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Hybrid Adaptive Control of the Boost Converter

Sabrina Hadjeras, Carolina Albea and Germain Garcia

Abstract—This work proposes a control law for
the boost converter with unknown constant resistive
load. It focuses on Hybrid Dynamical System (HDS)
theory, which considers the voltage and current sig-
nals as continuous-time variables and the switching
signal as discrete-time variable. In several applications
the voltage has to be constant. To ensure that the
voltage value is robust with respect to any reference,
an adaptive scheme is proposed. This adaptation is ac-
complished using a state observer and assuming that
all states are accessible. Then, the full system stability
can be established by using a singular perturbation
analysis. The hybrid adaptive controller is tested in
simulations.

Index Terms—Hybrid dynamical system, adaptive
control, boost converter, singular perturbation anal-
ysis.

I. Introduction

Boost converter systems are very common in power
electronics. They allow to generate an output voltage
larger than its input one. The control problem of this
converter were largely studied by the electronic and au-
tomatic communities, by using averaged models, whose
controlled signal is generally obtained by a Pulse Width
Modulation (PWM) with fixed frequency [1],[2], gener-
ating a limitation in its performance.

Nowadays, there is another attempt to control this
kind of converter taking into account the real nature
of the system signals, that means, the fact that the
voltage and current signals are continuous-time and the
switching signals are discrete-time. This consideration
captures the switching dynamics and achieves a new
generation of converters that can operate in varying
frequency. This is the case of the sliding-mode control
[3] and hybrid dynamical control [4], [5], [6] for the boost
converter.

Some adaptive controls for the boost converter were
proposed by using also averaged models, as in [7], where
a Simple Adaptive Control (SAC) was designed by using
a proportional and integral controller. In [8], the authors
used Lyapunov design techniques. In [9],[10] adapting-
backstepping was used to update all the parameters.
On the other hand, in [11], an adaptive sliding mode
control was designed, however, and to the authors best
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knowledge, to regard that the load is unknown and
constant is not done in the context of hybrid dynamical
paradigm.

In this work, we extend the hybrid dynamical con-
troller proposed in [4], designing a hybrid adaptive con-
trol for the boost converter with unknown resistive load.
This controller must regulate the voltage in a desired
value. This adaptation is fed by a state observer designed
under the consideration that the states are measurable.
Then, uniformly locally asymptotically stability is en-
sured based on scale-time separation and using a singular
perturbation analysis

The paper is organized as follow: In Section II, a model
is defined under some assumptions and the problem is
stated. Section III is devoted to design an adaptive law
to adapt the resistive load. Section IV proposes a hybrid
dynamical control that achieves the objectives of our
problem. Section V deals with the proof of our main
result. Some simulations are performed in Section VI.
And Section V draws the conclusion and future works.

Notation: Through out the paper R denotes the set
of real numbers, Rn the n-dimensional euclidean space
and Rn×m the set of all real m×n matrices. The set Sn
denotes the set of symmetric positive definite matrices
of matrices Rn×n. Re(z) is the real part of a complex
number z. The symbol 6≡ means not identically equal.

II. Boost converter

A boost converter generates an DC output voltage
larger than its DC input. This converter is fed by a
constant voltage source, Vin, and composed of a load
filter, L,C0, a purely and resistive load, R0, and a para-
site resistance, RLS , that encompasses switching energy
dissipation and the inductance (see Fig. 1). The system
differential equations are

d

dt

[
iL(t)
vC(t)

]
=

[
−RLSL − 1

Lu
1
C0
u − 1

R0C0

] [
iL(t)
vC(t)

]
+

[
Vin
L
0

]
, (1)

where, iL is the inductance current, vC is the capacitor
voltage, which are the two continuous-time state vari-
ables. On the other side, u = {0, 1} is the control input
which is a discrete variable that takes the values u = 0
and u = 1, that correspond to the case when the switch
is OFF and ON, respectively.

Assumption 1: Let consider

• the converter current is continuous and all the com-
ponents are ideal,

• the current and voltage are accessible,



• the load R0 is unknown constant or/and slowly
variable in the interval [Rm0 , R

M
0 ].

• x2 = 0 corresponds to the starting operation mode,
and any starting strategy is used, to bring our
system to x2 6= 0.

RLS L

iL

C0 R0vc

+ +
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uVin

Fig. 1. Boost converter .

Defining β := 1
R0
∈ [βm, βM ], let rewrite (1) as follows

ẋ = Au(β)x+ a
y = Cx

(2)

where x = [x1 x2]T = [iL vC ]T and C is the identity
matrix with suited dimension. We can easily deduce the
definition of Au(β) and a from (1).

This paper focus on the design of a switching signal u,
that ensures the suitable convergence properties of both:
the voltage x2 to a desired value, x2e , for the switching
system with arbitrary switching, and the estimation of
the load β̂ to its real value, β.
Assumption 2: There exists λe = [λe,1, λe,2] satisfying

λe,1 + λe,2 = 1, such that the following convex combina-
tion holds:

2∑
i=1

λe,i(Ai(β)xe + a) = 0.

This assumption is necessary and sufficient to guarantee
the existence of a switching signal that ensures forward
invariance of the point xe.
Assumption 3: Let consider next polytope for param-

eter β:

Ω :=

2∑
m=1

λβ,mβm, for all 0 ≤ λβ,m ≤ 1,

2∑
m=1

λβ,m = 1,

where the vertices of the polytope are given by βm ∈
{βm, βM}.
Now, from [4], we assume next property of the boost
converter.

Property 1: Consider Assumption 3, then given ma-
trices Ai(β), i ∈ {1, 2} in (2) with β ∈ [βm, βM ], there
exists matrices P,Q ∈ S2 satisfying

ATi (βm)P + PAi(βm) + 2Q < 0 (3)

for all i,m ∈ {1, 2}.
Note that Property 1 assumes that all matrices ATi (βm)
are Hurwitz.

Inspired by the work in [12], this paper extends the
work presented in [4], for model (2) where parameter β,
can suffer variations.

Problem 1: The goal is to include an adaptive con-
troller in the hybrid dynamical scheme that considers
the continuous-time dynamics, x1, x2, β̂, and the discrete-
time dynamic, u, estimating β in continuous-time, at the
same time that x2 is regulated in a reference value (see
Fig. 2).
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Fig. 2. Hybrid adaptive control scheme.

III. Adaptation law

The proposed adaptation law is composed of a state
observer for the voltage x2, and an adaptation law for
parameter β, with the following structure

˙̂x2 =
1

C0
(ux1 − β̂x2) + α(x2 − x̂2) (4)

˙̂
β = g(x2, x̂2), (5)

where g(x2, x̂2) is the adaptation law to be designed, x̂2

is the estimated state of x2, β̂ is the estimated value of β
and α is a positive constant parameter, which represents
the convergence speed of the observer.

In order to achieve a mathematical expression for
g(x2, x̂2), let define the following error variables, consid-
ering β̇ = 0

x̆2 := x2 − x̂2, β̃ := β − β̂, ˙̃
β = − ˙̂

β (6)

Next, from (2) and (4), we derive the error equation of
x2

˙̆x2 = − β̃

C0
x2 − αx̆2. (7)

Now, let introduce the next candidate Lyapunov func-
tion

W =
1

2

(
x̆2

2 +
β̃2

γ

)
, (8)

where γ is constant and positive and

Ẇ = −αx̆2
2 −

x2x̆2

C0
β̃ +

β̃
˙̃
β

γ
= −αx̆2

2 + β̃

(
−x2x̆2

C0
+

˙̃
β

γ

)
.

The adaptation law is now defined by canceling the
terms in parentheses, i.e.

˙̃
β =

γx2x̆2

C0
. (9)

Remark 1: Note that, γ defines the adaptation speed,
and consequently, if γ is larger, then the adaptation speed
comes larger.



Stability properties of (7), (9) are stated in the following
lemma:

Lemma 1: Consider the system (2), and assume that
its solutions are bounded. The extended observer (7)–(9)
has the following properties:

i) The estimated states x̂2, β̂ are bounded.
ii) limt→∞ x̂2(t) = x2(t).
iii) limt→∞ β̂(t) = β, if and only if x2(t) 6= 0,∀t ≥ 0.

Proof: The observer and the adaptive law error
equations are fully defined from (7) and (9), and stability
properties of these equations follow from the Lyapunov
function W defined above. Note that with the choice (9)

Ẇ = −αx̆2
2

and from standard Lyapunov arguments, it follows that
the error variable x̆2 and β̃ are bounded. In addition
by LaSalle invariant principle and from Assumption (1),
that specifies that x2 6= 0, we easily conclude that

x̆2 → 0, which implies from (9) that
˙̃
β → 0. Likewise

from (7), and concluding from x̆2 → 0 that ˙̆x2 → 0, we
get β̃ → 0.

IV. Hybrid model and proposed control law

In this section we design an hybrid dynamical system,
following the paradigm given in [13], wherein continuous-
time behavior encompasses the evolution of x, x̂2 and
β̂ and, the discrete-time behavior captures the jump of
the switch boost converter signal, u, and the jump of a
discrete signal, q ∈ {1, 2}, which detects if the parameter
β needs to be adapted. q = 1 allows the β adaptation
and q = 2 interdicts this possibility.

We characterize the overall dynamics

H :




ẋ
u̇
˙̂x2

˙̂
β
q̇

 = f(x, u, x̂2, β̂), ξ ∈ C


x+

u+

x̂+
2

β̂+

q+

 ∈ G(x, x̂2, β̂, q), ξ ∈ D,

(10)

where ξ = [x u x̂2 β̂ q] and G is a (set-valued) map
representing the switching logic:

f(x, u, x̂2, β̂) :=


Au(β)x+ a

0
1
C0

(ux1 − β̂x2) + α(x2 − x̂2)

−γx2(x2−x̂2)
C0

0



G(x, x̂2, β̂, q) :=


x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

x̂2

β̂
3− q


(11)

and where x̃ = [x̃1 x̃2] is defined from the desired values
xe = [ie ve]

T = [xe1 xe2]T as follows{
x̃1 = x1 − xe1
x̃2 = (x2 − xe2) + (x2 − x̂2).

(12)

Inspired in [4], we select the so-called flow and jump
sets

C1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≥ ε} (13)

D1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≤ ε}, (14)

C2 :={ξ : {q = 2} and |x2 − x̂2| ≤ ε and

x̃TP (Au(β̂)x+ a) ≤ −ηx̃TQux̃}, (15)

D2 :={ξ : {q = 2} and |x2 − x̂2| ≥ ε or

x̃TP (Au(β̂)x+ a) ≥ −ηx̃TQux̃}, (16)

where D := D1 ∪ D2 and C := C1 ∩ C2, η ∈ (0, 1) and
ε > 0 is small enough.
Proposition 1: The hybrid dynamical system (10)–

(16) satisfies the basic hybrid conditions [13, Assumption
6.5], then it is well-posed.

Proof: The hybrid dynamical system (10)–(16) sat-
isfies the basic hybrid conditions because

• sets C and D are closed.
• f is a continuous function, thus it trivially is outer

semicontinuous and convex. Moreover, is locally
bounded.

• G is closed, then it also is outer semicontiunuous [13,
Lemma 5.1] and, it is locally bounded.

Finally, following [13, Theorem 6.30], we conclude that
the hybrid dynamical system is well-posed.

Now, we invokes the lemma presented in [4].
Lemma 2: Consider matrices P,Q ∈ S2 satisfying

Property 1, a point xe ∈ R2 satisfying Assumption 2.
Then for each x ∈ R2,

min
i∈K

x̃TP (Ai(β)x+ a) ≤ min
i∈K
−x̃TQix̃

The proof is given in [4].
Remark 2: We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.

Note, that if η → 0, we get to reduce the switching
frequency and on the contrary if η → 1, we increase the
switching frequency. On the other hand, if x̃ = 0, we get
arbitrary fast switches, that can be reduced using the
space regularization propose by the authors in [14].
We comment here the behavior of any solution to hybrid
system (10)–(16). Note that if any solution is in C1 or
D1, that means q = 1, the adaptation of the parameter
β is possible and, the contrary case is, if any solution is
in C2 or D2, that means q = 2. First, consider that any
solution is in C1, then the observer error x̆2 is larger than
any small and positive ε and the parameter β is adapting.
When the adaptation error of β is arbitrary small, that
means x̆2 ≤ ε, then, the solution will be in D1 and the
solution jumps. After the jump, we have q = 2 and the
solution is in C2 until that one of theses cases happens:



• |x2 − x̂2| ≥ ε: then solution is in D2 and jumps to
C1, flowing here until x̆2 ≤ ε.

• x̃TP (Au(β̂)x + a) ≥ −ηx̃TQux̃ and |x2 − x̂2| ≤ ε:
then solution is in D2, it jumps to D1 and following
the result of Lemma 2 the solution jumps again to
C2, flowing here for a time (as proven bellow).

Remark 3: Note that when |x2− x̂2| ≥ ε, any solution
to H flows in C1 with u constant. Then the state x will
flow according (1) to

iL,c =
Vin

RLS + u2R0
(17)

vC,c = uR0iL,c. (18)

Note that if u = 0, x2 converges to vC,c = 0, however

from (1), we have x2(t) = x2(0)e−
1

R0C0
t, then x2 6≡ 0,

∀t ≥ 0.

Now, following the system hybrid theory, we will estab-
lish stability properties of the given compact attractor

A := {ξ : x = xe, u ∈ {0, 1}, x̂2 = x2, β̂ = β, q ∈ {1, 2}}.
(19)

The following theorem is the main result of our paper.
and its proof is given in Section V.

Theorem 1: Consider Assumption 1,2,3 and matrices
P,Q ∈ S2 satisfying Property 1 and γ > 0. Then
attractor (19) is uniformly locally asymptotically stable
(ULAS) for hybrid system (10)–(16).

While the proof of this Theorem is given in the next
Section, let comment here the choice of matrices P and
Q. These matrices are selected following some optimiza-
tion criteria for our hybrid system. Specifically, we use [4,
Theorem 2], where some performance level is guaranteed,
then the following bound holds along any solution of the
hybrid system (10)–(16)

J ≤ η−1x̃TPx̃

defined in a compact hybrid time domain [13, Definition
2.3]. However, the resulting solutions will be sub-optimal,
because they are characterized by a Fillipov solution.

On the other hand, we find that the suboptimal-level
corresponds to an arbitrary high frequency switches,
what can increase the dissipated energy. Therefore, we
need to find a trade-off between any performance level
and switching frequency.

V. Proof of Theorem 1

This section is dedicated to the proof of our main
result. For this, we apply singular perturbation analysis
due to fast actuators in hybrid control given in [?]
assuming that there are slow time-continuous variables,
ξ1 := (x, u, q), and fast time-continuous variables, ξ2 :=
(x̂2, β̂), then we apply singular perturbation analysis due
to fast actuators in hybrid control given in [?] to establish
the stability properties. For this, we will rewrite the
complete system in singular perturbation form.

A. Singular perturbed form

In order to put the system above in the standard
singular perturbation form, let define ν := 1

α , ᾱ := 1
αC0

and γ̄ := γ
αC0

.
With these considerations, let rewrite the hybrid

scheme (10)–(11) as follows:

Hp :




ẋ
u̇

ν ˙̂x2

ν
˙̂
β
q̇

 :=


Au(β)x+ a

0

ᾱ(ux1 − β̂x2) + (x2 − x̂2)
−γ̄x2(x2 − x̂2)

0

 ξ ∈ C


x+

u+

x̂+
2

β̂+

q+

 :=


x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

x̂2

β̂
3− q

 ξ ∈ D.
(20)

Note that the fast variables directly impact the sta-
bility of the slow variables. However, the jumps do not
affect the fast variables, because they do not present any
jump.

In order to make a singular perturbation analysis, we
will check the assumptions given in [?].

B. Regularity of system’s data

Regularity of system’s data comes directly from
Proposition1.

C. Regularity of “manifold”

The “manifold”, which corresponds to the quasi-
steady-state equilibrium manifold of classical singular
perturbation theory [15], that means when ν → 0+ is

x2 − x̂2 = 0

β − β̂ = 0.
(21)

Note that β−β̂ = 0 comes from (7). As (21) is continuous,
we can take that the manifold is empty outside of C,
letting take the following set-valued:

M(x2) :=


{
x2

β
x2 ∈ C

0 x2 /∈ C.

Regard thatM is outer semi-continuous, locally bounded
and nonempty.

D. Stability for reduced system

The reduced system is the system (10)–(11) in the
manifold M, which isẋu̇

q̇

 :=

 Au(β)x+ a
0
0

 ξr ∈ C(M)

x+

u+

q+

 :=

 x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

3− q

 ξr ∈ D(M).

(22)



being ξr = (x, u, q). Note there is not jump in M,
therefore the reduced system ignores x̂2 and β̂ when
determining jumps. Moreover, remark that q nor presents
any effect in the reduced system dynamic and neither
generates any extra jump. Then, we can guarantee UGAS
from [4, Theorem 1].

E. Stability of the boundary layer

The boundary layer, for each r, is given by

Hbl :=


ξ̇1 = 0
˙̂x2 = ᾱ(ux1 − β̂x2) + (x2 − x̂2)
˙̂
β = −γ̄x2(x2 − x̂2)

ζ ∈ C ∩ rB

being rB a closed ball of radius r. Note that the boundary
layer system ignores the jumps, and during, flows ξ1
remains constant.

In order to evaluate the stability of the boundary layer,
let consider the error equations of Hbl and re-scale time
t to τ = (t− t0)/ν, getting

d

dτ
x̆2 = −ᾱx2blβ̃ − x̆2

d

dτ
β̃ = γ̄x2blx̆2.

which can be rewritten as:

d

dτ
z = Jz

with

J =

(
−1 −ᾱx2bl

γ̄x2bl 0

)
.

Without lost of generality and from Assumption 1, x2bl ∈
{R\{0}}. Therefore, we can define the next property:
Property 2: The real part of the eigenvalues of J , for

x2bl ∈ {R\{0}} are all strictly negative, i.e.

λ1 = Re

{
−1 +

√
1− 4ᾱ2γx2

2
bl

2

}
< 0

λ2 = Re

{
−1−

√
1− 4ᾱ2γx2

2
bl

2

}
< 0

Proof of theorem 1: From the analysis given in V-A,
V-B, V-C, V-D and V-E, we prove ULAS of attractor
(19) by applying [?, Theorem 1].

Remark 4: In order to ensure a singular perturbation
form, we need to ensure that the observer time response
must be larger than the time response of x, i.e, |λs| <<
α, where λs is the minimum eigenvalue of the slow
subsystem.

Remark 5: Note that the real part of the eigenvalues
are strictly negative for all γ > 0. However, we deduce
that

• the response of the fast variables ξ2 is non-oscillating
for all

0 < γ ≤ ᾱ2

4x2
2
bl

.

• likewise, we get oscillations in the transient response
of the fast subsystem for

γ >
ᾱ2

4x2
2
bl

.

VI. Simulations on boost converter

In this section, we validate our hybrid approach for
the boost converter (1) in simulation. These simulations
are performed in MATLAB/Simulink by exploiting the
HyEQ Toolbox [16].

Consider Vin = 100V , R = 2Ω, L = 500µH, C0 =
470µF ,

R0 = 50Ω ∈ [25, 75]Ω⇒ β = 0.02 ∈ [0.0133, 004], (23)

which corresponds to 50% of variation with respect to the
nominal value of R0 and a sampling time Ts = 10−6s.

The switched system state space model (1) is defined
by the following matrices:

A1 =

[
−R/L 0

0 −1/R0C0

]
, A2 =

[
−R/L −1/L
1/C0 −1/R0C0

]
,

B1 = B2 =

[
1/L

0

]
.

The set of all attainable equilibrium points are given
following [5]

xe = {(ie, ve) : Vin/(R+R0) ≤ ie ≤ Vin/R,
v2
e + (RR0)i2e − (R0Vin)ie = 0}.

For our simulations, the chosen equilibrium is

xe =
[
ie(β) 120

]T
. (24)

Following the specification given at the end of Sec-
tion IV and considering the variation of β (23), the cost
function is

J = min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0

(vc(τ, k)− ve)2 + R(iL(τ, k)− ie(β))
2
dτ

with ρ = 1000, and

P =

[
23.14 1.08
1.08 37.04

]
· 10−2, Q =

[
R 0
0 ρ

R0

]
satisfies Property 1.

Moreover, we take η = 0.1 which corresponds to a
sub-optimal value that guarantees a trade-off between
performance level and switching frequency, as shown in
[4].

Likewise, we select the convergence speed of the ob-
server state, α, according to Remark 4 and, having |λs| =
4000 for the slow sub-system minimum eigenvalue. Then,
we need to satisfy 4000 << α; for this issue, we chose
α = 40000.

Next step is to select the adaptation speed, γ, accord-
ing to Remark 5. In a first time, we choose γ such that,
there is not oscillation during the steady-state (x2bl =

xe2 = 120), i.e, 0 < γ ≤ ᾱ2

4x2
2
bl

= 61 · 10−4. Then, we take



γ = 5 ·10−4 in Fig. 3, and γ = 50 ·10−4 in Fig. 4. Finally,
we take ε = 10−3. Note that in these simulations, the
load changes twice, in the transient time at t = 0.001s
and in the steady state at t = 0.03s.
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Fig. 3. Evolutions for γ = 5 · 10−4 of the voltage and current in
a) and b) resp., x̆2 in c) and, zoom of u in d).
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Fig. 4. Evolutions for γ = 50 · 10−4 of the voltage and current in
a) and b) resp., x̆2 in c) and, zoom of u in d)

Figure 3-a) and 4-a) show the convergence of x2 to the
equilibrium (24) for any change of β, which is achieved

with λe =
[
0.17 0.83

]T
satisfying Assumption 2. Note

that during the adaptation of β, that means, when |x̆2| ≥

ε, at t = 0.001s and t = 0.03s the states flow with
u constant converging to iL,c, vC,c, given in (17)–(18).
When |x̆2| ≤ ε the states evolve switching the discrete
variable u. This evolution can be seen in the zoom of u
in Fig. 3-d) and 4-d) for different adaptation speed, γ.
Note that if γ is larger the adaptation faster is, according
Remark 1.

We can also see during the load changes that, the error
x̆2 increases, but it converges to zero, due to the fact
that β̂ is adapted to its real value β, as is established in
Lemma 1. Then, we can conclude from Theorem 1 that
our attractor (19) is ULAS.

Now, we shows some simulations for the case when the
adaptation presents some oscillations in the steady-state,

i.e. γ >
α2C2

0

4x2
2
bl

= 61 · 10−4, according to Remark 5. We

select γ = 0.1 in Fig. 5 and γ = 1 in Fig. 6. Note that x̆2

converges to zero after some oscillations in Fig. 5-c) and
in Fig. 6-c), maintaining x2 robust w.r.t. its equilibrium
value. Wa can also see that the observer convergence is
faster, as γ larger is.
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Fig. 5. Evolutions for γ = 0.1 of the voltage and current in a) and
b) resp., and zoom of x̆2 and u in c) and d) resp.

VII. Conclusions and future works

A hybrid adaptive control for unknown constant
or/and slowly variable load is presented for a boost
converter. The method focuses on a hybrid dynamical
theory, that considers the real nature of the signals,
that means, the continuous-time and the discrete-time
signals. On this paradigm an adaptive control is proposed
which guarantees the robustness of the voltage in a
reference value. This adaptive control is fed by a state
observer designed by assuming that the state variables
are measured. ULAS of the full system is proven by using
a standard singular perturbation analysis and, using
Tikhonov’s theorem.
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Fig. 6. Evolutions for γ = 1 of the voltage and current in a) and
b) resp., and zoom of x̆2 and u in c) and d) resp.

A future work is to consider a time or space regulation
to generate a dwell-time in the controller to reduce the
switching in the steady-state.
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