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Hybrid Adaptive Control of the Boost Converter

S. Hadjeras, C. Albea Sanchez and G. Garcia

Abstract—This work proposes a control law for
the boost converter with unknown constant resistive
load. It focuses on Hybrid Dynamical System (HDS)
theory, which considers the voltage and current sig-
nals as continuous-time variables and the switching
signal as discrete-time variable. In several applications
the voltage has to be constant. To ensure that the
voltage value is robust with respect to any reference,
an adaptive scheme is proposed. This adaptation is ac-
complished using a state observer and assuming that
all states are accessible. Then, the full system stability
can be established by using a singular perturbation
analysis. The hybrid adaptive controller is tested in
simulations.

Index Terms—Hybrid dynamical system, adaptive
control, boost converter, singular perturbation anal-
ysis.

I. Introduction

Boost converter systems are very common in power
electronics. They allow to generate an output voltage
larger than its input one. The control problem of this
converter were largely studied by the electronic and au-
tomatic communities, by using averaged models, whose
controlled signal is generally obtained by a Pulse Width
Modulation (PWM) with fixed frequency [1],[2], generat-
ing a limitation in its performance due to the difficulty for
quantifying the precision of the approximation obtained
by the averaging procedure and the fact that the control
laws properties are only valid locally .

Nowadays, there is another attempt to control this
kind of converter taking into account the real nature
of the system signals, that means, the fact that the
voltage and current signals are continuous-time and the
switching signals are discrete-time. This consideration
captures the switching dynamics and achieves a new
generation of converters that can operate in varying
frequency. This is the case of the sliding-mode control
[3] and hybrid dynamical control [4], [5], [6] for the boost
converter.

Some adaptive controls for the boost converter were
proposed by using also averaged models, as in [7], where
a Simple Adaptive Control (SAC) was designed by using
a proportional and integral controller. In [8], the authors
used Lyapunov design techniques. In [9],[10] adapting-
backstepping was used to update all the parameters.
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On the other hand, in [11], an adaptive sliding mode
control was designed, however, and to the authors best
knowledge, to regard that the load is unknown and
constant is not done in the context of hybrid dynamical
paradigm.

In this work, we extend the hybrid dynamical con-
troller proposed in [4], designing a hybrid adaptive con-
trol for the boost converter with unknown resistive load.
This controller must regulate the voltage in a desired
value. This adaptation is fed by a state observer designed
under the consideration that the states are measurable.
Then, uniformly locally asymptotically stability is en-
sured based on scale-time separation and using a singular
perturbation analysis

The paper is organized as follow: In Section II, a model
is defined under some assumptions and the problem is
stated. Section III is devoted to design an adaptive law
to adapt the resistive load. Section IV proposes a hybrid
dynamical control that achieves the objectives of our
problem. Some simulations are performed in Section V.
And Section VI draws the conclusion and future works.

Due to space limitations, the proofs of theorems are
omitted.

Notation: Through out the paper R denotes the set
of real numbers, Rn the n-dimensional euclidean space
and Rn×m the set of all real m×n matrices. The set Sn
denotes the set of symmetric positive definite matrices
of matrices Rn×n. Re(z) is the real part of a complex
number z. The symbol 6≡ means not identically equal.

II. Boost converter

A boost converter generates an DC output voltage
larger than its DC input. This converter is fed by a
constant voltage source, Vin, and composed of a load
filter, L,C0, a purely and resistive load, R0, and a para-
site resistance, RLS , that encompasses switching energy
dissipation and the inductance (see Fig. 1). The system
differential equations are

d

dt

[
iL(t)
vC(t)

]
=

[
−RLS

L − (1−s)
L

(1−s)
C0

− 1
R0C0

] [
iL(t)
vC(t)

]
+

[
Vin

L
0

]
. (1)

where, iL is the inductance current, vC is the capacitor
voltage, which are the two continuous-time state vari-
ables, s is a discrete variable that takes the values s = 0
and s = 1, that correspond to the case when the switch
is ON and OFF, respectively.
Now, consider the following variable change u := 1 − s,
being u = {0, 1}, which corresponds to the control input.
By introducing this change in system (1) we get



d

dt

[
iL(t)
vC(t)

]
=

[
−RLS

L − u
L

u
C0

− 1
R0C0

] [
iL(t)
vC(t)

]
+

[
Vin

L
0

]
. (2)

Assumption 1: Let consider

• the converter current is continuous and all the com-
ponents are ideal,

• the current and voltage are accessible,
• the load R0 is unknown constant or/and slowly

variable in the interval [Rm0 , R
M
0 ].

• x2 = 0 corresponds to the starting operation mode,
and any starting strategy is used, to bring our
system to x2 6= 0.

RLS L

iL

C0 R0vc

+ +

- -

uVin

Fig. 1. Boost converter .

Defining β := 1
R0
∈ [βm, βM ], let rewrite (2) as follows

ẋ = Au(β)x+ a
y = Cx

(3)

where x = [x1 x2]T = [iL vC ]T and C is the identity
matrix with suited dimension. We can easily deduce the
definition of Av(β) and a from (2).

This paper focuses on the design of a switching signal
u, that ensures the suitable convergence properties of
both: the voltage x2 to a desired value, x2e

, for the
switching system with arbitrary switching, and the es-
timation of the load β̂ to its real value, β.
Assumption 2: There exists λe = [λe,1, λe,2] satisfying

λe,1 + λe,2 = 1, such that the following convex combina-
tion holds:

2∑
i=1

λe,i(Ai(β)xe + a) = 0.

This assumption is necessary and sufficient to guarantee
the existence of a switching signal that ensures forward
invariance of the point xe.
Assumption 3: Let consider next polytope for param-

eter β:

Ω :=

2∑
m=1

λβ,mβm, for all 0 ≤ λβ,m ≤ 1,

2∑
m=1

λβ,m = 1,

where the vertices of the polytope are given by βm ∈
{βm, βM}.
Now, from [4], we assume next property of the boost
converter.

Property 1: Consider Assumption 3, then given matri-
ces Ai(β), i ∈ {1, 2} in (3) with β ∈ [βm, βM ], there exist
matrices P,Q ∈ S2 satisfying

ATi (βm)P + PAi(βm) + 2Q < 0 (4)

for all i,m ∈ {1, 2}.
Note that Property 1 assumes that all matrices Ai(βm)
are Hurwitz.

Inspired by the work in [12], this paper extends the
work presented in [4], for model (3) where parameter β,
can suffer variations.

Problem 1: The goal is to include an adaptive con-
troller in the hybrid dynamical scheme that considers
the continuous-time dynamics, x1, x2, β̂, and the discrete-
time dynamic, u, estimating β in continuous-time, at the
same time that x2 is regulated in a reference value (see
Fig. 2).
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u
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Fig. 2. Hybrid adaptive control scheme.

III. Adaptation law

The proposed adaptation law is composed of a state
observer for the voltage x2, and an adaptation law for
parameter β, with the following structure

˙̂x2 =
1

C0
(ux1 − β̂x2) + α(x2 − x̂2) (5)

˙̂
β = g(x2, x̂2), (6)

where g(x2, x̂2) is the adaptation law to be designed, x̂2

is the estimated state of x2, β̂ is the estimated value of
β and α is a positive constant parameter.

In order to achieve a mathematical expression for
g(x2, x̂2), let define the following error variables, consid-
ering β̇ = 0

x̌2 := x2 − x̂2, β̃ := β − β̂, ˙̃
β = − ˙̂

β (7)

Next, from (3) and (5), we derive the error equation of
x2

˙̌x2 = − β̃

C0
x2 − αx̌2. (8)

Now, let introduce the next candidate Lyapunov func-
tion

W =
1

2

(
x̌2

2 +
β̃2

γ

)
, (9)

where γ is constant and positive. The derivative of W
along the trajectories of (6)-(8) gives:

Ẇ = −αx̌2
2 −

x2x̌2

C0
β̃ +

β̃
˙̃
β

γ
= −αx̌2

2 + β̃

(
−x2x̌2

C0
+

˙̃
β

γ

)
.



The adaptation law is now defined by canceling the
terms in parenthesis, i.e.

˙̃
β =

γx2x̌2

C0
. (10)

Remark 1: Note that, γ defines the adaptation speed,
and consequently, if γ is larger, then the adaptation speed
comes larger.

Stability properties of (8), (10) are stated in the following
lemma:

Lemma 1: Consider the system (3), and assume that
its solutions are bounded. The extended observer (8)–
(10) has the following properties:

i) The estimated states x̂2, β̂ are bounded.
ii) limt→∞ x̂2(t) = x2(t).
iii) limt→∞ β̂(t) = β, if and only if x2(t) 6= 0,∀t ≥ 0.

Proof: The observer and the adaptive law error
equations are fully defined from (8) and (10), and sta-
bility properties of these equations follow from the Lya-
punov function W defined above. Note that with the
choice (10)

Ẇ = −αx̌2
2

and from standard Lyapunov arguments, it follows that
the error variable x̌2 and β̃ are bounded. In addition
by LaSalle invariant principle and from Assumption (1),
that specifies that x2 6= 0, we easily conclude that

x̌2 → 0, which implies from (10) that
˙̃
β → 0. Likewise

from (8), and concluding from x̌2 → 0 that ˙̌x2 → 0, we
get β̃ → 0.

IV. Hybrid model and proposed control law

In this section we design an hybrid dynamical system,
following the paradigm given in [13], wherein continuous-
time behavior encompasses the evolution of x, x̂2 and
β̂ and, the discrete-time behavior captures the jump of
the switch boost converter signal, u, and the jump of a
discrete signal, q ∈ {1, 2}, which detects if the parameter
β needs to be adapted. q = 1 allows the β adaptation
and q = 2 interdicts this possibility.

We characterize the overall dynamics

H :




ẋ
u̇
˙̂x2

˙̂
β
q̇

 = f(x, u, x̂2, β̂), (ξ) ∈ C


x+

u+

x̂+
2

β̂+

q+

 ∈ G(x, x̂2, β̂, q), (ξ) ∈ D,

(11)

where ξ = [x u x̂2 β̂ q] and G is a (set-valued) map

representing the switching logic:

f(x, u, x̂2, β̂) :=


Au(β)x+ a

0
1
C0

(ux1 − β̂x2) + αx̌2

−γx2x̌2

C0

0



G(x, x̂2, β̂, q) :∈


x

argmin
i∈K

x̃TP (Ai(β̂)x+ a)

x̂2

β̂
3− q


(12)

and where x̃ = [x̃1 x̃2] is defined from the desired values
xe = [ie ve]

T = [xe1 xe2]T as follows{
x̃1 = x1 − xe1
x̃2 = (x2 − xe2) + (x2 − x̂2).

(13)

Inspired in [4], we select the so-called flow and jump
sets
C1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≥ ε} (14)

D1 := {(x, x̂2, q) : {q = 1} and |x2 − x̂2| ≤ ε}, (15)

C2 :={ξ : {q = 2} and |x2 − x̂2| ≤ ε and

x̃TP (Au(β̂)x+ a) ≤ −ηx̃TQux̃}, (16)

D2 :={ξ : {q = 2} and |x2 − x̂2| ≥ ε or

x̃TP (Au(β̂)x+ a) ≥ −ηx̃TQux̃}, (17)

where D := D1 ∪ D2 and C := C1 ∩ C2, η ∈ (0, 1) and
ε > 0 is small enough.
Proposition 1: The hybrid dynamical system (11)–

(17) satisfies the basic hybrid conditions [13, Assumption
6.5], then it is well-posed.

Proof: The hybrid dynamical system (11)–(17) sat-
isfies the basic hybrid conditions because

• sets C and D are closed.
• f is a continuous function, thus it trivially is outer

semicontinuous and convex. Moreover, is locally
bounded.

• G is closed, then it also is outer semicontiunuous [13,
Lemma 5.1] and, it is locally bounded.

Finally, following [13, Theorem 6.30], we conclude that
the hybrid dynamical system is well-posed.

Now, we invokes the lemma presented in [4].
Lemma 2: Consider matrices P,Q ∈ S2 satisfying

Property 1, a point xe ∈ R2 satisfying Assumption 2.
Then for each x ∈ R2,

min
i∈K

x̃TP (Ai(β)x+ a) ≤ min
i∈K
−x̃TQix̃

The proof is given in [4].
Remark 2: We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.

Note, that if η → 0, we get to reduce the switching
frequency and on the contrary if η → 1, we increase the
switching frequency. On the other hand, if x̃ = 0, we get



arbitrary fast switches, that can be reduced using the
space regularization propose by the authors in [14].
We comment here the behavior of any solution to hybrid
system (11)–(17). Note that if any solution is in C1 or
D1, that means q = 1, the adaptation of the parameter
β is possible and, the contrary case is, if any solution is
in C2 or D2, that means q = 2. First, consider that any
solution is in C1, then the observer error x̌2 is larger than
any small and positive ε and the parameter β is adapting.
When the adaptation error of β is arbitrary small, that
means x̌2 ≤ ε, then, the solution will be in D1 and the
solution jumps. After the jump, we have q = 2 and the
solution is in C2 until that one of theses cases happens:

• |x2 − x̂2| ≥ ε: then solution is in D2 and jumps to
C1, flowing here until x̌2 ≤ ε.

• x̃TP (Au(β̂)x + a) ≥ −ηx̃TQux̃ and |x2 − x̂2| ≤ ε:
then solution is in D2, it jumps to D1 and following
the result of Lemma 2 the solution jumps again to
C2, flowing here for a time (as proven bellow).

The Fig.3, shows a representative scheme of the hybrid
dynamical system (11)-(17)

C1

C2D1

D2

q = 1

q = 1

q = 2

q = 2

|x2 − x̂2| ≥ ε

|x2 − x̂2| ≥ ε

x̃T P (Au(β̂)x + a) ≥

|x2 − x̂2| ≤ ε

|x2 − x̂2| ≤ ε orx̃T P (Au(β̂)x + a) ≥ −ηx̃T Qux̃

Need adaptation Forbid adaptation

−ηx̃T Qux̃

Fig. 3. Representative diagram of our hybrid system.

Remark 3: Note that when |x2− x̂2| ≥ ε, any solution
to H flows in C1 with u constant. Then the state x will
flow according (1) to

iL,c =
Vin

RLS + u2R0
(18)

vC,c = uR0iL,c. (19)

Note that if v = 0, x2 converges to vC,c = 0, however

from (1), we have x2(t) = x2(0)e−
1

R0C0
t, then x2 6≡ 0,

∀t ≥ 0.

Now, following the system hybrid theory, we will estab-
lish stability properties of the given compact attractor

A := {ξ : x = xe, u ∈ {0, 1}, x̂2 = x2, β̂ = β, q ∈ {1, 2}}.
(20)

The following theorem is the main result of our paper,
and the proof is removed in this version, because of the
lack of space.

Theorem 1: Consider Assumption 1,2,3 and matrices
P,Q ∈ S2 satisfying Property 1 and γ > 0. Then
attractor (20) is uniformly locally asymptotically stable
(ULAS) for hybrid system (11)–(17).

Let comment here the choice of matrices P and Q.
These matrices are selected following some optimization
criteria for our hybrid system. Specifically, we use [4,
Theorem 2], where some performance level is guaranteed,
then the following bound holds along any solution of the
hybrid system (11)–(17)

J ≤ η−1x̃TPx̃

defined in a compact hybrid time domain [13, Definition
2.3]. However, the resulting solutions will be sub-optimal,
because they are characterized by a Fillipov solution.

On the other hand, we find that the suboptimal-level
corresponds to an arbitrary high frequency switches,
what can increase the dissipated energy. Therefore, we
need to find a trade-off between any performance level
and switching frequency.

V. Simulations on boost converter

In this section, we validate our hybrid approach for
the boost converter (1) in simulation. These simulations
are performed in MATLAB/Simulink by exploiting the
HyEQ Toolbox [15].

Consider Vin = 100V , R = 2Ω, L = 500µH, C0 =
470µF ,

R0 = 50Ω ∈ [25, 75]Ω⇒ β = 0.02 ∈ [0.0133, 004], (21)

which corresponds to 50% of variation with respect to the
nominal value of R0 and a sampling time Ts = 10−6s.

The switched system state space model (1) is defined
by the following matrices:

A1 =

[
−R/L 0

0 −1/R0C0

]
, A2 =

[
−R/L −1/L
1/C0 −1/R0C0

]

B1 = B2 =

[
1/L

0

]
.

The set of all attainable equilibrium points are given
following [5]

Xe = {(ie, ve) : Vin/(R+R0) ≤ ie ≤ Vin/R,
v2
e + (RR0)i2e − (R0Vin)ie = 0}.

For our simulations, the chosen equilibrium is

xe =
[
ie(β) 120

]T
. (22)

Following the specification given at the end of Sec-
tion IV and considering the variation of β (21), the cost
function is

J = min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vc(τ, k)−ve)2+R(iL(τ, k)−ie)2dτ



with ρ = 1000, and

P =

[
23.14 1.08
1.08 37.04

]
· 10−2, Q =

[
R 0
0 ρ

R0

]
satisfies Property 1.

Moreover, we take η = 0.1 which corresponds to a
sub-optimal value that guarantees a trade-off between
performance level and switching frequency, as shown in
in [4].

Practically, the states of the boost converter are
bounded by a minimum and maximum values. Here,
let consider that the maximum voltage value is 500V .
Likewise, having |λs| = 4000 for the minimum eigenvalue
of the slow system and as we need to satisfy 4000 << α;
for this issue, we select the convergence speed of the
observer state α = 40000 ,

Next step is to select the adaptation speed, γ. In a first
time, we choose γ such that there is not oscillation, i.e,

0 < γ ≤ α2C2
0

4x2
2
p

= 62 · 10−4, γ = 5 · 10−4 in Fig. 4, and

γ = 50 · 10−4 in Fig. 5. Finally, we take ε = 10−3. Note
that in these simulations, the load changes twice, in the
transient time at t = 0.001s and in the steady state at
t = 0.03s.
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Fig. 4. Voltage, current and x̌2 evolution for γ = 5 · 10−4 and
zoom of u.

Figure 4 and 5 show the convergence of x to the
equilibrium xe (22) for any change of β, which is achieved

with λe =
[
0.17 0.83

]T
satisfying Assumption 2. Note

that during the adaptation of β, that means, when |x̌2| ≥
ε, at t = 0.001s and t = 0.03s the states flow with
u constant converging to iL,c, vC,c, given in (18)–(19).
When |x̌2| ≤ ε the states evolve switching the discrete
variable u. This evolution can be seen in the zoom of u in
Fig. 4 and 5 for different adaptation speed, γ. Note that
if γ is larger the adaptation faster is, according Remark
1.

We can also see during the load changes that, the error
x̌2 increases, but it converges to zero, due to the fact
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Fig. 5. Voltage, current and x̌2 evolution for γ = 50 · 10−4 and
zoom of u.

that β̂ is adapted to its real value β, as is established in
Lemma 1. Then, we can conclude from Theorem 1 that
our attractor (20) is ULAS.

Now, we shows in Fig. 6 and 7 the case when the

adaptation presents some oscillations, i.e. γ >
α2C2

0

4x2
2
p

=

62 ·10−4. We select γ = 0.1 in Fig. 6 and γ = 1 in Fig. 6.
Note that x converges to the equilibrium xe (22), after
some oscillations of x̌2, the observer convergence is faster,
as γ larger is.
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Fig. 6. Voltage, current and x̌2 evolution for γ = 0.1 and zoom of
u.

VI. Conclusions and future works

A hybrid adaptive control for unknown constant
or/and slowly variable load is presented for a boost
converter. The method focuses on a hybrid dynamical
theory, that considers the real nature of the signals,
that means, the continuous-time and the discrete-time
signals. On this paradigm an adaptive control is proposed
which guarantees the robustness of the voltage in a
reference value. This adaptive control is fed by a state
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Fig. 7. Voltage, current and x̌2 evolution for γ = 1 and zoom of
u.

observer designed by assuming that the state variables
are measured. ULAS of the full system is proven by using
a standard singular perturbation analysis and, using
Tikhonov’s theorem.

A future work is to consider a time or space regulation
to generate a dwell-time in the controller to reduce the
switching in the steady-state.
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