter. Some dif-
ficulties lie in the need to set an inverse dynamics model,
especially if (1) is nonlinear, and initialize the backward filter
with a flat prior so as to prevent the assimilation of common
data into both filters. More recently [18] proposed a second
smoothing scheme based on a GPB2 running M2 forward
filters whose estimates are recombined through a Rauch-
Tung-Striebel (RTS) backward-time recursion [23] with M2

smoothers. In comparison to the above two-filter strategy, this
approach allows the use of non-invertible dynamics models.
Moreover the backward-time pass is simply initialized with
the filtered estimate at the end of the fixed interval. This
paper rather follows this alternative viewpoint of IMM-based
smoothing through RTS backward-time recursions.

III. THEORETICAL FOUNDATIONS

This section thoroughly reviews the theoretical foundations
of the Interacting Multiple Model filtering and of the possible
fixed-interval smoothing backward-time recursions.

A. The Interacting Multiple Model filter

The recursion cycle of the celebrated IMM filter was first
outlined in [3]:

1) ∀i ∈M ,{P(m j
k|z1:k)} j∈M

Prediction−−−−−→ P(mi
k+1|z1:k)

2) ∀i ∈M ,{p(xk|m j
k,z1:k)} j∈M

Interaction−−−−−−→ p(xk|mi
k+1,z1:k)

3) ∀i ∈M , p(xk|mi
k+1,z1:k)

Prediction−−−−−→ p(xk+1|mi
k+1,z1:k)

4) ∀i ∈M , p(xk+1|mi
k+1,z1:k)

Update−−−−→ p(xk+1|mi
k+1,z1:k+1)

5) ∀i ∈M ,P(mi
k+1|z1:k)

Update−−−−→ P(mi
k+1|z1:k+1)

The first step of the cycle should be read as “Compute
the predicted mode probability P(mi

k+1|z1:k) ∀i ∈ M at
time k + 1 from the set of posterior mode probabilities
{P(m j

k|z1:k)} j∈M at time k”, and so forth. The IMM
filter enables the propagation over time of approximations
to the mode probabilities {µ j

k|k ≈ P(m j
k|z1:k)} j∈M and

of Gaussian approximations to the mode-conditioned
filtering pdfs {p(xk|m j

k,z1:k) ≈ N (xk; x̂ j
k|k,P

j
k|k)} j∈M , so

that p(xk|z1:k) ≈ ∑ j∈M µ
j

k|kN (xk; x̂ j
k|k,P

j
k|k). Its reasonable

complexity comes from its internal computation of the mixing
probabilities {µ j|i

k|k ≈ P(m j
k|m

i
k+1,z1:k)}(i, j)∈M×M , from

which Gaussian approximations to the mode-conditioned
prior pdfs {p(xk|mi

k+1,z1:k) ≈ N (xk; x̄i
k|k, P̄

i
k|k)}i∈M are

deduced. Starting from these last pdfs, only M independent
filters (matched to the modes {mk+1 = i}i∈M ) need
to be run between times k and k+1 in order to
get {p(xk+1|mi

k+1,z1:k) ≈ N (xk+1; x̂i
k+1|k,P

i
k+1|k)}i∈M ,

{p(xk+1|mi
k+1,z1:k+1) ≈ N (xk+1; x̂i

k+1|k+1,P
i
k+1|k+1)}i∈M

and update {µ i
k+1|k+1 = P(mi

k+1|z1:k+1)}i∈M , leading to
p(xk+1|z1:k+1).

B. Smoothing using backward-time recursions

The posterior state densities {p(xT |mi
T ,z1:T )}i∈M and mode

probabilities {P(mi
T |z1:T )}i∈M at time T are the starting point.

Given {p(xk+1|mi
k+1,z1:T )}i∈M and {P(mi

k+1|z1:T )}i∈M , the
smoothing steps of the backward recursion can be conducted
in three ways. The first two are drawn from the existing
literature while the last one is the new approach investigated
in this paper.
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Backward smoothing recursion - SR1:

1) ∀(i, j) ∈M 2,

p(xk+1|mi
k+1,z1:T )

Smoothing−−−−−−→ p(xk|mi
k+1,m

j
k,z1:T )

2) ∀ j ∈M ,

{p(xk|mi
k+1,m

j
k,z1:T )}i∈M

Interaction−−−−−−→ p(xk|m j
k,z1:T )

3) ∀ j ∈M ,{P(mi
k+1|z1:T )}i∈M

Smoothing−−−−−−→ P(m j
k|z1:T )

This recursion cycle was proposed in [17] and [18]. It uses
a total of M2 smoothers for M admissible modes. More
specifically, step 1 writes as:

∀(i, j) ∈M 2, p(xk|mi
k+1,m

j
k,z1:T ) =

p(xk|m j
k,z1:k)

∫
xk+1

p(xk+1|xk,mi
k+1)p(xk+1|mi

k+1,m
j
k,z1:T )

p(xk+1|mi
k+1,m

j
k,z1:k)

dxk+1

where p(xk+1|xk,mi
k+1) is the transition density between k

and k + 1 associated to (1) and conditioned on the active
mode mi

k+1 at time k + 1. The densities p(xk|m j
k,z1:k) and

p(xk+1|mi
k+1,m

j
k,z1:k) are computed by a forward GPB2

filter. Finally, the smoothed density p(xk+1|mi
k+1,m

j
k,z1:T )

is approximated by p(xk+1|mi
k+1,z1:T ) so as to start the

recursion cycle.

Backward smoothing recursion - SR2:

1) ∀ j ∈M ,

{p(xk+1|mi
k+1,z1:T )}i∈M

Interaction−−−−−−→ p(xk+1|m j
k,z1:T )

2) ∀ j ∈M , p(xk+1|m j
k,z1:T )

Smoothing−−−−−−→ p(xk|m j
k,z1:T )

3) ∀ j ∈M ,{P(mi
k+1|z1:T )}i∈M

Smoothing−−−−−−→ P(m j
k|z1:T )

The major advantage over the scheme SR1 lies in a lower
computational load as M smoothers are used for M modes in
the smoothing step 2. This reduced complexity is exploited
in [19] but at the cost of strong approximations in the
development of the algorithm. Step 1 is indeed rewritten as

p(xk+1|m j
k,z1:T ) = ∑

i∈M
p(xk+1|mi

k+1,m
j
k,z1:T )P(mi

k+1|m
j
k,z1:T ).

The authors claim that in the first term of the sum “the con-
dition on m j

k [...] can be ignored due to Markov property” so
that p(xk+1|mi

k+1,m
j
k,z1:T ) = p(xk+1|mi

k+1,z1:T ) [19, Eq. 12].
Incidentally, this equality precludes the exponentially growing
complexity of the problem. It should be rather considered as
an approximation like in [17] and [18]. The development of
step 2 is then conducted using the equality [19, Eq. 11]:

∀ j ∈M , p(xk|m j
k,z1:T ) =

p(xk|m j
k,z1:k)

∫
xk+1

p(xk+1|xk,m
j
k)p(xk+1|m j

k,z1:T )

p(xk+1|m j
k,z1:k)

dxk+1.

The authors further claim that “the term p(xk+1|xk,m
j
k) [...]

corresponds to the state transition density of model m j
k”.

However, this contradicts the hypothesis of [19, Eq. 1] in
that m j

k terms the active mode that governs the state transition
between k−1 and k. This last hypothesis is used in the present
paper (see (1) and (5)) and in the cited references too.

Backward smoothing recursion - SR3: The present paper
investigates an alternative method with a linear number of
smoothers.

1) ∀i ∈M , p(xk+1|mi
k+1,z1:T )

Smoothing−−−−−−→ p(xk|mi
k+1,z1:T )

2) ∀ j ∈M ,{p(xk|mi
k+1,z1:T )}i∈M

Interaction−−−−−−→ p(xk|m j
k,z1:T )

3) ∀ j ∈M ,{P(mi
k+1|z1:T )}i∈M

Smoothing−−−−−−→ P(m j
k|z1:T )

The smoothing equation of the first step is now given by

∀i ∈M , p(xk|mi
k+1,z1:T ) =

p(xk|mi
k+1,z1:k)

∫
xk+1

p(xk+1|xk,mi
k+1)p(xk+1|mi

k+1,z1:T )

p(xk+1|mi
k+1,z1:k)

dxk+1

where p(xk|mi
k+1,z1:k) and p(xk+1|mi

k+1,z1:k) are computed
by an IMM filter. The pdf p(xk+1|mi

k+1,z1:T ) is known from
the previous recursion and p(xk+1|xk,mi

k+1) is the genuine
transition density between k and k+1 as mi

k+1 is active over
the sampling interval (tk, tk+1]. The other equations of this
algorithm are detailed in the following section.

IV. FIXED-INTERVAL SMOOTHER FOR JUMP MARKOV
SYSTEMS

As aforementioned, the aim is to approximate the smooth-
ing pdf of the jump Markov system (1)–(2)–(3)–(4) as
a M-hypotheses Gaussian mixture according to

p(xk|z1:T ) = ∑
j∈M

P(m j
k|z1:T )p(xk|m j

k,z1:T )

≈ ∑
j∈M

P(m j
k|z1:T )N (xk; x̂ j

k|T ,P
j

k|T ). (7)

For jump Markov systems, the global (hybrid) state vector
ξk is independent of zk+1:T when conditioned on ξk+1 so
that p(ξk|ξk+1,z1:T ) = p(xk,mk|xk+1,mk+1,z1:T ) is equal to
p(ξk|ξk+1,z1:k) = p(xk,mk|xk+1,mk+1,z1:k). By marginalizing
over mk, one gets the equality

p(xk|xk+1,mk+1,z1:T ) = p(xk|xk+1,mk+1,z1:k) (8)

which is conditioned only on the active mode over the sam-
pling period ending at tk+1.

All distributions are henceforth approximated by Gaussians.
From the statistics {x̂ j

k|k,P
j

k|k,µ
j

k|k} j∈M and {x̄i
k|k, P̄

i
k|k}i∈M

produced by an IMM filter at times k = 0, . . . ,T , together with
{x̂i

k+1|k,P
i
k+1|k}i∈M produced at times k+1= 1, . . . ,T , the pro-

posed algorithm recursively determines the smoothing mode-
conditioned densities {p(xk|m j

k,z1:T )≈N (xk; x̂ j
k|T ,P

j
k|T )} j∈M

and the smoothed mode probabilities {µ j
k|T = P(m j

k|z1:T )} j∈M
for k = T −1, . . . ,0.

A. Step 1 of SR3: mode-matched smoothing
Theorem 1. From the knowledge of p(xk+1|mi

k+1,z1:T ) ≈
N (xk+1; x̂i

k+1|T ,P
i
k+1|T ) and µ i

k+1|T = P(mi
k+1|z1:T ) at

time k+1, the mean and covariance of the smoothed
mixing density p(xk|mi

k+1,z1:T ) ≈ N (xk; x̄i
k|T , P̄

i
k|T ) are first

determined with the Rauch-Tung-Striebel formulae

Gi
k =Ci

k,k+1
(
Pi

k+1|k
)−1 (9)

x̄i
k|T = x̄i

k|k +Gi
k
(
x̂i

k+1|T − x̂i
k+1|k

)
(10)

P̄i
k|T = P̄i

k|k +Gi
k
(
Pi

k+1|T −Pi
k+1|k

)(
Gi

k
)T (11)
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where
Ci

k,k+1=
∫ (

xk−x̄i
k|k
)(

f i
k(xk)−x̂i

k+1|k
)T

N (xk; x̄i
k|k, P̄

i
k|k)dxk. (12)

Proof. The equations (9)-(12) can be demonstrated by fol-
lowing exactly the proof of [24, Sec. II.A] with all densities
conditioned on mi

k+1, and by using the property (8). An ap-
proximation of the integral (12) can be easily evaluated by
means of the unscented transform, as suggested in [24].

In contrast to the single-model smoother, equations (9), (10),
(11) do not end the recursion cycle because the smoothing
density of xk is conditioned on mi

k+1 instead of m j
k. The fol-

lowing interaction stage bridges the gap between the Gaussian
approximations to the mode-conditioned smoothing densities
N (xk; x̄i

k|T , P̄
i
k|T ) ≈ p(xk|mi

k+1,z1:T ) and N (xk; x̂ j
k|T ,P

j
k|T ) ≈

p(xk|m j
k,z1:T ). Two options are hereafter investigated.

B. Step 2 of SR3: a mode interaction with M2 combinations

Using the total probability theorem, the targeted
mode-conditioned smoothing density p(xk|m j

k,z1:T ) ≈
N (xk; x̂ j

k|T ,P
j

k|T ) can be expressed as a mixture of densities
conditioned on the sequence of modes over two consecutive
sampling periods, namely
p(xk|m j

k,z1:T ) =∑
i∈M

p(xk|m j
k,m

i
k+1,z1:T )P(mi

k+1|m
j
k,z1:T ). (13)

The two forthcoming theorems enable its computation.

Theorem 2. The first two moments of p(xk|m j
k,m

i
k+1,z1:T ) ≈

N (xk; x̂ ji
k|T ,P

ji
k|T ) are obtained by forward-time IMM filtering

and backward-time Rauch-Tung-Striebel recursions as follows:

x̂ ji
k|T = P ji

k|T

[(
P̄i

k|T
)−1x̄i

k|T −
(
P̄i

k|k
)−1x̄i

k|k +
(
P j

k|k
)−1x̂ j

k|k

]
, (14)

with
P ji

k|T =
[(

P̄i
k|T
)−1−

(
P̄i

k|k
)−1

+
(
P j

k|k
)−1
]−1

. (15)

Proof. Following [22], the Bayes formula and the Markov
property of the mode sequence lead to

p(xk|m j
k,m

i
k+1,z1:T ) ∝ p(zk+1:T |xk,mi

k+1)p(xk|m j
k,z1:k). (16)

Similarly, the following holds

p(xk|mi
k+1,z1:T ) ∝ p(zk+1:T |xk,mi

k+1)p(xk|mi
k+1,z1:k)

⇔ p(zk+1:T |xk,mi
k+1) ∝

p(xk|mi
k+1,z1:T )

p(xk|mi
k+1,z1:k)

, (17)

which yields the final equality

p(xk|m j
k,m

i
k+1,z1:T ) ∝

p(xk|mi
k+1,z1:T )

p(xk|mi
k+1,z1:k)

p(xk|m j
k,z1:k). (18)

All the involved densities are approximated by Gaussians. So,
the logarithm of p(xk|m j

k,m
i
k+1,z1:T ) writes as C− 1

2 J(xk), with
C a constant and

J(xk) = ‖xk− x̄i
k|T‖

2(
P̄i

k|T
)−1
−‖xk− x̄i

k|k‖
2(
P̄i

k|k
)−1
+‖xk− x̂ j

k|k‖
2(
P j

k|k
)−1
. (19)

The mean x̂ ji
k|T of p(xk|m j

k,m
i
k+1,z1:T ) is also its mode and

comes as the minimum of J(xk), which leads to (14)–(15).

Interestingly, Eq. (13) of the interaction step is common
with [22, Eq. 73] albeit [22] evaluates the smoothed estimate
x̂ ji

k|T by combining the estimates produced by a conventional
IMM filter and a backward-time IMM filter restricted to linear
systems with invertible state transition matrix. Moreover, this
backward-time IMM filter requires to be initialized at final
time T with no prior information. Note that the maximum
likelihood estimate argmaxxk p(zk+1:T |xk,mi

k+1) writes as

x̂b,i
k|k+1 = Pb,i

k|k+1

[(
P̄i

k|T
)−1x̄i

k|T −
(
P̄i

k|k
)−1x̄i

k|k

]
(20)

with
Pb,i

k|k+1 =
[(

P̄i
k|T
)−1−

(
P̄i

k|k
)−1
]−1

, (21)

and is nothing else but the “one-step backward-time predicted
estimate and error covariance” computed by the backward-
time IMM filter of [22].

Theorem 3. The smoothed mixing probabilities
{µ̄ i| j

k+1|T=P(mi
k+1|m

j
k,z1:T )}(i, j)∈M 2 involved in (13) are

expressed as

µ̄
i| j
k+1|T =

P(mi
k+1|m

j
k)p(zk+1:T |m j

k,m
i
k+1,z1:k)

p(zk+1:T |m j
k,z1:k)

=
π jiΛ ji

d j
, (22)

where the likelihood

Λ ji = p(zk+1:T |m j
k,m

i
k+1,z1:k) (23)

can be approximated by

Λ ji ≈N (∆ ji
k ;0,D ji

k ), (24)

∆
ji
k = x̂b,i

k|k+1− x̂ j
k|k, D ji

k = Pb,i
k|k+1 +P j

k|k,

and
d j = p(zk+1:T |m j

k,z1:k) = ∑
i∈M

π jiΛ ji (25)

stands for the normalizing constant.

Proof. Eq. (22) is straightforward. The approximation (24) has
been proposed in [22].

The posterior mean x̂ j
k|T and covariance P j

k|T of the mode-
conditioned smoothing density (13) are eventually computed
via their moment-matched approximations

x̂ j
k|T = ∑

i∈M
µ̄

i| j
k+1|T x̂ ji

k|T (26)

P j
k|T = ∑

i∈M
µ̄

i| j
k+1|T

[
P ji

k|T +(x̂ ji
k|T − x̂ j

k|T )(x̂
ji
k|T − x̂ j

k|T )
T
]
. (27)

These last equations end the smoothing recursion.

C. Step 2 of SR3: an alternative mode interaction with M
combinations

Instead of combining the M2 filtering densities p(xk|m j
k,z1:k)

and p(xk|mi
k+1,zk+1:T ), another option to build p(xk|m j

k,z1:T )

is to directly fuse the M filtering densities p(xk|m j
k,z1:k) and

p(xk|m j
k,zk+1:T ). This alternative option was pointed out in

the conclusion of [22], and can be solved by the following
theorem.
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Theorem 4. The backward filtering density p(xk|m j
k,zk+1:T )≈

N (xk; x̄b, j
k|k+1, P̄

b, j
k|k+1) is computed by the backward-time mixing

step
p(xk|m j

k,zk+1:T )=∑
i∈M

p(xk|mi
k+1,zk+1:T )P(mi

k+1|m
j
k,zk+1:T )(28)

where p(xk|mi
k+1,zk+1:T )≈N (xk; x̂b,i

k|k+1,P
b,i
k|k+1) and the back-

ward mixing probabilities P(mi
k+1|m

j
k,zk+1:T ) = µ

b,i| j
k+1|T are

equal to P(mi
k+1|m

j
k,z1:T ) = µ̄

i| j
k+1|T . The corresponding first

two moments of p(xk|m j
k,zk+1:T ) come as

x̄b, j
k|k+1=∑

i∈M
µ̄

i| j
k+1|T x̂b,i

k|k+1 (29)

P̄b, j
k|k+1=∑

i∈M
µ̄

i| j
k+1|T

[
Pb,i

k|k+1+(x̂b,i
k|k+1−x̄b, j

k|k+1)(x̂
b,i
k|k+1−x̄b, j

k|k+1)
T].(30)

Proof. Eq. (28) and its moment matched approximations (29)-
(30) were introduced in [22] as the mixing step of a backward
IMM filter. The equality P(mi

k+1|m
j
k,z1:T )=P(mi

k+1|m
j
k,zk+1:T )

comes from the Markov properties of the mode sequence.

Note that the mean x̄b, j
k|k+1 and the covariance P̄b, j

k|k+1 can be
obtained using (20)-(21). Eventually, the recursion is closed
with the combination of p(xk|m j

k,z1:k) and p(xk|m j
k,zk+1:T ), as

follows.

Theorem 5. The mean and the covariance of the smoothed
density p(xk|m j

k,z1:T )≈N (xk; x̂ j
k|T ,P

j
k|T ) are

x̂ j
k|T=P j

k|T

[(
P j

k|k
)−1x j

k|k +
(
P̄b, j

k|k+1

)−1x̄b, j
k|k+1

]
(31)

P j
k|T=

[(
P j

k|k
)−1

+
(
P̄b, j

k|k+1

)−1
]−1

. (32)

Proof. By Bayes formula, the density p(xk|m j
k,z1:T ) can be

rewritten as

p(xk|m j
k,z1:T ) ∝ p(xk|m j

k,z1:k)p(zk+1:T |xk,m
j
k).

Following a reasoning similar to proof of Theorem 2 and using
the fact that the model-conditioned likelihood p(zk+1:T |xk,m

j
k)

is equal to N (xk; x̄b, j
k|k+1, P̄

b, j
k|k+1), (31) and (32) hold.

D. Step 3 of SR3, smoother output and algorithm implemen-
tation

The posterior smoothed mode probability µ
j

k|T = P(m j
k|z1:T )

of mode j at time k is given by

µ
j

k|T =
p(zk+1:T |m j

k,z1:k)P(m
j
k|z1:k)

∑
j∈M

p(zk+1:T |m j
k,z1:k)P(m

j
k|z1:k)

=
d jµ

j
k|k

∑
j∈M

d jµ
j

k|k
. (33)

For output purposes, the overall smoothing density p(xk|z1:T )
in (7) can then be approximated by its moment-matched Gaus-
sian pdf N (xk; x̂k|T ,Pk|T ), where

x̂k|T = ∑
j∈M

µ
j

k|T x̂ j
k|T (34)

Pk|T = ∑
j∈M

µ
j

k|T

[
P j

k|T +(x̂ j
k|T − x̂k|T )(x̂

j
k|T − x̂k|T )

T
]
. (35)

For detection issues, the MAP mode estimate ĵk at time tk
writes as

ĵk = argmax
j=1,...,M

µ
j

k|T . (36)

Importantly, the covariance Pb,i
k|k+1 may not be defined

during the first steps of the backward recursion because(
Pb,i

k|k+1

)−1
=
(
P̄i

k|T
)−1−

(
P̄i

k|k
)−1 may not be invertible. This

situation occurs when the size of the measurement vector zk
is smaller than that of the state vector xk and/or when the
assimilated measurements do not carry enough information to
provide an estimate x̂b,i

k|k+1 and to endow Pb,i
k|k+1 with finite

eigenvalues. In this case, the density N (.;0,D ji
k ) can be

viewed as a flat prior. Therefore, the smoothed mixing proba-
bilities and the posterior mode probabilities are approximated
by µ̄

i| j
k+1|T ≈ P(mi

k+1|m
j
k,z1:k) = π ji for all indexes i, j, and to

µ
j

k|T ≈ µ
j

k|k for all j until
(
Pb,i

k|k+1

)−1 becomes nonsingular.
The complete mode-conditioned smoothing and interaction

steps expressed in Theorems 1 to 5 are summarized in
Algorithm 1. For clarity, the details of the interaction step
are presented separately in Algorithm 2 for M2 combina-
tions (Interaction 1) and in Algorithm 3 for M combinations
(Interaction 2). Interestingly, Interaction 2 is computationally
cheaper. While the first option uses O(M2) matrix inver-
sions, Interaction 2 requires only O(M) of them to build
p(xk|m j

k,z1:T ). Nevertheless, Interaction 2 absolutely requires
that x̂b,i

k|k+1 and Pb,i
k|k+1 of (20)-(21) are explicitly defined. Thus,

whatever the selected interaction type, the first recursion steps
of the complete algorithm have always to be performed with
Interaction 1 until

(
Pb,i

k|k+1

)−1 becomes invertible.

V. EXTENSION TO FIXED-LAG SMOOTHING

Even when real-time processing is required, a smoothed
estimation of the system state vector can be provided with
a small delay by means of a fixed-lag smoother. For the
single model case, the fixed-lag smoothing pdf p(xk|z1:k+n)
at time k, with n≥ 1 the lag length, can be obtained via
two approaches. The first method boils down to building an
augmented state vector Xk+n as the concatenation of the state
vectors between k and k+n, i.e. Xk+n = (xT

k+n, . . . ,x
T
k )

T [2].
The smoothed state estimate is then computed by running a
filter on the augmented state, prior to selecting the part which
corresponds to xk. The dynamics and observation models
need to be extended so as to comply with the augmented
state vector, and the Kalman filter needs to be modified as
proposed in [2, Eq. 8.66 to 8.70] to keep a computation load
linearly growing with n. The second solution [24] is to use
directly the Rauch-Tung-Striebel smoother equations over the
interval beginning at k and ending at k+n. Once the filtered
state estimate at time k+n is known, a Rauch-Tung-Striebel
recursion is launched for k + n− 1, . . . ,k as a simple post-
processing. For this solution too, the computation load grows
linearly with the lag length.

In the framework of jump Markov systems, the most in-
vestigated solution is state augmentation. This approach is
used in [25] with a basic linear IMM filter applied to a state
augmented jump Markov system. Interestingly, the density of
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Algorithm 1 ONE STEP OF THE FIXED-INTERVAL SMOOTHER FOR JUMP MARKOV SYSTEMS[
{x̂ j

k|T ,P
j

k|T ,µ
j

k|T } j∈M

]
= FIXED-INTERVAL-IMM-SMOOTHER

(
{x̂i

k+1|T ,P
i
k+1|T ,µ

i
k+1|T }i∈M ,{x̂ j

k|k,P
j

k|k,µ
j

k|k} j∈M ,{x̄i
k|k, P̄

i
k|k}i∈M ,{x̂i

k+1|k,P
i
k+1|k}i∈M

)
1: FOR i ∈M DO {1. Mode-matched smoothing}
2: Smoother gain: Gi

k =Ci
k,k+1

(
Pi

k+1|k
)−1 where Ci

k,k+1 =
∫ (

xk−x̄i
k|k
)(

f i
k(xk)−x̂i

k+1|k
)T

N (xk; x̄i
k|k, P̄

i
k|k)dxk .

3: Smoothed mixing mean: x̄i
k|T = x̄i

k|k +Gi
k

(
x̂i

k+1|T − x̂i
k+1|k

)
.

4: Smoothed mixing covariance: P̄i
k|T = P̄i

k|k +Gi
k

(
Pi

k+1|T −Pi
k+1|k

)(
Gi

k

)T .
5: END FOR
6: FOR i ∈M DO {2. Mode interaction}
7: One-step backward predicted information matrix:

(
Pb,i

k|k+1

)−1
=
(
P̄i

k|T
)−1−

(
P̄i

k|k
)−1.

8: One-step backward predicted information vector:
(
Pb,i

k|k+1

)−1x̂b,i
k|k+1 =

(
P̄i

k|T
)−1x̄i

k|T −
(
P̄i

k|k
)−1x̄i

k|k .
9: FOR j ∈M DO

10: Two-mode conditioned likelihood: Λ ji ≈N (∆
ji
k ;0,D ji

k ) with ∆
ji
k = x̂b,i

k|k+1− x̂ j
k|k and D ji

k = Pb,i
k|k+1 +P j

k|k .

11: Smoothed mixing probability: µ̄
i| j
k+1|T =

π jiΛ ji
∑i π jiΛ ji

(
≈ π ji if

(
Pb,i

k|k+1

)−1 is not invertible
)

.
12: END FOR
13: END FOR
14: IF Interaction 1 is selected OR

(
Pb,i

k|k+1

)−1 is not invertible THEN

15:
[
{x̂ j

k|T ,P
j

k|T } j∈M

]
= MODE-INTERACTION-1

(
{
(
P j

k|k
)−1x̂ j

k|k,
(
P j

k|k
)−1} j∈M ,{

(
Pb,i

k|k+1

)−1x̂b,i
k|k+1,

(
Pb,i

k|k+1

)−1}i∈M ,{µ̄ i| j
k+1|T }(i, j)∈M 2

)
16: ELSE
17:

[
{x̂ j

k|T ,P
j

k|T } j∈M

]
= MODE-INTERACTION-2

(
{x̂ j

k|k,P
j

k|k} j∈M ,{x̂b,i
k|k+1,P

b,i
k|k+1}i∈M ,{µ̄ i| j

k+1|T }(i, j)∈M 2

)
18: FOR j ∈M DO {3. Smoother output}

19: Smoothed mode probability: µ
j

k|T =
d j µ

j
k|k

∑
j∈M

d j µ
j
k|k
, with d j = ∑i π jiΛ ji

(
µ

j
k|T ≈ µ

j
k|k if

(
Pb,i

k|k+1

)−1 is not invertible
)

20: END FOR
21: Overall smoothed mean: x̂k|T = ∑ j∈M µ

j
k|T x̂ j

k|T .

22: Overall smoothed covariance: Pk|T = ∑ j∈M µ
j

k|T

[
P j

k|T +(x̂ j
k|T − x̂k|T )(x̂

j
k|T − x̂k|T )

T
]
.

Algorithm 2 MODE INTERACTION WITH M2 COMBINATIONS[
{x̂ j

k|T ,P
j

k|T } j∈M

]
= MODE-INTERACTION-1

(
{ŷ j

k|k,Y
j

k|k} j∈M ,{ŷb,i
k|k+1,Y

b,i
k|k+1}i∈M ,{µ̄ i| j

k+1|T }(i, j)∈M 2

)
1: FOR i ∈M DO {1. Combination}
2: FOR j ∈M DO
3: Two-mode conditioned smoothed covariance: P ji

k|T =
[
Y b,i

k|k+1 +Y j
k|k

]−1
.

4: Two-mode conditioned smoothed mean: x̂ ji
k|T = P ji

k|T

[
ŷb,i

k|k+1 + ŷ j
k|k

]
.

5: END FOR
6: END FOR
7: FOR j ∈M DO {2. Mixing}
8: Mode-conditioned smoothed mean: x̂ j

k|T = ∑i∈M µ̄
i| j
k+1|T x̂ ji

k|T .

9: Mode-conditioned smoothed covariance: P j
k|T = ∑i∈M µ̄

i| j
k+1|T

[
P ji

k|T +(x̂ ji
k|T − x̂ j

k|T )(x̂
ji
k|T − x̂ j

k|T )
T
]
.

10: END FOR

the augmented state p(Xk+n|mr
k+n,z1:k+n) is conditioned on the

model mr
k+n running at k+n so that the smoothed estimate

of xk is also conditioned on mr
k+n. A nonlinear solution is

proposed in [11], where an IMM filter is based on a bank
of Unscented Kalman filters (UKFs). The authors show how,
thanks to the fact that the corresponding augmented state
models are partially linear, the unscented transform underlying
the UKF can be performed with the same reduced number of
sigma points whatever the lag length n. A fixed-lag smoother
for linear jump Markov systems using an IMM filter without
state augmentation was proposed by [26] for n = 1 only, and
by [27] for arbitrary lag lengths but under the assumption that
there are no model jumps over the interval (k,k+n].

In light of Section IV, the fixed-lag smoothed estimate
at time k can be obtained by simply applying the two-step
recursion—Rauch-Tung-Striebel smoothing and mode interac-
tion SR3—for k+n−1, . . . ,k after the IMM filtering has been
performed until time k+n. As already stated, this approach

can be considered as an independent additional processing
on the real time filtered estimates and does not require any
change to the existing models. The smoothed estimate at k is
conditioned on m j

k instead of mr
k+n as for the augmented state

approach, and model jumps are taken into account over the in-
terval (k,k+n] through the mode interaction stage. Notice that
in Algorithm 1, the smoother gain Gi

k, the inverses
(
P̄i

k|k
)−1

and
(
P j

k|k
)−1, the products

(
P̄i

k|k
)−1x̄i

k|k and
(
P j

k|k
)−1x̂ j

k|k may be
precomputed and stored while performing the IMM filtering
in order to get a faster implementation of the multiple-model
fixed-lag smoothing recursion.

VI. SIMULATION EXAMPLES

A. Fixed-interval smoothing

A simulated 2D target tracking example is presented to
examine the estimation errors and the posterior mode prob-
abilities produced by the proposed Interactive Multiple Model
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Algorithm 3 MODE INTERACTION WITH M COMBINATIONS[
{x̂ j

k|T ,P
j

k|T } j∈M

]
= MODE-INTERACTION-2

(
{x̂ j

k|k,P
j

k|k} j∈M ,{x̂b,i
k|k+1,P

b,i
k|k+1}i∈M ,{µ̄ i| j

k+1|T }(i, j)∈M 2

)
1: FOR j ∈M DO {1. Backward IMM mixing}
2: Mixing backward predicted mean: x̄b, j

k|k+1 = ∑i∈M µ̄
i| j
k+1|T x̂b,i

k|k+1.

3: Mixing backward predicted covariance: P̄b, j
k|k+1=∑i∈M µ̄

i| j
k+1|T

[
Pb,i

k|k+1+(x̂b,i
k|k+1−x̄b, j

k|k+1)(x̂
b,i
k|k+1−x̄b, j

k|k+1)
T ].

4: END FOR
5: FOR j ∈M DO {2. Combination}
6: Mode-conditioned smoothed mean: x̂ j

k|T =
(
P̄b, j

k|k+1

)−1x̄b, j
k|k+1 +

(
P j

k|k
)−1x̂ j

k|k .

7: Mode-conditioned smoothed covariance: P j
k|T =

[(
P̄b, j

k|k+1

)−1
+
(
P j

k|k
)−1
]−1

.
8: END FOR

Rauch-Tung-Striebel (IMM-RTS) smoother. In order to com-
pare it with [22], an invertible state dynamics is considered.

The system state is defined as x =
[
x, y, ẋ, ẏ

]T where
(x,y) term the Cartesian coordinates of the target and
(ẋ= dx

dt , ẏ =
dy
dt ) stand for its velocities. The mode set con-

tains two discrete-time correlated random walks: a first one
with a high diffusion parameter D1 = 52 m2s-3 (maneuvering
mode 1) and a second one with a lower diffusion parameter
D2 = 0.52 m2s-3 (nearly Constant Velocity or CV mode 2). The
state space equations write as

xk =

(
1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

)
xk−1 +q j

k−1 (37)

and Q j
k−1 =

(
0 0 0 0
0 0 0 0
0 0 2D j∆tk 0
0 0 0 2D j∆tk

)
for j = 1,2 (38)

with ∆tk = tk− tk−1. The vector zk gathers the noisy measured
range and bearing of the target at time tk and is sampled for
k = 1, . . . ,T with period ∆tk = 5s. Thus, the output equation
common to all modes is

zk=

[ √
x2

k+y2
k

arctan( yk
xk

)

]
+rk, with Rk=diag([2502 m2,0.02rad2]). (39)

The probability transition matrix is set to(
π11 π12
π21 π22

)
=

(
0.97 0.03
0.03 0.97

)
. (40)

The target is tracked for 90 steps (or 450s) on a randomly
generated trajectory. It evolves first according to the maneu-
vering mode 1, then the nearly CV mode 2 and finally the ma-
neuvering mode 1 again. The switching times between modes
occur at the deterministic values of k = 30 and k = 60. At ini-
tial time k = 0, the prior mode probabilities are assumed equal
to each other and the initial position and velocity estimates
of the base state x0 are arbitrarily set to [2000,2000,0,0]T

with covariance P0|0 = diag([1,1,100,100]) for all modes.
The algorithm was evaluated over 50 Monte Carlo runs.
An example of trajectory is displayed in Fig. 1. Our IMM
smoother is compared to the IMM/GPB2 filtering solutions [3],
[28], the GPB2-RTS smoothing solution [29], the IMM-RTS
smoothing solution [19] and the IMM two-filter smoothing
solution [22]. The latter requires a backward-time IMM filter
initialized with no prior information. As proposed by [22], the
backward initialization at final time T is performed by setting
for all modes the position estimate

[
x̂b

T |T , ŷ
b
T |T
]T and associated

Fig. 1. Example of randomly generated trajectory

covariance to the final measurement zT and its covariance;
the final velocity estimate

[
ˆ̇xb

T |T ,
ˆ̇yb

T |T
]T is set to 0 with the

arbitrary large associated covariance matrix 106I2 m2s-2; the
modes are assumed equiprobable at the terminal time.

In Table I, the time-averaged empirical root-mean-square
errors (RMSE) for the position and the velocity are shown,
as well as the observed time-averaged wrong detection
probability (i.e. the average probability of selecting the wrong
mode with the MAP of (36)). These quantities are also

TABLE I
TIME-AVERAGED VALUES OF: RMSE FOR POSITION (M) AND

VELOCITY (M.S-1 ); WRONG DETECTION PROBABILITY.

Method Pos. Vel. Wrong detect.
IMM filter 221.1 26.2 0.22
GPB2 filter 221.1 26.2 0.22
IMM Two-filter smoother [22] 136.5 12.8 0.11
GPB2-RTS smoother [17], [18] 145.5 13.3 0.18
IMM-RTS smoother [19] 145.7 14.8 0.40
Our IMM-RTS smoother (Interact. 1) 135.3 12.8 0.12
Our IMM-RTS smoother (Interact. 2) 136.1 12.8 0.12

displayed for each time step of the simulation in Fig. 2(a),
Fig. 2(b) and Fig. 2(c) (only for the IMM-RTS smoother
with Interaction 1, the GPB2-RTS smoother and the IMM
two-filter smoother). The results show that our IMM-RTS
smoother is well-behaved, independently of the interaction
type, with a significant reduction of the RMSE errors in
comparison to the filtering solutions. The detection of the
active model is also more efficient. The accuracy of the
smoother is similar to the two-filter smoothing solution.
The GPB2-RTS smoother displays a lower performance
both in terms of RMSE and wrong detection probabilities.
The first reason is that the algorithm makes the crude
approximation p(xk+1|mi

k+1,z1:T ) ≈ p(xk+1|m j
k,m

i
k+1,z1:T )
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Fig. 2. Comparison of the IMM filter and the smoothers: (from top to bottom)
(a) RMSE in Position, (b) RMSE in Velocity and (c) Mode error probability.

to start each step of the backward-time recursion. In
light of section IV-B, it might be more efficient to write
p(xk+1|m j

k,m
i
k+1,z1:T ) ∝

p(xk+1|mi
k+1,z1:T )

p(xk+1|mi
k+1,z1:k)

p(xk+1|m j
k,m

i
k+1,z1:k)

and build a Gaussian approximation similarly
to Theorem 2. Secondly, the smoothed mode
probabilities are computed by using p(m j

k|z1:T ) =

∑i∈M p(m j
k|m

i
k+1,z1:T )p(mi

k+1|z1:T ) with p(m j
k|m

i
k+1,z1:T ) =∫

p(m j
k|xk+1,mi

k+1,z1:k)p(xk+1|mi
k+1,z1:T )dxk+1.

The last integral is proportional to∫
p(xk+1|m j

k,m
i
k+1,z1:k)p(xk+1|mi

k+1,z1:T )dxk+1 and is
approximated by evaluating p(xk+1|m j

k,m
i
k+1,z1:k)—whose

Gaussian estimate is provided by the GPB2 filter—at the mean
of p(xk+1|mi

k+1,z1:T ). In other words, p(xk+1|mi
k+1,z1:T ) is

assimilated to a Dirac delta function. The IMM-RTS smoother
of [19] shows RMSE and wrong detection probabilities
larger than the investigated solution too. As presented in
section III, that method is indeed based on overly strong
approximations which influence the associated algorithm.
They occur in the interaction and smoothing steps: the
equality p(xk+1|mi

k+1,m
j
k,z1:T ) = p(xk+1|mi

k+1,z1:T ) is used
and p(xk+1|xk,mk) is assumed to be the transition density
between k and k+1 instead of p(xk+1|xk,mk+1).

Concerning the respective computation times, the GPB2-
RTS smoother [17], [18] entails approximations which require
a lower number of matrix inversions, and is faster in this exam-
ple. The same holds for the IMM-RTS smoother [19], though
at the expense of a lack of theoretical soundness. Nevertheless,
the approach proposed in this paper involves a lower number
of filters and smoothers in addition to providing improved
accuracy. It is interesting when time and measurement updates
are computationally expensive.

B. Fixed-lag smoothing

The evaluation of the proposed multiple-model smoother
is completed by an example with nonlinear dynamics in the
context of fixed-lag smoothing. The algorithm is compared
in this section to the augmented state IMM smoother of [11]
(“Morelande et al.”). Two discrete-time coordinated turn (CT)
models with unknown turn rates ω j, with j = 1,2, are con-
sidered. The target evolves in 2D and the state vector is now
x =

[
x, ẋ, y, ẏ,ω

]T . The discrete-time dynamics of the CT
models [30] is given by

xk =


1

sinωk−1∆tk
ωk−1

0 − 1−cosωk−1∆tk
ωk−1

0

0 cosωk−1∆tk 0 −sinωk−1∆tk 0

0
1−cosωk−1∆tk

ωk−1
1

sinωk−1∆tk
ωk−1

0

0 sinωk−1∆tk 0 cosωk−1∆tk 0
0 0 0 0 1

xk−1 +q j
k−1 (41)

with Q j
k−1 = diag([σ2

x, jM,σ2
y, jM,σ2

ω, j]) and M=
(

∆t3
k /3 ∆t2

k /2
∆t2

k /2 ∆tk

)
.

For the first mode, we set σ2
x,1 = 1, σ2

y,1 = 1, σ2
ω,1 = 0 (con-

stant turn rate and nearly constant velocity mode 1) and, for
the second mode, σ2

x,2 = 100, σ2
y,2 = 100, σ2

ω,2 = 1.75×10−3

(maneuvering mode 2). The output equation is given by

zk =
(

1 0 0 0
0 1 0 0

)
xk + rk with Rk = 102I2 m2. (42)

and the probability transition matrix is identical to (40).
As previously, the trajectory and measurements are ran-

domly generated. The target is observed for 90 steps with a
sampling period of ∆tk = 1s for all k. The initial state value is
x̂0|0 =

[
0,30,0,30,0.05

]T with P0|0 = diag([10,1,10,1,0.001])
for all modes. The switching times are set to k = 30 and
k = 60. The maneuvering model is running between k = 30
and k = 60. The constant turn and velocity model is active
before k = 30 and after k = 60. Fig. 3 gives a trajectory
sample. Comparisons between the methods are performed over

Fig. 3. Example of randomly generated trajectory for coordinated turn model
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50 Monte Carlo runs. The time averaged empirical root-mean-
squared errors are plotted as a function of the time lag for the
position, the velocity and the turn rate in Fig. 4(a), Fig. 4(b)
and Fig. 4(c) respectively. The observed time averaged wrong
mode detection probability is displayed in Fig. 4(d). Regarding

Fig. 4. Comparison of the IMM filter and the fixed-lag smoothers: (from
top to bottom) (a) time averaged position RMSE, (b) time averaged velocity
RMSE, (c) time averaged turn rate RMSE and (d) time averaged wrong mode
detection probability.

the RMSE, the IMM-RTS and Morelande’s smoothers display
a similar accuracy whatever the time lag. Besides, the wrong
mode detection probabilities are higher with the IMM-RTS
smoother for time lags 1 and 2. This pitfall arises from the
impossibility to compute the smoothed mode probabilities
until

(
Pb,i

k|k+1

)−1 becomes nonsingular in the backward-time re-
cursion. As the state and measurement vector sizes are 5 and 2,
respectively, a time lag of at least 3 must be reached before

(
Pb,i

k|k+1

)−1 is invertible. After that, the smoothed probabilities
can be conveniently evaluated, and the IMM-RTS smoother
reaches a slightly better detection rate of the active mode than
Morelande’s algorithm. The IMM-RTS smoother is faster in
this example than the augmented-state implementation.

VII. CONCLUSION AND PROSPECTS

This paper investigated a suboptimal fixed-interval smooth-
ing algorithm based on a forward-time IMM filtering and a
backward-time recursive process. Each recursion consists of
a smoothing step and involves Rauch-Tung-Striebel equations
adapted to jump Markov systems together with a specific in-
teraction step to allow mode cooperation. The first smoothing
stage runs only M Rauch-Tung-Striebel smoothers in parallel,
each one being conditioned on one of the M possibly active
modes within the sampling period (tk, tk+1]. Its results are then
combined with interactions related to the M2 admissible pairs
of models over the successive sampling periods (tk−1, tk] and
(tk, tk+1]. Two complementary combination types are investi-
gated, the second one being computationally cheaper. The re-
cursions SR3 introduced above are not approximations: Step 1
is derived without approximations (end of Section III-B), the
exact equation for Step 2 is (14) and Step 3 comes from
(33). Approximations are only done when deriving a tractable
solution by assuming that the pdf is Gaussian. In contrast,
SR1 and SR2 consider approximations both in the recursion
cycle and for the shape of the pdf. An example of tracking
of a maneuvering target shows that the proposed smoother
performs significantly better than the IMM filter [3], the GPB2-
RTS smoother [29], the IMM-RTS smoother [19] and equally
well as the two-filter based scheme [22]. Unlike the latter,
the proposed algorithm is suited to nonlinear dynamics and
measurement equations. In the context of fixed-lag smoothing,
comparisons with the solution of [11] displayed a similar
accuracy and a better detection of the active mode for a
sufficiently large time lag.

Future work will concentrate on adapting the proposed ap-
proach to a bank of heterogeneous-order models, i.e. to models
which share only parts of their respective state vectors [9][10].
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