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Abstract—This paper is focused on the modeling and analysis 

of a pair of open complementary split ring resonators (OCSRR) 

for sensing purposes. Since the capacitance of the OCSRR is very 

sensitive to dielectric loading, it follows that the OCSRR pair is 

very useful for differential permittivity measurements. The 

proposed sensing approach is based on the measurement of the 

cross-mode S-parameters, particularly the cross-mode insertion 

loss, very sensitive to asymmetric loading. On the basis of the 

circuit model of the OCSRR, analytical expressions for the cross-

mode insertion loss under small perturbations (asymmetries) are 

derived. Such expressions, of interest for sensor design, are 

validated through circuit and electromagnetic simulations. 
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I.  INTRODUCTION 

Several sensors for permittivity measurements and for the 
measurement of spatial variables, based on metamaterial-
inspired resonators, such as split ring resonators (SRRs) or 
complementary split ring resonators (CSRRs), have been 
recently reported [1]-[25]. The most extended working 
principle of permittivity sensors is the variation in the 
resonance frequency and notch depth of a transmission line 
loaded with such resonant elements [1]-[7], caused by 
dielectric loading.  

Alternatively, frequency splitting in transmission lines 
loaded with pairs of identical resonant elements, caused by 
asymmetric dielectric loading, has been used for sensing 
purposes [8]-[14]. In this later case, the sensors are similar to 
differential-mode sensors, and are robust in front of cross 
sensitivities related to environmental changes (i.e., 
temperature and moisture). The reason is that sensing is based 
on symmetry disruption, and potential temperature and 
moisture drifts are seen as common-mode stimulus.  

Another sensing principle, also based on symmetry 
disruption, consists of symmetrically loading a transmission 
line with a single resonant element exhibiting an electric wall 
at its symmetry plane at the fundamental resonance (e.g, the 
SRR) [15]-[25]. If symmetry is preserved, the structure is 
transparent since line-to-resonator coupling is prevented 
(provided the axial plane of the line is a magnetic wall, as 
occurs in the most usual transmission lines, e.g., microstrip or 

coplanar waveguides). However, by truncating symmetry, 
line-to-resonator coupling arises (such coupling is modulated 
by the level of asymmetry), causing a notch in the 
transmission coefficient whose magnitude (depth) is typically 
the output variable. 

In the previous sensors, the resolution, or capability to 
detect small variations in the input variable, is typically 
limited. Thus, we propose in this work a novel approach to 
improve resolution and sensitivity to small perturbations in 
sensors based on pairs of metamaterial-inspired resonators, 
particularly open complementary split ring resonators 
(OCSRRs), first reported in [26]. The sensors are based on 
symmetry disruption, and the output variable is the cross-
mode insertion loss, which is very sensitive to small symmetry 
perturbations. On the basis of the circuit model of the 
OCSRRs, an approximate expression providing the cross-
mode insertion loss, useful to predict the sensitivity, is 
obtained. 

II. WORKING PRINCIPLE 

The sensing structure consists of a pair of lines loaded with 
identical resonant elements sensitive to the variable under 
measurement (Fig. 1). One of the resonant elements is loaded 
with the reference sample, whereas the other one is loaded 
with the sample under test (SUT). If the reference sample and 
the SUT are identical, the cross-mode S-parameters are all 
zero. However, if symmetry is truncated, mode conversion 
(differential to common mode and vice versa) arises, and the 
cross-mode insertion loss is strongly dependent on the level of 
asymmetry. Hence, this is a useful approach to detect small 
perturbations in the SUT as compared to the reference sample. 

 
Fig. 1. General structure of the proposed sensors. 

Symmetry 

Plane

P1
P1

’

P2 P2
’

Reference

Sample

SUT



III. MODELING AND ANALYSIS 

Let us now consider a pair of microstrip lines loaded with 
shunt connected OCSRRs [see Fig. 2(a)]. If we assume that 
the distance between the lines is high enough, so that line-to-
line coupling can be ignored, the cross-mode insertion loss is 
given by [27]  

             212121 '
2

1
SSS dc                              (1)                                     

where S21 and S’21 is the insertion loss of each individual 
OCSRR-loaded line, differentiated by the “prime” superscript. 

    
Fig. 2. Pair of microstrip lines loaded with OCSRRs (a) and equivalent 

circuit model by considering different dielectric loads in both resonators, or, 
alternatively, by considering different OCSRRs (b). The ground plane is 

depicted in grey. 

 As it was reported in [28], a microstrip line loaded with an 
OCSRR can be accurately modeled by a shunt-connected 
parallel resonant tank. Thus, by including the effect of losses, 
as well as the presence of a reference sample in one of the 
resonant elements and the SUT in the other OCSRR, the 
circuit model of the structure of Fig. 2(a) is the one depicted in 
Fig. 2(b). Note that the inductance, L, is considered to be 
identical in both resonant elements since it does not depend on 
the dielectric load. However, the capacitance (related to the 
dielectric constant of the loading element) and the 
conductance (modeling the effect of losses) is different in both 
resonators of the equivalent circuit model, in order to account 
for possible differences between the reference sample and the 
SUT.  
 Without loss of generality, we can ignore the effects of the 
transmission lines cascaded to the OCSRRs since such lines 
only introduce a phase shift to the individual insertion loss of 
both lines. The resulting insertion loss for both lines is 
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where Z0 is the reference impedance of the ports,  is the 

angular frequency, o = (LC)
-1/2

 and ’o = (LC’)
-1/2

. 

 For small perturbations, i.e., o  ’o and G  G’, low-loss 
levels, and for frequencies in the vicinity of the resonance 
frequencies of both resonators, expressions (2a) and (2b) can 
be approximated using the well known Taylor series 
expansion, and the resulting cross-mode insertion loss is  
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 Figure 3 depicts the cross-mode insertion loss derived 
from expression (3) and the one inferred from the schematic of 
Fig. 2(b) using Keysight ADS (the circuit parameters are 
indicated in the caption of Fig. 3). There is good agreement 
between the circuit simulation and the analytical result in the 
region of interest, where the function is maximized in the 

vicinity of o and ’o. This agreement validates the previous 
analysis. Indeed, the circuit parameters of the caption of Fig. 3 
correspond to two different OCSRRs (rather than to two 
identical OCSRRs asymmetrically loaded) with identical 
inductance, but different capacitance, with dimensions also 
indicated in the caption of Fig. 3. The electromagnetic 
simulation of the cross-mode insertion loss is also included in 
Fig. 3, and there is also good agreement with the circuit 
simulation and the approximate analytical result in the region 
of interest. Note that the cross mode insertion loss predicted 
by the approximate expression (3) gives a minimum, rather 

than a maximum, in the vicinity of o and ’o. Nevertheless, 
since the value of the cross mode insertion loss is accurately 
predicted in that region, we can, for instance, obtain the value 
at the resonance frequency of the OCSRR loaded with the 

reference sample, 0, i.e.,  
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where C = C’ C and G = G’ G. From this result, it 

follows that sensitivity and resolution depend on 0, rather 
than on the particular values of the inductance and capacitance 
of the reference OCSRR (note that Z0, the reference 
impedance of the ports, cannot be considered to be a design 
parameter). Nevertheless, sensitivity and resolution are 
significant in view of the substantial variation of cross mode 

insertion loss, S21
DC

, with the small perturbation considered.  

 
Fig. 3. Circuit simulation, electromagnetic simulation and analytical 

(approximate) solution of the cross-mode insertion loss of the structure of 

Figs. 2. The circuit parameters used in the circuit simulation and approximate 
analytical solution are: L = 2.12 nH, C = 5 pF, C’ = 4.89 pF, G = 0.78 mS, and 

G’ = 0.79 mS. Dimensions, in reference to Fig. 2 (for upper OCSRR), are: rext 

= 2.7 mm, c = 0.2 mm, and d = 1.2 mm. The lower OCSRR has been 
modifiefd slightly to reduce the equivalent capacitance. 
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IV. CONCLUSIONS 

In conclusion, a novel sensing strategy for differential 
permittivity measurements, especially suitable to detect small 
differences between the reference sample and the sample 
under test (SUT) has been proposed in this paper. The sensors 
are based on pairs of open complementary split ring resonators 
(OCSRRs) loading a pair of uncoupled transmission lines, and 
the differences between the reference sample and the SUT are 
inferred from the cross-mode insertion loss, very sensitive to 
small perturbations. In this paper, the main aim has been to 
obtain an approximate analytical expression providing the 
cross-mode insertion loss from the parameters of the 
equivalent circuit model of the structure. From the resulting 
expression, it has been found that sensitivity and resolution are 
intimately related to the resonance frequency of the reference 
OCSRR. Nevertheless, it has been found that the proposed 
approach provides significant sensitivity and resolution of the 
cross mode insertion loss to small changes in OCSRR 
dielectric loading. Application to dielectric characterization of 
liquids by introducing microfluidic channels is envisaged. 
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