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Abstract

This paper evaluates and compares different hyper-
parameters optimization tools that can be used in any vi-
sion applications for tuning their underlying free parame-
ters. We focus in the problem of multiple object tracking,
as it is widely studied in the literature and offers several
parameters to tune. The selected tools are freely available
or easy to implement. In this paper we evaluate the impact
of parameter optimization tools over the tracking perfor-
mances using videos from public datasets. Also, we discuss
differences between the tools in term of performances, sta-
bility, documentation, etc.

1. Introduction

Multiple Object Tracking (MOT) is a popular topic
due to its applicability in different areas such as human-
machine interaction, activity recognition, robotics, surveil-
lance, among others. Many proposals with different
schemes and strategies have emerged to solve the challenges
that the topic has to offer. At the same time, some communi-
ties provide frameworks, e.g. MOTChallenge [11], to eval-
uate, fairly, multiple people tracking algorithms. Among all
the ranked strategies, it can be difficult to determine when-
ever it is an improvement of the tracking strategy or a better
tuning of the free parameters.

The evaluation and comparison of the tracking ap-
proaches can be done through several performance eval-
uation metrics such as CLEAR-MOT [3]. However, the
tracker’s performances are tuning dependent [13]. Find-
ing the optimal free parameters that optimize the evalua-
tion metrics is an issue. When the number of parameters is
small, tuning could be achieved manually. However, when
more parameters are involved in the process, hand-tuning is
not satisfactory due to time consumption and the require-
ment of expert knowledge. They are multiple approaches
that studied the influence of free parameters (online/offline)
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in their proposals. Besides, we focus here on the evaluation
and comparison of several well-known hyper-parameters
optimization tools. Particle filter based tracking propos-
als commonly involve the usage of several free parameters
[1]. The performances of such approaches can be character-
ized by one or several metrics, which could be considered
as cost functions to be minimized or maximized following
an optimization scheme. The literature exhibits different
schemes such as stochastic optimization, model-based op-
timization, among others that can help to find the optimal
hyper-parameters for different kind of tracking approaches.

In this paper, we analyze some well-known hyper-
parameter optimization tools for tracking purpose. Parame-
ter tuning is relevant for the majority of tracking propos-
als since, in most cases, parameter setting is done man-
ually, which can lead to sub-optimal or even biased re-
sults. We present tools, some of free code and others
easy to implement, for the different methods of optimiza-
tion shown, which can be used for anyone. We evalu-
ate their performances and make a quantitative comparison
between the different tools considering the computational
time, CLEAR-MOT based performances, stability and their
ease of use. To our best knowledge, no studies have been
proposed in the visual tracking community while these tools
are essential for a fine tuning.

The paper is organized as follows: section 2 describes
the considered application i.e. multi-camera MOT tracking,
and the set of parameters to be optimized. Section 3 de-
scribes the optimization methods selected for the study. In
section 4 these tools are described from the implementation
point of view. In section 5 we show both quantitative and
qualitative evaluations. Conclusions are drawn in section 6.

2. Study case

In this paper, we compare different hyper-parameters op-
timization tools with respect to a specific study case. This
study could be done for any other applications with any cost
functions, e.g. CLEAR-MOT [3] metrics, to evaluate their
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performances. Nevertheless, the relevance is more reflected
when they are enough parameters to optimize. Therefore,
we focus on MOT for pedestrian tracking in a multiple over-
lapping cameras environment. This is due to this kind of
application offers several parameters to optimize as well as
being widely discussed in the literature [9]. The parameter
set is optimized with respect to the tracker accuracy mea-
sure defined in CLEAR-MOT [3].

Given an input video stream from k-synchronized cam-
eras, our framework is as follows: first we perform people
detection on each camera frame, illustrated as d1,d2, ..., dl
on Fig. 1. Then, those detections are projected to the ground
plane thanks to the predefined camera calibration. Due to
detector precision problems and camera calibration quality,
different detections of a same person are not projected at the
same position on the floor. For this reason we perform a fu-
sion over the detections.Fig. 1 illustrates the following case:
three people are detected by the cameras, but seven detec-
tions, represented by colored crosses, are projected to the
ground plane. The color of each cross indicates the camera
in which the individual has been detected, and the circles
represent their fusion.

The fusion of different detections, corresponding to the
same person seen by multiple cameras, is done based on the
Euclidean distance on the ground plane. The appearance
similarity is measured using Bhattacharya distance [4]. The
fusion is done using an association strategy. The idea is
to associate the detections that have the minimum distance,
in terms of Euclidean distance and appearance similarity.
We use the Hungarian algorithm [10] to find minimum cost
matches. In order to reduce the computational cost, we only
consider the detections that are close to each other. In the
case of two detections being sufficiently remote from one
another, above a previously defined threshold for each dis-
tance, they are not considered in the association process.
When all detections from the k-cameras are merged on the
ground floor, they are linked to existing tracks. We solve
this association problem in a similar way than before. Once
again, we use the Euclidean and an appearance-based dis-
tance thresholds to measure the score affinity between de-
tections and trackers. Tuning of those four threshold pa-
rameters is identified to be crucial regarding the tracking
performances.

Once this process is done, we use the associations as ob-
servations for the tracking module, see Fig. 1. We follow a
decentralized particle filter strategy in the vein of [6]. When
an observation is not associated with an existing track, we
create a new tracker. The particles are propagated on the
ground plane. The appearance model is learned by project-
ing the track position back into the k images. The likelihood
of particles is calculated in the same way. However, if back
projection is outside of the image place or if the target is
occluded by other, by calculating the overlapping between
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Figure 1: Workflow of our multi-cameras pre-tracking pro-
cess.

projections and leaving only the closer one, then likelihood
estimation is omitted in that camera. Thus, we have as pa-
rameters to tune: the number of particles, the distance con-
sidered for their propagation, and two weights in the like-
lihood computation. This study case provides parameters
related to the data fusion of multiple cameras in addition to
parameters specific to the tracker. To summarize, 8§ param-
eters are being optimized, and the 8-components vector is
called X in the next section.

3. Hyper-optimization methods

In our analysis, we focus on complementary tuning
methodologies: model free vs. model based.

3.1. Model-free optimization methods: example of
MCMC

Model-free configuration techniques are generally clas-
sical methods that benefit from a large theoretical study
since the 90s [14]. Those are relatively simple and can
be applied out-of-the-box [8]. This is a decent base since
our evaluation focuses on the influence of tools over perfor-
mances and also their handiness.

Markov Chain Monte Carlo optimization

The Markov Chain Monte Carlo (MCMC) is a stochastic
method based on sampling that can determine, by construct-
ing a Markov Chain, the optimal values of a given function.
These methods are widely used to calculate numerical ap-
proximations of complex functions because it only requires
a prior distribution to estimate a new set of parameters from
the previous ones. They do not require to estimate the gradi-
ent, which depends on the parameters, and can handle local
minima/maxima. In literature, they are different strategies
to apply the MCMC method. We estimate the optimal pa-
rameters by following the Metropolis-Hastings (MH) algo-
rithm [5]. In a Bayesian context, the parameters follow a



unknown distribution which it can be approximated using a
prior distribution. In our case, we use a normal distribution.

The Metropolis-Hastings strategy works as follow: in an
iteration, a proposal A* is generated from the given Gaus-
sian distribution, with mean in the current estimated param-
eters A and a fixed variance. Then, a given function f is
evaluated with the new parameters. If the proposal improves
function value, those parameters are accepted and used in
the next iteration. Otherwise, we accept the parameters with
a certain probability (given by a uniform distribution). More
details about the formalism can be found in [5].

3.2. Model-based optimization methods

More recent methods propose to build a model to select
the optimal hyper-parameters, in a defined search space,
based on previous measurements. All through evaluation
iterations, new values for the parameters are defined based
on this model. This class of methods is called Sequential
Model Based Optimization (SMBO) [8].

SMBO algorithms have been used in particular when the
evaluation of the cost function f is expensive, as in our case
since we need to apply the tracking system over a sequence.
We choose two SMBO tools based on their popularity and
availability of open-source code. Both are described below.

Sequential Model-based Algorithm Configuration

Sequential Model-based Algorithm Configuration [8]
(SMAC) is a machine learning optimization method. The
main idea is to make progressively better estimations of the
parameters, in contrast of MCMC which can accept param-
eters that decrease the performance of the cost function.

In general, SMAC builds a probabilistic model p(f | A)
that captures the dependence between function f and the
hyper-parameter A. This model is constructed using a re-
gression random forest. This allows SMAC to work with
noisy functions regardless the dimensionality of the param-
eter. At first, SMAC construct a random forest with a set of
regression trees. For each tree, a set of proposal parameters
are sampled from a uniform distribution in a given finite
range. Then, the tree is built by splitting the samples ac-
cording to one (randomly selected) parameter of A. This
is done until a minimum number of samples per branch is
reached. The standard “expected improvement (EI)” crite-
rion is used to select promising configurations and then a
local search is used to find the configuration with the high-
est EI values. Finally, the best configuration is compared
to the previous one. If the new proposal improves the cost
function, then it is accepted and the built tree is used in the
next iteration. SMAC is robust to different kind of func-
tions and parameters. This is important since we can not
warranty the smoothness of the cost function.

Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator [2] (TPE) is also a
SMBO-based approach. The main idea is similar to the two
previous method, but this proposal does not require initial
values or training sets. At each iteration, TPE draws new
parameter samples and decides which set to try in the next
iteration. At the beginning, samples A are drawn, uniformly
over the search area, and evaluated according to function f.
Then, the collected samples are divided in two groups ac-
cording to their score in the cost function f: the first group
contains samples that improve the current score estimation
and the second the remaining. These groups are used to
model the likelihood probability : ¢(\) and [(\) respec-
tively. Both density estimator have a hierarchical structure
and are modeled using a 1-D Parzen estimator.

The key idea is to find the set of parameters that are most
likely to be in the first group. Therefore, at each iteration,
new samples of g(\) are extracted and the one with the
highest improvement is used in the next iteration. The Ex-
pected Improvement is defined by EI(x) = % We can
observe that TPE uses the distribution of the best samples
instead of relying on the best estimated parameters.

4. Associated tools

SMAC [8] is a publicly available tool to optimize config-
uration parameters. We use the stable release SMAC (v2) in
Java !. Authors provide a quick installation guide to setup
the environment efficiently, as well as an extensive manual.
This tool is widely used in different contexts with up to 412
citations at this time. In this tool we need to define two files:
a parameter file and a scenario file. The parameter file de-
fines the parameters set (named \) to evaluate, defining their
type, range and initial value. The scenario file specifies: (1)
the target algorithm to run, (2) the target parameter file and
(3) optimization options, e.g. the number of iterations.

The TPE [2] tool is publicly available in the Optunity li-
brary 2. It can be installed for a wide range of environments
such as: Python, MATLAB, Octave, R, Julia, and Java. Op-
tunity has a dependency on Python and it must be installed
beforehand. Both Python 2.7 and 3.x versions are compat-
ible. The TPE tool dependents on Hyperopt, other Python
library. A Python wrapper example is provided in order to
optimize a non-Python functions and the maximization of
the tracking performance is done through a function call.
The publication related to this tool has up to 316 citations
at this time.

The MCMC tool is an C++ implementation, done by us,
of the classic Metropolis-Hastings algorithm [5]. This tool
requires a variance (for the Gaussian distribution) and the

Uhttp://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/quickstart.html
Zhttp://optunity.readthedocs.io/



Figure 2: Examples of sequence S2L1 from PETS 2009
dataset [7]. Left-to-right: views from cameras 1,2,5,6 at
frame 49.

number of iterations. The latter has to be selected wisely.
This is due to an small value will not warranty the conver-
gence to an stationary value and high number of iterations
could generate an over-fitting problem.

5. Evaluations

First, we describe the data and metrics used to perform
the evaluations as well as the methodology. Then, we
present the results and we discuss them in both quantitative
and qualitative aspects.

5.1. Dataset description

The tracker is evaluated on representative sequences ex-
tracted from two public datasets: PETS 2009 [7] and UvA
Multi-Camera Multi-Person Benchmark [12]. PETS 2009
challenge aims to test existing or new systems for crowds
video surveillance. For PETS 2009 S2L1 sequence, there
are up to ten people present simultaneously recorded by
eight cameras. Four cameras are used in our evaluation: two
are place at approximatively 4 meters in a elevated position
and relatively far from targets, and two others are placed at
about 2 meters above the ground, significantly closer to the
targets. An example of these cameras views is shown on
Fig. 2. This scenario has a difficulty from medium to high
with a semi-crowded space and 20 pedestrians. Besides,
the UvA MCMPB dataset [12] contains various scenarios
recorded on a platform or in the hall of a train station. In
the considered sequence, there are two people recorded by
three cameras at a close distance. Frames from each of the
three cameras are shown on Fig. 3. Regarding the number
of people presents in the scene and their trajectories, this
sequence is considered as easy.

Both datasets are recorded by calibrated overlapping
cameras and provide ground truth of object tracking. In
total, 1296 frames are considered, 795 frames from PETS
2009 S2L1 sequence, and 501 frames from scenariol 1-1 out
of UvA MCMPB.

5.2. Experimental setup

This section describes our evaluation protocol and cri-
teria used in order to compare the aforementioned hyper-
optimization tools.

Figure 3: Examples of sequence scenarioll-1 from UvA
Multi-Camera Multi-person dataset [12]. Left-to-right, top-
to-bottom: views from cameras 1,2,3 at frame 0.

Implementation

The tracking framework is implemented as in [6] and it is
turned into a black-box function. All parameters exhibited
in section 2 ( A\ ) are set as inputs. The output is a set of op-
timal parameters that maximize a performance evaluation
metric, defined hereafter. All the three tools require to de-
fine a search space, either with lower and upper bounds, or
covariances. Additionally, SMAC and MCMC require to
set initial values, we choose the middle point of the space
search. The tools are able to call our tracking function with
any test parameters within the specified search space.

Evaluations and comparison protocol

The cost function that we use to measure the performance
is the Multiple Object Tracking Accuracy, MOTA, as de-
fined by [3]. The metric MOTA is derived from the ratio of
missed detections, false positives and mismatches over all
detected objects in the sequence with respect to a ground-
truth. This is commonly used as the key metric when com-
paring tracking methods. The MOTChallenge [11] ranked
the results, by default, in decreasing order using MOTA
metrics. In the top ten of the 2D MOT 2015 challenge 3,
all approaches achieved similar tracking precision (MOTP),
with a standard deviation of: 0.9 over 100, whereas the dif-
ference lies in the tracking accuracy, with a standard devi-
ation of: 5.3. For these reasons we optimize the MOTA
score. As we deal with multiple cameras and track people
on the floor plane, we compute a variation of the MOTA
metric for ground plane tracker provided by [12].

We use cross validation, where we optimize the parame-
ters over a training set and test them over validation sets to
avoid over-fitting and boost configurations who generalize
well. Each sequence is divided into equal parts, one part is
used for training and the rest for testing. We divide the se-
quences into ten equal parts and the first is used for training.
In our dataset, they represent fairly well the rest of the se-
quences in terms of number of people and distance between
each others. Due to the stochastic nature of the approaches,
we launch several executions of each tool, with a different
number of iterations, to evaluate its stability and speed of
convergence. Given that the function cost is expensive to

3https://motchallenge.net/results/2D_MOT_2015/



Train Test
Sequence Tool MOTA=£SD | MOTA | MOTP
UvA 11-1 SMAC 0.83£0.02 0.85 120
UvA 11-1 TPE 0.86£0.06 0.94 120
UvA 11-1 MCMC | 0.8640.05 0.90 115
PETS S2L1 | SMAC 0.331+0.03 0.36 410
PETS S2L.1 | TPE 0.33+0.05 0.35 406
PETS S2L1 | MCMC | 0.3240.05 0.35 405

Table 1: MOTA and MOTP (mm) results for SMAC [8],
TPE [2] and MCMC tools on the dataset.

evaluate, the speed of convergence is a very important fac-
tor. The test machine is a HP ZBook 15 with an Intel Core
17-4800 MQ CPU with 8 cores clocked at 2.8 GHz, 15 GB
of RAM and Linux Ubuntu 14.04.

5.3. Results

We present the results of each hyper-optimization tool
with respect to the MOTA cost function f. We compare
their overall performance as well as their CPU cost, conver-
gence speed, stability of the optimum value and available
documentation. Finally given these evaluations we propose
a ranking of the tools in Tab. 2.

An overview of the qualities observed in each tool is
shown in the summary Tab. 2 in Mean MOTA and Global
MOTA columns. In Tab. 1, we observe that MOTA max-
ima, on the train sequences, are very similar using any of
the three tools. Each optimization tool suggests different
parameter configurations. Nevertheless, in the optimized A,
they generally set a larger Euclidean distance threshold for
the fusion of detections than our initial guess. This tends
to address the accuracy problems in the camera calibration
mentioned in section 2. There are no significant changes in
the MOTP results on Tab. 1. In our case, it depends mainly
on the camera calibration precision.

The tools do not perform similarly on the test sequences,
we obtain better performances on the test set with param-
eters optimized by TPE, see Tab. 1. An overview of the
qualities observed in each tool is shown in the summary
Tab. 2 in Mean MOTA and Global MOTA columns. The
mean MOTA and the associated standard deviation vs. the
number of iterations are plotted on Fig. 4. Both SMAC and
TPE achieve convergence after about 100 iterations, which
is not the case for MCMC on Fig. 4c. Additional experi-
ments highlight that MCMC needs more iterations to con-
verge, about 800. These observations are reported on the
summary Tab. 2 in Nb of iterations.

Given Tab. 1, Fig. 4a and Fig. 4b, we observe that the
optimal parameters found by SMAC are more stable than
those found by TPE because the standard deviation is lower.

This is expressed in the column MOTA SD in Tab. 2.

Hyper-optimization tools should be easy to use and not
require much inherent tuning. In this context, we can ob-
serve that SMAC and MCMC require to define the search
space of the parameters as well as an initial value. TPE does
not require to set initial values but lower and upper limits
and the type of distribution. In this aspect, the use of TPE
is easier. The CPU cost mentioned in Tab. 2 is related to
the execution time of 1 run of 150 iterations. The TPE and
MCMC optimization tools have the advantage that can be
used like a function call. Whereas, in SMAC we need to set
the folders and files to define the search space parameters,
the scenarios and training or testing instances. Neverthe-
less, SMAC is considered as the easiest on Tab. 2 thanks to
its documentation. In addition, the wide range of examples
provided facilitates their adaptation in different approaches.

Unlike the SMAC tool, where outputs of important data
are automatically recorded in a folder with details on each
run, the TPE tool in the Hyperopt library, requires that we
handle the logging values separately.

5.4. Discussion

Among the tools, we rank SMAC as the best compromise
with respect to our evaluation criteria detailed in Tab. 2. We
consider SMAC as the easiest to use despite the number of
files to configure. Its extensive documentation and example
codes provided make it easy to set up. Also, after the fixed
number of iterations, SMAC is the tool which obtain the
smallest standard deviation in the optimization of MOTA in
the train sequence. This is important for the repeatability of
the results.

The TPE is ranked number two, this tool from the Hyper-
opt library is less accessible. It offers a wide range of pos-
sibilities but as they are less documented it makes the tool
more difficult to use. TPE achieved the convergence with
about the same number of iterations as SMAC. This fact is
crucial because each iteration is costly. Indeed, we run at
each iteration the multi-camera tracking program with pa-
rameters on the training sequence.

Finally, the MCMC tool is ranked number three. It is not
described as accessible, because it is not available in an op-
timization library and requires some implementation work.
It achieved fair results, but the main issue is regarding the
number of iterations required. Even though the execution of
one iteration almost only requires to run the tracking pro-
gram, unlike SMAC and TPE which need more computa-
tional time, the number of iterations required makes MCMC
slower.

6. Conclusions and future works

To the best of our knowledge, there are studies about
the tuning influence over the tracking performances but
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Figure 4: Mean MOTA and standard deviation over 5 runs of 150 iterations
Tool Training phase Testing phase | Accessibility || Rank
Mean MOTA | MOTA SD | Nb of iterations | CPU cost | Global MOTA
SMAC [8] + +++ ++ + ++ +++ 1
TPE [2] ++ + ++ + +++ ++ 2
MCMC ++ + + ++ ++ + 3

Table 2: Evaluation summary

no comparative studies of the optimization tools involved.
In this paper, we propose a comparative study of hyper-
parameters optimization tools for a multi-camera MOT ap-
plication with respect to performances criteria and also ac-
cessibility. This application is an example but it can be ex-
tended to other applications.

As future work we will investigate the influence of the
optimization over the metrics included in MOTA such as
the number of mismatches, false positives, among others.
We also would like to measure the robustness of the afore-
mentioned tools to the amount of data in the training set.
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