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Fundamental Actuation Properties of Multi-rotors:
Force-Moment Decoupling and Fail-safe Robustness

Giulia Michieletto1,2 Student Member, IEEE, Markus Ryll1, Member, IEEE and
Antonio Franchi1 Senior Member, IEEE

Abstract—In this paper we shed light on two fundamental
actuation capabilities of multi-rotors. The first is the amount
of coupling between the total force and total moment applied
by the propellers to the whole body. The second is the ability
to robustly fly completely still in place after the loss of one
or more propellers, when the used propellers can only spin
in one direction. These two actuation properties are formalized
through the definition of some algebraic conditions on the control
allocation matrices. The theory is valid for any multi-rotor, with
arbitrary number, position and orientation of the propellers,
including the more classic ones. As a show case for the general
theory we show and explain why standard star-shaped hexarotors
with collinear propellers are not able to robustly fly completely
still at a constant spot using only five of their six propellers.
To deeply understand this counterintuitive result, it is enough
to apply our theory, which clarifies the role of the tilt angles
and locations of the propellers in the vehicle. The theory is also
able to explain why, on the contrary, both the tilted star-shaped
hexarotor and the Y-shaped hexarotor can fly with only five out of
six propellers. The analysis is validated with both simulations and
experimental results testing the control of multi-rotor vehicles
subject to rotor loss.

I. INTRODUCTION

Quadrotors constitute the most common unmanned aerial
vehicle (UAV) currently used in civil and industrial context.
Their high versatility allows their application field to range
from exploration and mapping to grasping, from monitoring
and surveillance to transportiation [1]–[4] Physical interac-
tion for quadrotors has been enabled by theoretical tools
such has, e.g., physical property reshaping [5] and external
wrench estimation [6]. Nevertheless, the interest of robotic
communities is now moving toward modeling, design and
control of more complex multi-rotor platforms, where the
number of propellers is larger than four [7]–[12]. Several
hexarotor and octorotor vehicles have been recently presented
for applications spanning from multi-agent cooperative ma-
nipulation (see, e.g., [13] and the references within) to human
and environment interaction (see, e.g., [14]–[16]). Intuitively,
the intrinsic redundancy of these platforms can be exploited
in order to enhance fundamental actuation properties as the
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possibility to independently control the position and the atti-
tude of the vehicle and the robustness to rotor-failures which
constitute key requirements for the real-world deployment.
However having a redundant number of propellers is not in
general enough to allow a static and safe hovering (i.e., a
hovering in which both the linear and the angular velocity are
zero) as it can be seen for example in [17] where experiments
are shown in which the hexarotor starts to spin when control
of a propeller is lost, even if still five propellers are available1

and from other commercially available platforms2. A more in-
depth theoretical understanding of the fundamental actuation
properties of multi-rotors is needed to handle those critical and
extremely important situations.

Particular attention has been addressed to the six-rotor case
and several recent works have presented new design solutions
to ensure the full-actuation. These are mainly based on a tilt-
rotor architecture, whose effectiveness has been exhaustively
validated even considering quadrotor platforms (see, e.g., [18],
[19]). In [20] it has been shown that a standard star-shaped
hexarotor can gain the 6-DoF actuation using only one addi-
tional servomotor that allows to equally tilt all propellers in a
synchronized way.

Furthermore it has been proven that in case of rotor-loss
the propellers’ mutual orientations affect the hexarotor control
properties. For example, the authors of [21] have conducted
a controllability analysis based on the observation that the
dynamical model of a multi-rotor around hovering condition
can be approximated by a linear system. Studying its algebraic
properties, they have concluded that in case of a rotor failure
the controllability strongly depends on the considered config-
uration in terms of the propeller spinning directions. Similarly,
in [22] the concept of maneuverability has been introduced and
investigated for a star-shaped hexarotor having tilted rotors,
when one propeller stops rotating. Maneuverability has been
defined in terms of maximum acceleration achievable w.r.t.
the 6 DoFs that characterize the dynamics of a UAV. The
authors have stated that, in the failed-motor case, the (vertical)
maneuverability reduces due to the loss in control authority
and the hovering condition is still possible only for some tilt
of the propellers. In [23] the authors have instead proposed a
method to design a star-shaped hexarotor keeping the ability to
reject disturbance torques in all directions while counteracting
the effect of a failure in any motor. Their solution rests on
(inward/outward) tilting all the propellers of a small fixed

1See the video here: https://youtu.be/cocvUrPfyfo.
2See, e.g., the video here: https://youtu.be/HQ7wa5cBT w?t=45.
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angle. Finally, in [24] we investigated the robustness of star-
shaped hexarotors as their capability to still achieve the static
hovering condition (constant position and orientation) after a
rotor loss, concluding that tilted platforms are 1-loss robust
and providing also a suitable cascaded control law for failed
vehicles. In that paper only numerical simulation results have
been provided. In this paper, we aim at significantly pushing
forward the theoretical understanding on the actuation proper-
ties of multi-rotor UAVs and at experimentally corroborating
the developed theory.

Introducing an appropriate dynamic model, we first inves-
tigate the coupling between the control force and the control
moment that emerges from the intrinsic cascaded dependency
of the UAVs translational dynamics from the rotation one. We
derive some necessary conditions on the control input space
that imply the possibility to independently act on the vehicle
position and attitude. To validate our statements, we analyze
the fulfillment of this property for platforms known in the
literature and categorize them using a provided taxonomy.

As second step, we formalize the concept of rotor-failure
robustness for multi-rotors with propellers that can produce lift
force in only one direction (by far the most common situation).
This is based on the possibility for a multi-rotor to hover in
a constant spot with zero linear and angular velocity (static
hovering realizability property) even in case a propeller fails
and stops spinning, while being able to produce a full set of
control inputs in any direction. The developed theory can be
applied to any multi-rotor structure comprising any number of
propellers arranged in any possible way.

In particular, we applied the theory to hexarotor platforms,
since they are the most interesting ones. This led to an
extensive discussion on the robustness/vulnerability properties
of these platforms. The generic hexarotor structure considered
is parametrized by three angles that determine the positions
(w.r.t. the platform center of mass) and the spinning axes di-
rection of the six propellers in order to span the most known
classes of six-rotor aerial vehicles. The study of the role of
these angles shows that both the tilted star-shaped hexaro-
tor and Y-shaped hexarotor can still hover statically after a
rotor-loss. These conclusions are supported by simulative and
experimental results.

The remainder of the paper is organized as follows. The
dynamic model for the generically tilted multi-rotors is given
in Section II. Section III is devoted to the analysis of the
force-moment decoupling properties. An in-depth rotor-failure
robustness analysis for hexarotor platforms is conducted in
Section V, after the formalization of the concept of static
hovering realizability in Section IV. Then, Section VI and
Section VII respectively report the experimental and simulative
results of the control of failed six-rotors. Main conclusions and
future research directions are drawn in Section VIII.

II. GENERICALLY TILTED MULTI-ROTORS

A Generically Tilted Multi-rotor (GTM) is an aerial vehicle
consisting of a rigid body and n lightweight propellers. The
model of a GTM is derived in the following for the reader’s
convenience and to fix the nomenclature.

Considering the body frame FB = {OB,(xB,yB,zB)} at-
tached to the platform such that the origin OB coincides with
its center of mass (CoM), the full-pose of the vehicle in world
frame FW is described by the pair q = (p,R) ∈ SE(3), where
p ∈ R3 is the position of OB in FW , and the rotation matrix
R ∈ SO(3) represents the orientation of FB w.r.t. FW . The
linear velocity of OB in FW is v = ṗ ∈ R3, whereas the
orientation kinematics is governed by the nonlinear relation

Ṙ = R[ωωω]×, (1)

where ωωω ∈ R3 is the angular velocity of FB w.r.t. FW ,
expressed in FB, and [·]× is the map associating any vector
in R3 to the corresponding skew-symmetric matrix in so(3).

The i-th propeller, with i = 1 . . .n, rotates with an angular
velocity ωωω i ∈ R3 about a spinning axis which passes through
the propeller center OPi . Both the direction of ωωω i and the
position pi ∈R3 of OPi are assumed constant in FB, while any
assumption is allowed on the angular velocity sign account-
ing, e.g., for both bidirectional (unconstrained) and mono-
directional (constrained) propellers.3 According to the most
commonly accepted model, the propeller applies at OPi a thrust
(or lift) force fi ∈ R3 that is equal to

fi = κc fi‖ωωω i‖ωωω i, (2)

where c fi > 0 is the norm of fi when ‖ωωω i‖= 1 and κ ∈{−1,1}.
Both c fi and κ are constant parameters depending on the shape
of the propeller. The propeller is said of CCW type if κ = 1
and of CW type if κ =−1. For CCW propellers the lift has the
same direction of the angular velocity of the propeller, while
for the CW it has the opposite direction. Moreover the i-th
propeller generates a drag moment τττd

i ∈ R3 whose direction
is always opposite to the angular velocity of the propeller:

τττ
d
i =−c+τi

‖ωωω i‖ωωω i, (3)

where c+τi
> 0 is the norm of τττd

i when ‖ωωω i‖= 1. Also c+τi
is

a constant parameter depending on the shape of the propeller.
We assume that the propeller is lightweight enough that the
associated inertia moment can be neglected w.r.t. the two main
aerodynamical effects just described and the platform inertia.

One can arbitrarily choose a unit direction vector zPi ∈ R3

that is parallel to the i-th propeller spinning axis, and that is
also constant in FB. The angular velocity is then expressed as
ωωω i = (ωωω>i zPi)zPi =: ωizPi . The scalar quantity ωi ∈R is called
the propeller spinning rate. Substituting this last expression
in (2) and (3) we obtain

fi = κc fi |ωi|ωizPi = c fiuizPi , (4)

τττ
d
i =−c+τi

|ωi|ωizPi = cτiuizPi , (5)

where ui = κ|ωi|ωi and cτi =−κc+τi
. In this way the new input

ui ∈R, a one to one mapping with the propeller spinning rate,
appears linearly in the force and moment equation. The type
of propeller is understood by the sign of cτi (cτi < 0 for the
CCW type and cτi > 0 for CW type).

Denoting with τττ t
i = pi×fi ∈R3 the thrust moment associated

to the i-th propeller, the total control force fc ∈R3 and the total

3In Sec. IV we shall restrict this model to the case of mono-directional
propellers for studying the failsafe robustness of most common platforms.
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control moment τττc ∈ R3 applied at OB and expressed in FB
are

fc = ∑
n
i=1fi = ∑

n
i=1c fizPiui, (6)

τττc = ∑
n
i=1(τττ

t
i +τττ

d
i ) = ∑

n
i=1
(
c fipi× zPi + cτizPi

)
ui. (7)

Introducing the control input vector u=
[
u1 · · · un

]> ∈Rn, (6)
and (7) are shortened as

fc = F1u, and τττc = F2u, (8)

where the control force input matrix F1 ∈R3×n and the control
moment input matrix F2 ∈R3×n depend on the geometric and
aerodynamic parameters introduced before.

The facts that c fi > 0 and c+τi
> 0 imply that none of the

columns of both F1 and F2 is a zero vector, and therefore we
have both rank(F1)≥ 1 and rank(F2)≥ 1 by construction.

Neglecting the second order effects (such as, the gyroscopic
and inertial effects due to the rotors, the flapping, and the rotor
drag) the dynamics of the GTM is described by the following
system of Newton-Euler equations

mp̈ =−mge3 +Rfc =−mge3 +RF1u (9)
Jω̇ωω =−ωωω×Jωωω +τττc =−ωωω×Jωωω +F2u, (10)

where g > 0, m > 0 and J ∈ R3×3 are the gravitational
acceleration, the total mass of the platform and its positive
definite inertia matrix, respectively, and ei is the i-th canonical
basis vector of R3 with i = 1,2,3.

III. DECOUPLING OF FORCE AND MOMENT

In the following we assume that the GTM is at least
designed to satisfy

rank(F2) = 3. (11)

The input space Rn can always be partitioned in the orthogonal
subspaces Im

(
F>2
)

and Im
(
F>2
)⊥

= ker(F2), such that the
vector u can be rewritten as the sum of two terms, namely

u = T2ũ = [A2 B2]

[
ũA
ũB

]
= A2ũA +B2ũB, (12)

where T2 = [A2 B2] ∈ Rn×n is an orthogonal matrix such that
Im(A2) = Im(F>2 ) and Im(B2) = ker(F2). Note that, thanks
to (11), A2 ∈Rn×3 is full rank, i.e., rank(A2) = 3, while B2 ∈
Rn×n−3 has rank(B2) = n−3. Given this partition, we have

τττc = F2T2ũ = F2A2ũA, (13)

fc = F1T2ũ = F1A2ũA +F1B2ũB =: fA
c + fB

c . (14)

The matrix F2A2 in (13) is nonsingular thus any mo-
ment τττ ∈ R3 can be virtually implemented by setting
ũA = (F2A2)

−1
τττ in (12) in conjunction with any ũB ∈ Rn−3.

The control force, which obviously belongs to F := Im(F1),
is split in two components: fc = fA

c + fB
c , defined in (14).

The component fA
c = F1A2ũA represents the ‘spurious’ force

generated by the allocation of the input needed to obtain
a non-zero control moment. This component belongs to the
subspace FA := Im(F1A2)⊆ R3. The component fB

c = F1B2ũB
instead represents a force that can be assigned indepen-
dently from the control moment by allocating the input u in

Im(B2) = ker(F2). This ‘free’ force component belongs to the
subspace FB := Im(F1B2)⊆ R3 and it is obtained by assigning
ũB. Being T2 nonsingular, we have that F = FA +FB. It is
instrumental to recall that 1≤ dimF≤ 3 because rank(F1)≥ 1,
and that FB ⊆ F, thus dimF≥ dimFB.

The dimension of FB and its relation with F sheds light
upon the GTM actuation capabilities. The following two sets
of definitions are devoted to this purpose.

Definition 1. A GTM is
• fully coupled (FC) if dimFB = 0 (i.e., if F1B2 = 0)
• partially coupled (PC) if dimFB ∈ {1,2} and FB ( F
• un-coupled (UC), or fully-decoupled, if FB =F (or, equiv-

alently, FA ⊆ FB)

In a fully coupled GTM the control force depends com-
pletely upon the implemented control moment, in fact fB

c = 0
and thus fc = fA

c . In a partially coupled GTM the projection of
the control force onto FB can be chosen freely while the pro-
jection onto F⊥B ∩F depends completely upon the implemented
control moment. Finally in an un-coupled (equivalently, fully
decoupled) GTM no projection of the control force depends
on the control moment, i.e., the control force can be freely
assigned in the whole space F. Notice that the full decoupling
does not imply necessarily that the control force can be chosen
in the whole R3, unless it holds also F= R3.

The second important classification is provided in the fol-
lowing definition.

Definition 2. A GTM
• has a decoupled direction (D1) if dimFB ≥ 1
• has a decoupled plane (D2) if dimFB ≥ 2
• is fully actuated (D3) if dimFB = 3.

Combining the previous definitions we say that a GTM
• has a single decoupled direction (SD1) if dimFB = 1
• has a single decoupled plane (SD2) if dimFB = 2.

If a GTM has a decoupled direction then there exists at least
a direction along which the projection of the control force can
be chosen freely from the control moment. If a GTM has a
decoupled plane then there exists at least a plane over which
the projection of the control force can be chosen freely from
the control moment. If a GTM is fully actuated then the control
force can be chosen in all R3 freely from the control moment.

We shall show that the above definition of full-actuation
is equivalent to the more common definition known in the
literature, i.e.,

rank(F) = rank
([

F1
F2

])
= 6. (15)

Post-multiplying F by T does not change the rank, we obtain

FT =

[
F1
F2

]
[A2 B2] =

[
F1A2 F1B2
F2A2 0

]
. (16)

Recalling that rank(F2A2) = 3 thanks to (11), we have that
rank(F) = 6 if and only if rank(F1B2) = 3, which corresponds
to the fully actuated definition given above.

In terms of relations between the above definitions, we note
that: D3 implies UC, while the converse is not true; D3 implies
D2; D2 implies D1. Finally, D1 (and thus D2) can coexist with
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∃ decoupled direction
∃ decoupled plane

dimFB = 0 dimFB = 1 dimFB = 2 dimFB = 3

FB ( F FC PC and SD1 PC and SD2 N/A
FB = F N/A UC and SD1 UC and SD2 D3 (UC)

(dimF≥ 1) (dimF≥ 1) (⇒ dimF≥ 2) (⇒ dimF= 3)

TABLE I: A table recalling the fundamental properties of the actuation of a GTM, where N/A denotes an impossible combination.

PC or UC but not with FC. Note that in the state-of-the-art of
multi-rotor controllers it is implicitly assumed that the GTM is
fully decoupled and there exists a decoupled direction oriented
along its zB axis. An exception is represented by controller that
we proposed in [24], where the decoupled direction can be any
and the GTM can be also partially coupled.

Table I yields a comprehensive view of all aforementioned
definitions and relations. In the following we provide two illus-
trative examples of GMT and study their coupling properties
with the theoretical tools just introduced.

A. Standard (collinear) Multi-Rotors

Consider the case in which Im(F>1 ) ⊆ ker(F2) = Im(B2).
Recalling that F1 6= 0 by definition, this hypothesis implies
that F1B2 6= 0 and that

F2F>1 = 0⇔ F1F>2 = 0⇔ F1A2 = 0, (17)

therefore FA = {0} and hence FB = F, i.e., the GMT is UC.
Classical multi-rotor systems fall in this case. They are

characterized by an even number of propellers having parallel
orientations, a balanced geometry and a balanced choice of
CW/CCW types. Specifically, as zPi = zP, their matrices F1
and F2 result to be

F1 =
[
c f1zP · · · c fnzP

]
, (18)

F2 =
[
c f1p1× zP · · · c fnpn× zP

]
+
[
cτ1zP · · · cτnzP

]
.

Notice, to have rank(F2) = 3 it is enough to choose at least
the position vectors of two propellers i and j such that pi×zP,
p j× zP, and zP are linearly independent.

To show that F2F>1 = 0, it has to be observed first that
F2F>1 = C f +Cτ , where C f =

((
∑

n
i=1c2

fipi

)
× zP

)
z>P ∈R3×3

and Cτ =
(
∑

n
i=1cτic fi

)
zPz>P ∈ R3×3. Then, by suitably choos-

ing the positions and the coefficients {cτi ,c fi} one can easily
make C f = Cτ = 0. For example it is enough to make the pro-
pellers pairwise balanced, i.e., satisfying pi+p j = 0, c fi = c f j ,
and cτi = −cτ j for i ∈ {1 . . . n

2} and j = i + n
2 . Many other

choices are however possible.
Finally, w.r.t. Table I, we can note that such a multi-rotor

system has also a decoupled direction but not a decoupled
plane, because rank(F1) = 1 and thus dimFB = 1. Classical
multi-rotor systems are therefore un-coupled/full-decoupled
(UC) GTMs with a single decoupled direction (SD1).

In these platforms control moment and control force can be
considered independently. Furthermore, two other properties
have been fundamental to establish the success and simplicity
in controlling such platforms. First of all the control force is
always directed in the same direction in body frame regardless

of the value of the input u and therefore its direction is
not affected by the unavoidable uncertainty of the propeller
spinning rate. Second of all the force direction in world frame
can be reliably measured by simple attitude estimation, as well
as its derivative (by a gyroscope) and controlled through the
fully actuated rotational dynamics. The only price to pay is
underactuation (dimF= 1), which has not been an obstacle in
many cases of practical relevance.

B. Tilted Quadrotor

The tilted quadrotor used in the experimental setup in [25]
constitutes an example of a platform which is instead partially
coupled (PC) with a single decoupled direction (SD1).

This kind of vehicle is such that the i-th propeller is tilted
about the axis joining OB with OPi of an angle αi in a way
that the consecutive rotors are oriented in opposite way, i.e.,
α1 = α3 = α and α2 = α4 = −α , with α ∈

[
0, π

2

]
. Hence,

assuming that all the propellers have the same aerodynamic
features (namely c fi = c f and |cτi |= cτ ), we have

F1 = c f

 0 sα 0 −sα

sα 0 −sα 0
cα cα cα cα

 (19)

F2 = cτ

 0 sα + rcα 0 −sα− rcα

−sα− rcα 0 sα + rcα 0
−cα + rsα cα− rsα −cα + rsα cα− rsα

 (20)

where r = (c f /cτ)l with l denoting the distance between OB
and OPi , sα = sinα , and cα = cosα .

From (19) it is easy to see that F=R3 if sα 6= 0 and cα 6= 0,
while F = span{e3} if sα = 0, and finally F = span{e1,e2}
if cα = 0. In addition, F2 in (20) results to be full rank if
tanα 6=−r and tanα 6= 1

r , whereas if tanα = 1
r (−cα +rsα =

0) then rank(F2) = 2 and if tanα = −r (sα + rcα = 0) then
rank(F2) = 1. When rank(F2) = 3, according to (12), the input
space R4 can be partitioned by choosing, for example,

A2 =


0 −1 −1
1 0 1
0 1 −1
−1 0 1

 and B2 =


1
1
1
1

. (21)

As a consequence we get

F1A2 = 2c f

sα 0 0
0 −sα 0
0 0 0

 and F1B2 = 4c f

 0
0

cα

. (22)

When cα = 0 the GTM is FC because dimFB = 0. Instead,
as long as cα 6= 0, we have that dimFB = Im(F1B2) = 1, i.e.,
the GTM has a single decoupled direction (SD1), which is
e3. In this case the platform is UC if and only if sα = 0, in
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fact only in this case FB = F (or equivalently FA = {0} ⊆
FB). Instead, in the case in which sα 6= 0 (as in [25]) the
GMT is PC. The plane F⊥B ∩F = span{e1,e2} represents the
plane along which the projection of the control force depends
completely on the choice of the control moment. In [25], the
effect of this term is partially mitigated by the robustness of
the hovering controller, however the perfect tracking that is
possible with α = 0 is theoretically not guaranteed anymore.

IV. STATIC HOVERING REALIZABILITY
WITH MONO-DIRECTIONAL PROPELLER SPIN

The large majority of propellers used in GTMs can spin
only in one direction, mainly due to the larger efficiency of
propellers with asymmetric profile and the difficulty in reliably
and quickly changing the spinning direction. It is therefore
important to consider this additional constraint in the model
and analyze the consequences. In the following we use the
notation u ≥ 0 or u > 0 to indicate that each entry of the
vector u is nonnegative or positive, respectively.

In this section, we aim at theoretically analyzing the con-
ditions under which a GTM can stay in a controlled static
equilibrium when the additional constraint u≥ 0 is enforced.
We start from the following definition.

Definition 3 (Equilibrium). A GTM is in equilibrium if

ṗ = 0, p̈ = 0, ωωω = 0, ω̇ωω = 0 (23)

or, equivalently

ṗ = 0, fc = F1u = mgR>e3, ωωω = 0, τττc = F2u = 0. (24)

A basic property to ensure the rejection of external distur-
bances while being in equilibrium is the possibility to exert a
control moment τττc in any direction and with any intensity by a
suitable allocation of the input vector u≥ 0. In this perspective,
in [23] the following condition has been introduced.

Definition 4 (Realizability of any control moment [23]). A
GTM can realize any control moment if it is possible to
allocate the actuator values u ≥ 0 to obtain any τττc ∈ R3.
Formally if

∀τττc ∈ R3 ∃u≥ 0 s.t. F2u = τττc. (25)

In [23] it has been shown that (25) is equivalent to the
simultaneous satisfaction of (11) and the following condition

∃u > 0 s.t. F2u = 0. (26)

A drawback of Def. 4 is to consider only the realizability
w.r.t. the generation of the control moment, thus ignoring the
control force. However, a proper control force generation is
also needed to robustly control the GTM while in equilibrium.
For this reason, in [24] we have proposed the following
additional condition.

Definition 5 (Realizability of any control force [24]). A GTM
can realize any control force if it is possible to allocate the
actuator values u ≥ 0 to obtain a control force with any
intensity fc ∈ R≥0 while the platform is in static hovering.
Formally if

∀ fc ∈ R≥0 ∃u≥ 0 s.t. F2u = 0 and ‖F1u‖= fc. (27)

Note that the static hovering equilibrium (24) does not force
the vehicle in a certain orientation. As a consequence, when
it is possible to generate a control force with any nonnegative
intensity, then it is sufficient to attain the suitable attitude
(orientation) in order to realize any other control force vector.

Proposition 1. Condition (27) is equivalent to

∃u≥ 0 s.t. F2u = 0 and F1u 6= 0. (28)

Proof. The proof is straightforward and reported here only for
completeness.
(28)⇒ (27): Assume that ū satisfies (28), i.e., F2ū = 0
and F1ū 6= 0, then, for any fc ∈ R≥0 it exists the vector
u = fcū/‖F1ū‖ which satisfies (27).

(27)⇒ (28): Consider any fc ≥ 0, and assume that u satis-
fies (27), then the same u satisfies also (28).

Exploiting the previous equivalent conditions we introduce
the following more complete definition for the realizability of
the static hovering.

Definition 6 (Static hovering realizability). If the three con-
ditions (11), (26), and (28) are met then the GTM can realize
a static hover (with nonnegative inputs), or equivalently, is
statically hoverable.

Notice that (11), (26), and (28) are only necessary condi-
tions to ensure that a platform can stay in any equilibrium
according to Def. 3.

The property of realizability of static hovering is agnostic
w.r.t. the set of attitudes at which the static hovering can be
realized. These are all the attitudes represented by a matrix R
for which (24) holds with u≥ 0. If a GTM can hover statically
we are sure that at least one attitude of such kind exists.

All the common star-shaped multi-rotors are GTM that can
hover statically, as stated in the following proposition.

Proposition 2. Multi-rotors having n propellers, with n ≥ 4
and even, cτi = cτ > 0 for i = 1,3 . . .n− 1, cτi = −cτ for
i = 2,4 . . .n, and c fi = c f > 0, zPi = e3, pi = l Rz

(
(i−1) 2π

n

)
e1

for i = 1 . . .n (where l = dist(OB,OPi) > 0 and Rz is the
canonical rotation matrix about the z-axis) can realize static
hovering.

Proof. After some simple algebra it is easy to check that F2 is
full rank. Furthermore it is also easy to check that the vector of
all ones 1 = [1 · · · 1]> ∈Rn has the property that F21 = 0 and
F11 6= 0, thus u = 1 satisfies all the required conditions.

Standard star-shaped multi-rotors described in Prop. 2 are
not the only statically hoverable GTMs. In fact, in Sec. V we
shall show other examples that arise in the important situa-
tions of propeller failures. Conversely, it is also easy to find
examples of GTMs that cannot hover statically, like the one
in the next Proposition, which also explains why quadrotors
have an alternated pattern of CW and CCW propellers and not
the other patter.

Proposition 3. Consider a 4-rotor that respects all the con-
ditions in Prop. 2 apart from the fact that cτi = cτ > 0 for
i = 1,2 and cτi = −cτ for i = 3,4. This GTM cannot realize
static hovering.
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Proof. Expanding (7) for this special case, and noting that
p3 =−p1 and p4 =−p2, we obtain

τττc = ∑
n
i=1
(
c fipi× zPi + cτizPi

)
ui (29)

=
(
c f p1×e3 + cτ e3

)
(u1−u3)+

(
c f p2×e3 + cτ e3

)
(u2−u4).

Denoting with f21 =
(
c f p1×e3 + cτ e3

)
and f22 =(

c f p2× e3 + cτ e3
)

we have that F2 = [f12 f22 − f12 − f22]
whose rank is 2 and therefore condition (11) is not met.

Notice that if there was no constraint u ≥ 0 the capability
of realizing static hovering would have been equivalent to
the existence of a decoupled direction, while since we are
considering the additional constraint u≥ 0 one needs stronger
properties to be fulfilled. This remark is in line with the fact
that GMTs that can hover statically have a decoupled direction
(D1) (see Def. 2) as stated in the next proposition, but are not
necessarily un-coupled/fully-decoupled (UC).

Proposition 4. A GTM that can realize static hovering has
a decoupled direction. In particular, consider any u = ū ∈Rn

which satisfies (28), then a possible decoupled direction is

d∗ = F1ū/‖F1ū‖. (30)

Proof. ū ∈ ker(F2) hence the rightmost requirement in (28)
can be written as F1B2ũB 6= 0, which implies dimFB ≥ 1.

V. ROTOR-FAILURE ROBUSTNESS FOR HEXAROTORS

In this section we apply the theory developed so far to
investigate the rotor-failure robustness of hexarotor GTMs
(i.e., GTMs with n= 6). Robustness is defined as the capability
of the platform to realize static hovering even in case a
propeller fails and stops to spin. The attention is focused
on platforms having six rotors because in [26] it has been
shown that it is the minimum number of actuators which
guarantees the resolution of controller allocation problem with
redundancy against a single failure.

Definition 7. In the context of this paper, ‘the k-th rotor is
failed’ means that it stops to spin (ωk = uk = 0), thus producing
neither thrust nor drag anymore. A rotor that is not failed, i.e.,
whose spinning rate can be still controlled, is healthy.

Definition 8. Given a hexarotor GTM whose propellers set is
denoted by P = {1 . . .6}, this is said to be {k}-loss robust
with k ∈P if the pentarotor GTM obtained considering only
the healthy rotors in P\{k} can still realize static hover
(according to Def. 6).

Definition 9. A hexarotor GTM is said to be
• fully robust if it is {k}-loss robust for any k ∈P;
• partially robust if it is not fully robust but it is {k}-loss

robust for at least one k ∈P;
• fully vulnerable if it is neither fully nor partially robust.

A. (α,β ,γ)–Hexarotor Family

In the following we describe a fairly general hexarotor GTM
model parametrized by 3 angles: α , β , and γ . The angle γ is
meant to define the propellers arrangement, while the angles α

and β allow to describe the orientation of the rotors spinning

α

• .

.

.

β

π
3 − γ

π
3 + γ

OPi−1

OPi

OPi+1

OB

Fig. 1: Arrangement of three consecutive propellers, highlighting the
effect of angles α,β and γ .

direction (see Fig. 1) as formally explained in the following.
The so obtained (α,β ,γ)–hexarotor family spans (and extends)
the most commonly used classes of 6-rotor GTMs. Our goal
is to analyze the relations that exist between these angles and
the robustness features of the members of this family. By
doing so, we significantly extend the results presented in [23],
where only a family parametrized by β is considered (i.e., it
is assumed α = γ = 0) and only the compliance with Def. 4
is analyzed, instead of the more strict Def. 6.

For a (α,β ,γ)-hexarotor GTM the positions in FB of the
propeller centers OPi ’s are given by

pi = Rz
(
(i−1)π

3 − 1
2 (1+(−1)i)γ

)︸ ︷︷ ︸
Rγ (i)

 l
0
0

, ∀i ∈P, (31)

where γ ∈
[
0, π

3

]
and l = dist(OB,OPi) > 0. In this way the

smallest angle between OBOPi and OBOPj , j = (imod6)+1 is
alternatively π

3 − γ and π

3 + γ as shown in Fig. 1.
The orientation of the i-th propeller is instead provided by

zPi = Rγ(i)Ry(β )︸ ︷︷ ︸
Rβ

Rx(αi)︸ ︷︷ ︸
Rα (i)

0
0
1

= Rαβγ(i)

0
0
1

, (32)

where Rx,Ry are the canonical rotation matrices about the
x-axis and y-axis, respectively, αi = (−1)i−1α (with i ∈P),
and α,β ∈

(
−π

2 ,
π

2

]
. To geometrically understand the meaning

of (32) one can note that the unit vector zPi is equal to the z-
axis of the frame obtained after the following two consecutive
rotations applied to FB: the first is a rotation of an angle αi
about the vector

−−−→
OBOPi , while the second is a rotation of an

angle β about the y-axis of the intermediate frame obtained
after the first rotation.

In terms of aerodynamic coefficients, each hexarotor of the
family has the following alternating pattern

c fi = c f , cτi = (−1)i−1cτ , ∀i ∈P, (33)

where c f and cτ are two constant values depending on the
used propellers.

In the following we comment on the most relevant configu-
rations that can be obtained by changing the three angles. First,
when sweeping γ from 0 to π

3 we obtain a smooth transition
between the two most popular propeller arrangements for
hexarotors depicted in Fig. 2, i.e.,
• γ = 0: the hexarotor has a star-shape, characterized by

the fact that all the OPi ’s are located at the vertexes of a
regular hexagon (see Fig. 2a);
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4

5 6

1

(a) γ = 0

1
23

4

5
6

(b) γ = π

3

Fig. 2: Two most popular (0,0,γ)–hexarotor GTMs: (a) standard star-
shaped hexarotor (γ = 0), (b) Y-shaped hexarotor (γ = π

3 ).

• γ = π

3 : the hexarotor has a Y-shape, characterized by the
fact that the OPi ’s are pairwise located at the vertexes
of an equilateral triangle (see Fig. 2b). To make this
configuration practically feasible there must be a suitable
vertical distance between each pair of coincident pro-
pellers. However, this fact does not change the outcome
of the following analysis, and therefore is neglected for
the sake of simplicity.

The angles α and β influence instead only the orientation
of the propellers:

• if both α = 0 and β = 0 then the zPi ’s are all pointing
in the same direction as zB. This is the most common
situation for standard hexarotors because it is the most
efficient in terms of energy. However it results in an under
actuated dynamics due to the fact that rank(F1) = 1;

• if α 6= 0 and β = 0 then the zPi ’s are titled alternatively
by an angle α and −α about the axes

−−−−→
OBOP1 , . . . ,

−−−−→
OBOP6 .

This choice results in configurations that are less energy-
efficient than the previous case. However, their advantage
is that one can obtain rank(F) = 6 which makes the GTM
fully actuated.

• if α = 0 and β 6= 0 then the zPi ’s are titled by an angle β

about the axes passing through the OPi ’s and tangential to
the circle passing through all the OP1 , . . . ,OP6 . This choice
has the same full-actuation pros and energy efficiency
cons of the previous case.

• finally, the case in which α 6= 0 and β 6= 0 is a combina-
tion of the previous two.

The rest of the section is devoted to the analysis of the role
of the angular parameters α,β ,γ w.r.t. the rotor-failure ro-
bustness. Specifically, we study the conditions on these angles
which make it possible to realize static hovering after a rotor
loss. To this end, we denote by G1(α,β ,γ),G2(α,β ,γ)∈R3×6

the control force and moment input matrices of an (α,β ,γ)-
hexarotor (i.e., the F1 and F2 appearing in (8), respectively).
In addition, we indicate as kG1(α,β ,γ) and kG2(α,β ,γ) the
3× 5 matrices obtained from G1(α,β ,γ) and G2(α,β ,γ),
respectively, by removing the k-th column, i.e., assuming that
the k-th propeller fails, with k ∈ P . Finally, for sake of
compactness, we summarize the propeller aerodynamic and
geometric features using r = (c f /cτ)l, while the symbols s
and c stand for sine and cosine, respectively.

The formal results derived in the following are summed up
in Table II that states the influence of the (α,β ,γ) angles w.r.t.
the full-actuation and the rotor-failure robustness.

role of α role of β role of γ

full-actuation influential influential uninfluential

failure full robustness uninfluential influential influential

TABLE II: A table recalling the role of the angular parameters α , β

and γ w.r.t. the hexarotor actuation properties.

B. On the Vulnerability of the (0,0,0)-hexarotor GTMs

Before we proceed to analyze the role of the single angular
parameters, we consider the case α = β = γ = 0 which
coincides with a standard star-shaped hexarotor. Although
highly used, and often believed to be robust to failures,
supposedly thanks to the presence of two additional rotors
w.r.t. a quadrotor, these GTMs are actually fully vulnerable as
stated in the next proposition, which is a direct consequence
of the two results shown independently in [23] and [24].

Proposition 5 (Proposition 2 in [24]). Assume that α = β =
γ = 0, then the resulting (0,0,0)–hexarotor GTM is fully
vulnerable.

We provide next a new geometrical interpretation of this
counterintuitive result which will help both to understand
the result itself and to highlight the main drawback of the
(0,0,0)–hexarotor design that should be overcome to attain
the robustness against failure of such platforms.

Exploiting (31) and imposing α = β = γ = 0, the control
moment input matrix of the (0,0,0)–hexarotor GTM results as
in (34) (top of next page). Note that the columns {gi ∈R3, i∈
P} of G2(0,0,0) are such that g1 = −g4, g2 = −g5, g3 =
−g6. This means that the total moments generated by the two
propellers of an opposed-propeller pair are always collinear
regardless of the values assigned to their inputs ui and u j,
where (i, j) ∈ {(1,4),(2,5),(3,6)} (see Fig. 3a), i.e., we have

τττc = g1(u1−u4)+g2(u2−u5)+g3(u3−u6). (38)

According to (38), the total control moment applied to the
platform can be expressed as the linear combination of the
linearly independent vectors g1,g2,g3 that identify the direc-
tions of the moments of opposed-rotor pairs. Given that, even
if ui,u j ≥ 0, the sign of (ui−u j) can be any, τττc can have any
direction (and intensity) in R3 (see Fig. 3b for a graphical
representation). However, if any propeller fails, e.g., propeller
6, then u6 = 0 and the control moment degrades to

τττc = g1(u1−u4)+g2(u2−u5)+g3u3. (39)

Given that u3 in (39) must be nonnegative, τττc is limited in the
half space of R3 generated by g3 and by the delimiting plane
Π12 parallel to g1 and g2, as graphically shown in Fig. 3c.
The condition (25) is therefore not satisfied, because any τττ

belonging to the complementary half-space cannot be attained
by any choice of u1 . . .u5 ≥ 0.

Summarizing: (i) the total moments generated by two
propellers that are opposed are collinear; therefore, (ii) the
moments generated by two opposed-rotor pairs (g1, g4, g2, and
g5 in Fig. 3b) lie all on a 2-dimensional plane, even if they are
generated by the (conical) combination of four independently
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G2(0,0,0) = cτ

 0
√

3
2 r

√
3

2 r 0 −
√

3
2 r −

√
3

2 r
−r − 1

2 r 1
2 r r 1

2 r − 1
2 r

1 −1 1 −1 1 −1

 (34)

G2(α,0,0) = cτ

 0
√

3
2 (sα + rcα)

√
3

2 (sα + rcα) 0 −
√

3
2 (sα + rcα) −

√
3

2 (sα + rcα)
−(sα + rcα) − 1

2 (sα + rcα) 1
2 (sα + rcα) (sα + rcα) 1

2 (sα + rcα) − 1
2 (sα + rcα)

cα− rsα −cα + rsα cα− rsα −cα + rsα cα− rsα −cα + rsα

 (35)

G2(0,β ,0) = cτ

 sβ − 1
2

(
sβ − r

√
3cβ

)
− 1

2

(
sβ − r

√
3cβ

)
sβ − 1

2

(
sβ + r

√
3cβ

)
− 1

2

(
sβ + r

√
3cβ

)
−r cβ − 1

2

(√
3sβ + r cβ

) 1
2

(√
3sβ + r cβ

)
r cβ − 1

2

(√
3sβ − r cβ

) 1
2

(√
3sβ − r cβ

)
cβ −cβ cβ −cβ cβ −cβ

 (36)

G2(0,0,γ) = cτ

 0 +r s
(

π

3 − γ
)

+r
√

3
2 +r s(π− γ) −r

√
3

2 +r s
( 5π

3 − γ
)

−r −r c
(

π

3 − γ
)

+r 1
2 −r c(π− γ) +r 1

2 −r c
( 5π

3 − γ
)

1 −1 1 −1 1 −1

 (37)

6

3

•
g3u3

−g3u6
τ t
3

τ d
6

τ t
6 τ d

3

(a) Opposed rotors

•

g3u3

g3u2

−g1u4
−g3u6

−g2u5

g1u1

(b) All healthy rotors

•

g3u3

Π12

(c) Rotor-failure case

Fig. 3: Composition of the propeller moments for a (α,0,0)-hexarotor
GTM with any α .

controllable moments4; as a consequence, (iii) five propellers
alone can only generate half of the whole 3-dimensional space.

If one finds a way to make the four moments at point (ii)
noncoplanar, but actually spanning (by conical combination)
the whole space R3, then symmetry would be broken, singu-
larity overcome, and robustness hopefully achieved. A way to
obtain this is to design the hexarotor such that the moment of
the opposed propeller pairs are not collinear as in the (0,0,0)-
hexarotor case. We will show next by changing which ones of
the angular parameters of the considered family of hexarotors
one can actually achieve such goal.

C. Role of α

Despite the influential role of α in guaranteeing the full-
actuation of the (α,β ,γ)-hexarotor [7], [20], its effect in the
robustness achievement is completely marginal, as summa-
rized in the next statement.

Proposition 6. Assume that β = γ = 0, then for any
α ∈

(
−π

2 ,
π

2

]
the resulting (α,0,0)–hexarotor GTM is fully

vulnerable.

Proof. The control moment input matrix of the (α,0,0)-
hexarotor is reported in (35). Both G2(α,0,0) and kG2(α,0,0)
(for any k ∈P) are full rank for every value of α in the do-
main of interest, except when tan(α) =−r and tan(α) = 1/r.
In fact, considering Ḡ(α,0,0) = G2(α,0,0)G>2 (α,0,0) ∈

4A conical combination of m vectors can contain in principle a subspace
of dimension up to m−1, i.e., up to 3 if m = 4.

R3×3 and kḠ(α,0,0) =k G2(α,0,0)kG>2 (α,0,0) ∈ R3×3, it
holds that

det(Ḡ(α,0,0)) = 54c2
τ (sα + rcα)4 (cα− rsα)2, (40)

det(kḠ(α,0,0)) = 27c2
τ (sα + rcα)4 (cα− rsα)2. (41)

Trivially, (40)-(41) are null when tan(α) = −r and tan(α) =
1/r, so in these two cases the requirement (11) is not satisfied
and the (α,0,0)-hexarotor GTM cannot hover statically.

For other cases, we focus the attention on the require-
ment (26), analyzing the ker

(
kG2(α,0,0)

)
. Thanks to the

particular structure of the matrix in (35), it can be seen that

ker
(

kG2(α,0,0)
)
=span

(
h\kk+1 +h\kk−2, h\kk+2 +h\kk−1

)
, (42)

where h\ki is the vector of the canonical basis of R5 obtained
in the following way:

1) first compute the vector of the canonical basis of R6

which has a one in the entry imod6 and zeros elsewhere,
2) then remove the k-th entry from the previous vector

(which is a zero entry by construction).
For example for k = 6 we have h\66+1 = [1 0 0 0 0]> and
h\66−2 = [0 0 0 1 0]> and therefore h\66+1 +h\66−2 = [1 0 0 1 0]>.
Additionally we have h\66+2 + h\66−1 = [0 1 0 0 1]>. It is easy
to check that the last two vectors are in ker

(
6G2(α,0,0)

)
regardless of the value of α . This implies that any u∈R5 that
satisfies 6G2(α,0,0)u= 0 has one entry structurally equal to 0
(corresponding to the propeller k+3mod6) and therefore (26)
cannot be satisfied. This finally means that the failed (α,0,0)-
hexarotor GTM cannot fly in static hovering, namely it is fully
vulnerable according to Def. 6.

From a geometrical perspective, with reference to Fig. 3,
tilting the propeller 3 of an angle α about

−−−−→
OBOP3 and the

propeller 6 of an angle −α about
−−−−→
OBOP6 does tilt the two

moments generated by the two opposite rotors in the same
way and therefore keeps them collinear. The same holds for
the pairs (1,4) and (2,5). As a consequence the discussion
provided in Sec. V-B is still valid and the vulnerability of the
(α,0,0)-hexarotor is confirmed by the geometric intuition.

D. Role of β

The importance of β angle w.r.t. the capability of a star-
shaped hexarotor to fly after a rotor failure has been dis-
cussed independently in [23] and [24]. Pushing further the
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understanding of this fact, in the following we analytically
and geometrically prove that a (0,β ,0)-hexarotor GTM is
also fully robust according to the stronger property defined
in Def. 9.

Proposition 7. Assume that α = γ = 0, then for any
β ∈

(
−π

2 ,
π

2

)
such that | tanβ | 6=

√
3r and c2β 6= 1

(1−r2)
, the

resulting (0,β ,0)-hexarotor GTM is fully robust.

Proof. When α = γ = 0, the control moment input matrix
is parametrized by the angle β as in (36). Introducing
Ḡ(0,β ,0) = G2(0,β ,0)G>2 (0,β ,0) ∈ R3×3 and kḠ(0,β ,0) =
kG2(0,β ,0)kG>2 (0,β ,0) ∈ R3×3, we first observe that

det(Ḡ(0,β ,0)) = 54c2
τ c2

β
(
1+(r2−1)c2

β
)2
, (43)

det(kḠ(0,β ,0)) = 27c2
τ c2

β
(
1+(r2−1)c2

β
)2
. (44)

Hence, the full-rankness (11) is guaranteed for any β ∈(
−π

2 ,
π

2

)
even in case of any propeller failure, as long as

c2β 6= 1
(1−r2)

.
Then, proceeding as in [23], we analyze the null space of the

matrix kG(0,β ,0), assuming w.l.o.g. k = 6. It can be seen that
a generic vector u ∈ ker(6G(0,β ,0)) satisfies the following

u1 =
ε +1

2ε
u3−

ε +1
ε−1

, u2 = u3−
ε +1
ε−1

(45)

u4 =
ε +1

2ε
u3 +1, u5 = 1 (46)

where ε = − 1√
3r

tanβ ∈ R. Hence, supposing 0 < |ε| < 1,
it can be proved that u ∈ R5 defined in (45)-(46) is strictly
positive if 0 < u3 < |2ε/(ε + 1)|. As a consequence, the
condition (26) is fulfilled.

Using the parametrization (45)-(46) for the vector u, it can
also be proved that the 6G1(0,β ,0)u 6= 0, where 6G1(0,β ,0)
is obtained removing the 6-th column of the force input matrix

G1(0,β ,0) =

sβ
1
2 sβ − 1

2 sβ −sβ − 1
2 sβ

1
2 sβ

0
√

3
2 sβ

√
3

2 sβ 0 −
√

3
2 sβ −

√
3

2 sβ

cβ cβ cβ cβ cβ cβ

. (47)

Having checked that the three conditions (11), (26), and
(28) are met for any β ∈ (−π

2 ,
π

2 ) such that | tanβ | 6=
√

3r and
c2β 6= 1

(1−r2)
, then the statement of the proposition is proved.

This result can be also partially justified by geometric
intuition. In fact, when all the propellers are equally in-
ward/outward tilted of an angle β 6= 0, the total moments of
the opposed rotors are not collinear anymore. This is shown
in Fig. 4a for propellers 3 and 6, where the vectors τd

3 and τd
6

are rotated in a way that breaks the symmetry while τ t
3 and

τ t
6 have the same orientation as in Fig. 3a and are not shown.

Thus, the moments of the opposed propellers, g3u3 and g6u6
in Fig. 4a, are not collinear anymore and the same holds for
the other two pairs of opposed propellers. The total moment
is thus the conical combination of six different directions:

τττc = g1u1 +g2u2 +g3u3 +g4u4 +g5u5 +g6u6. (48)

In this case, the failure of the 6-th (or any other) propeller
does not reduce the total control moment space since if
we even only consider four of the five remaining vectors

63

g3u3

g6u6

τ d
3

τ d
6

•

(a) Opposed rotors

•

g3u3

g2u2

g4u4g6u6

g5u5

g1u1

(b) All healthy rotors

•

g3u3

C1245

(c) Rotor-failure case

Fig. 4: Composition of the propeller moments for a (0,β ,0)-hexarotor
GTM with any β 6= 0.

g1,g2,g4,g5 they are not anymore coplanar but actually their
conical combination C1245 spans the whole R3 as depicted in
Fig. 4c. The same holds for the failure of any other propeller.

E. Role of γ

We conclude evaluating the role of γ . Note that the condition
α = β = 0 and γ 6= 0 entails that the propellers are parallel
oriented but not equally spaced. This asymmetry of the plat-
form results to be fundamental to overcome the vulnerability
established in Sec. V-B.

Proposition 8. Assume that α = β = 0, then for any
γ ∈

(
0, π

3

]
, the resulting (0,0,γ)-hexarotor GTM is fully ro-

bust.

Proof. Imposing α = β = 0, the control moment input matrix
is G2(0,0,γ) in (37). This is full rank for any choice of
γ ∈ [0, π

3 ], and analogously is the derived kG2(0,0,γ) for any
k∈P . This fact can be verified by considering the determinant
of the matrices Ḡ2(0,0,γ) =G2(0,0,γ)G>2 (0,0,γ)∈R3×3 and
kḠ2(0,0,γ) =k G2(0,0,γ)kG>2 (0,0,γ) ∈ R3×3. Specifically, it
occurs that det(Ḡ2(0,0,γ)) = 54c2

τ r4, hence the condition (11)
is always fulfilled independently from γ . In case of any
rotor failure, the determinant of kḠ2(0,0,γ) results instead
to be a complex non-linear function of γ , however it can
be numerically checked that it is never null in the domain
of interest. Hence, the first condition for the static hovering
realizability is always satisfied in case of rotor-failure.

To explore which conditions on γ possibly ensure that
kG2(0,0,γ) fulfills requirement (26) we assume again that the
6-th rotor fails. The solution of 6G2(0,0,γ)u = 0 can then be
written in the following form

u1 = u4 +
(−
√

3sγ− cγ +1)
(2cγ +1)

(49)

u2 =−
(√

3sγ− cγ +1
)

(2cγ +1)
u4 +

3
(2cγ +1)

(50)

u3 =−
(√

3sγ− cγ +1
)

(2cγ +1)
u4 +

(√
3sγ− cγ +1

)
(2cγ +1)

(51)

u5 = 1 (52)

It can be verified that, as expected, the positivity of u cannot
be ensured for γ = 0. In fact, replacing γ = 0 in (51) we obtain
u3 = 0, a structurally zero entry, as in the proof of Prop. 6.
On the other side, observing that 0≤ sγ ≤

√
3

2 and 1
2 ≤ cγ ≤ 1

in the domain of interest, the condition 0 < γ < π/3 implies
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Fig. 5: Composition of the propeller moments for a (0,0,γ)-hexarotor
GTM with γ = π

3 .

the existence of a strictly positive vector u∈ ker(6G2(0,0,γ)),
namely the fulfilment of (26).

Exploiting (49)-(52), it is possible to show that also the
requirement (28) is satisfied when γ > 0. To do so, it is
necessary to evaluate the relation 6G1(0,0,γ)u by introducing
the control force input matrix

G1(0,0,γ) = c f

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

 (53)

Trivially, it results that 6G1(0,0,γ)u 6= 0. As a consequence,
both the Y-shape hexarotor (γ = π

3 ) and all the less common
configurations where 0 < γ < π

3 are fully robust.

Fig. 5a shows the moments composition for a pair of
opposed rotors in a Y-shaped hexarotor. It is straightforward to
see that whenever γ > 0 the moment directions of the opposed
propellers are not collinear anymore. This generates the same
beneficial consequences described in Sec. V-D as shown in
Figs. 5b and 5c. For example, the conical combination C1245
spans the whole R3 also in this case.

VI. EXPERIMENTS WITH A STAR-SHAPED HEXAROTOR

In this section we present and discuss real-world experi-
ments that have been conducted on a star-shaped hexarotor
platform available at LAAS-CNRS, the Tilt-Hex.

A. Experimental Setup

The Tilt-Hex aerial robot is a fully actuated (and therefore
un-coupled/fully-decoupled) multi-rotor, developed at LAAS-
CNRS. It is a

( 7π

36 ,
5π

36 ,0
)
–hexarotor GTM, namely is an

instantiation of a star-shaped hexarotor whose propellers are
tilted with α = 35◦ and β = 25◦. These angles represent a
good choice to achieve a balance between full actuation and
inefficient losses as a result of internal forces. In addition, the
choice of no-zero α entails some practical advantages also in
case of a motor-fail that will be clear in the following.

All the mechanical parts of the Tilt-Hex are off-the-shelf
available or 3D printable. The diameter of the platform,
including the propeller blades, is 1.05m and the total mass,
with a 2200 mAh Li-Po battery, results as m = 1.8kg.

MK3638 brushless motors by MikroKopter are used, to-
gether with 12inch propeller blades to actuate the Tilt-Hex.
A single propeller-motor combination can provide a maxi-
mum thrust of 12N. The ESC (electronic speed controller),
a Bl-Ctrl-2.0, is as well purchased from MikroKopter. The
control software running on the ESC, developed at LAAS,

HC

FC

HC

Time1 2 3 4 5

Fig. 6: Time line of controller switching: (1) HC is running, failure
is manually triggered - i-th propeller stops; (2) Failure gets detected,
opposing propeller is stopped and controller switched to FC; (3)
Manual trigger to restart the two stopped motors; (4) The two rotors
reach 16 Hz, the controller is switched back to HC; (5) The reference
trajectory reaches the initial position and orientation of the Tilt-Hex.

Fig. 7: Recovering of the Tilt-Hex from the manual hitting of one
of its propeller. The numbers indicate the different phases of the
experiment: (1) static hover in healthy conditions, (2) manual stop of
a propeller, (3) transient phase, (4) static hovering in failed conditions
(non-spinning propellers are marked in red).

controls the rotational propeller speed in closed loop and
additionally allows to read the current spinning rate [27]. An
on-board inertial measurement unit (IMU) provides measure-
ments of 3 gyroscopes and a 3D accelerometer at 500Hz. An
external motion capture system (OptiTrack) provides position
and orientation data at 100Hz. These data are fused via a UKF
state estimator to obtain the full vehicle state at 500Hz.

The controller is implemented in MATLAB-Simulink and
runs at 500Hz on a stationary workstation. As its computa-
tional effort is very low (considerably below 1 ms per control
loop) it could be ported easily to an on-board system. Based
on our experience with a similar porting, we would expect the
performances of the onboard implementation to be better than
the Matlab-Simulink implementation, thanks to the possibility
of reaching a faster control frequency (greater than 1kHz) and
almost real-time capabilities (latency below 1 ms). Therefore
the experiments shown here represent a worst case scenario
from this point of view.

During the execution of all experiments two controllers have
been utilized (see Fig. 6). While the Tilt-Hex is healthy (all
rotors working) or before a failure detection of an ESC the
controller presented in [20], [28] is used – referred to as the
Healthy Controller (HC). As soon as a failure is detected the
controller is switched to the controller described in [24] –
referred to as Failed Controller (FC).5 In some of the fol-
lowing experiments the failure of the ESC has been triggered

5We re-used in this section the acronym ‘FC’ for Failed Controller since
there is not risk to confuse it with ‘Fully Coupled’.
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externally. The fail trigger lets an ESC to immediately stop its
propeller from spinning and to rise a failure flag. The status
of the failure flags of all ESCs is checked every 10 ms. When
a failure is detected, the opposed propeller is stopped and the
controller is switched to FC. To change back the status from
failed to healthy, the two stopped motors need to be restarted.
As the time duration is not always identical, the FC is used
until a spinning rate of 16 Hz (minimum closed loop spinning
rate of the ESC) is reached on both previously stopped motors.
Then the controller is switched to HC and a trajectory is
computed to drive back the platform from its current position
and orientation to the initial reference position and orientation
smoothly. Finally the Tilt-Hex reaches its initial position and
orientation.

We used external failure triggers for conducting several
experiments in a row and in a repeatable way. In addition
we also performed an experiment where a propeller was
mechanically stopped by an impact with an external object
during flight. Figure 7 reports some significant frames of
the experiment with the mechanical stop. This shows the
robustness of the proposed approach and the possibility of
using it within a pipeline of failure detection, isolation, and
reaction. The reader is referred to the videos attached to this
article to fully enjoy all these experiments.

B. Experimental Validations

1) Basic principles: In the first experiment (Exp. 1) we
present the basic principles and behavior of the controller
and its recovering capabilities. We report the results of three
consecutive failures of the first three propellers, resulting in the
stopping of all propeller pairs (1-4, 2-5, 3-6) of the Tilt-Hex.
To perform the experiment we have as well recovered from
the failed situation and restarted the failed and the actively
stopped motor (compare Fig. 6). As the Tilt-Hex is a fully
actuated aerial vehicle a smooth transient trajectory is followed
to recover the initial pose after the motor failure phase.

The results of Exp. 1 are presented in Fig. 8. The back-
ground colors of the plots indicate the used controller. In green
shaded areas HC is used, in red shaded areas FC is used while
in white shaded areas FC is used as well but the two stopped
motors are restarted already. The first two plots of Fig. 8
present the reference position pr, the actual position p and the
position error ep = p−pr irrespective of the used controller.
Note that initially, while HC is used, the reference position
is tracked perfectly. At t1 = 7.58s the failure of motor 1 is
triggered (corresponding to event 1 in Fig. 6) and at t2 = 7.6s
the controller is switched to FC and the opposed motor 4 is
stopped (corresponding to event 2 in Fig. 6). Immediately the
position error increases, reaching a peak position error norm
of ‖ep‖ = 0.37m. In the moment of controller switching a
discontinuity of the reference orientation Rr occurs. This is
evident comparing the third and fourth plot of Fig. 8: the third
plot reports the current and reference orientation expressed in
terms of roll-pitch-yaw angles, while the fourth plot depicts the
orientation error, defined as eR = 1

2

(
R>r R−R>Rr

)∨, where
the operator [·]∨ describes the map from the so(3) to R3.
The discontinuity is explained by the different steady hovering
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Fig. 8: Exp. 1 - three consecutive failure and recovery of motor 1 till
motor 3. Green shaded background - Tilt-Hex healthy; Red shaded
background - Tilt-Hex rotor failed; White shaded background - failed
controller but stopped propellers are restarted already.

orientations of the failed system which is due to the presence
of no-zero tilt angle α . Indeed, setting α 6= 0 implies that,
when a motor fails, the partially coupled resulting platform
has a decoupled direction which is not parallel to zB. However,
it implies also a smaller condition number for the matrix
kG2

( 7π

36 ,
5π

36 ,0
)

that has to be inverted in the computation of
the input required to achieve the reference control moment
(see [24] for further details).

After the controller switching the system stabilizes within a
few seconds (observe ṗ and ωωω in Fig. 8). The final orientation
error is negligible, while a small steady state position error is
still visible, which can be easily explained by the unavoidable
uncertainty in the force and torque coupling matrices in (8).
This error can be further decreased using integral terms or
adaptive control, however the main goal here was to show that
static hovering (i.e., with zero velocities) is achieved, rather

Preprint version final version at http://ieeexplore.ieee.org/ 11 Accepted for IEEE Transaction on Robotics 2018



than showing extremely accurate position control. At t3 =
23.7s the two stopped motors are asked to start again and at
t3 = 24.8s both rotors are spinning with the minimum spinning
rate ω1,4 = 16Hz of the ESC. The controller is switched to HC
and the initial position and orientation is reached fast without
any visual steady state error. The same procedure is repeated
for motor i = 2 and i = 3. In the three failed phases different
motor pairs are stopped: it is interesting to notice the different
hovering orientations during the different failures.

2) Robustness: We now test the robustness of the controller
by three experiments. In Exp. 2-1 we present accumulated
results of n = 23 repeated failures of motor 3 and in Exp. 2-2
we show the response of the system in case of a step in the
reference position under failed conditions. Finally in Exp. 2-3
we present the response of the system to a continuously
changing reference (similar to a ramp response).

In Exp. 2-1 the last phase of Exp. 1 (from 60s to 80s) has
been repeated for 23 trials: the Tilt-Hex has recovered from
the failure in all the cases. To get a better understanding of the
vehicle performance, we define a new position and orientation
error function representing the error of its state

ep = ‖ep‖+ k‖ev‖, eR = ‖eR‖+ k‖ew‖

with k = 1s, ev = ṗ and eω = ωωω . In Fig. 9 we report the
mean error value ēp and ēR of all trials, and their maximum
value at each time instant. The failure is triggered at t = 0s
and it is evident that the position and orientation state error
increases directly after the failure but then decreases after
≈ 2.5s and stabilizes at small values after ≈ 4s. Similarly,
the maximum of the state error increases in the beginning,
reaches its maximum after ≈ 2.5s but then decreases rapidly.

In Exp. 2-2, (see Fig. 10) a step in the reference position
pr of 0.5m is commanded at t = 20s under failed condition
(FC). At t = 55s an opposing step of −0.5m is commanded.
The Tilt-Hex tracks both steps within a few seconds and the
platform position and orientation remains perfectly stable.

In Exp. 2-3 the reference position trajectory is changed
about all axes with a total trajectory length of 2.4m (see
Fig. 11, first plot) while the reference orientation is horizontal
(Rr = I3). The position error remains limited with a maximum
norm position error of max|ep| = 0.3m at 59s. Note that the
failed Tilt-Hex is actually more difficult to control than an
ordinary under-actuated system (e.g., a standard quadrotor). In
the case of a collinear multi-rotor system the generated thrust
force is always perpendicular to the rotor plane regardless of
the rotational speed of each rotor. In the case of the failed Tilt-
Hex, this property is not given anymore, making the tracking
of time varying trajectories much more difficult.

VII. SIMULATIONS WITH A Y-SHAPED HEXAROTOR

Given that a Y -shaped hexarotor (namely a (0,0, π

3 )-
hexarotor GTM) is not available for testing in our lab, we
tested the theoretical results regarding this kind of hexarotor in
a realistic simulation for the case of a single propeller failure.
The simulation exploits the dynamic model (8) extended by
several real-world effects to increase the fidelity.
1) Position and orientation feedback and their derivatives are

0 2 4 6 8 10 12 14
0

1

2

3

Fig. 9: Exp. 2-1 - Mean of state error function for 23 trials in position
(blue) and orientation (red) and maximum state error values over all
trials (yellow and purple).
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Fig. 10: Exp. 2-2 - Step response of the system with failure. At
t = 20s a step of 0.5m along pr1 is commanded. At t = 55s a step
of −0.5m along pr1 is commanded. The time of the step signal is
indicated by the black dashed line in all plots.

p ṗ R ωωω u
6.4e-04 1.4e-03 1.2e-03 2.7e-03 0-0.32

TABLE III: Standard deviation of modeled sensor noise loaded on
reported quantities.

impinged on time delay t f =12 ms and sensor noise according
to Table III. The actual position and orientation are fed
back with a lower sampling frequency of only 100 Hz while
the controller runs at 500 Hz. These properties are reflecting
a typical motion capture system and an IMU seen in the
experiments of Sec. VI.
2) The ESC driving the motors is simply modeled by quan-

tizing the desired input u resembling a 10 bit discretization in
the feasible motor speed resulting in a step size of ≈ 0.12Hz.
Additionally the motor-propeller combination is modeled as a
first order transfer function

(
G(s) = 1

1+0.005s

)
. The resulting

signal is loaded again with a rotational velocity dependent
noise level (see Tab. III). This combination mirrors with
high realism the dynamic behavior of a common ESC motor-
propeller combination [27] (i.e., BL-Ctrl-2.0, by MikroKopter,
Robbe ROXXY 2827-35 and a 10 inch rotor blade).
3) The controller assumes a direct stop of the failed propeller,

whereas in the model an exponential decay of the failed
rotor’ generated force is simulated (t 1

2
= 0.1s). This adds an

unknown force and torque disturbance in the failure moment.
In the simulated scenario the vehicle shall hover at a

predefined spot pr and Rr (phase I). At time t = 3s we model
the failure of a single rotor and utilize the controller described
in [24] to recover from this threatening situation (phase II).
The actual current position in the moment of failure is used
as new reference position.
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Fig. 11: Exp. 2-3 - Trajectory following of the system with failure.

The results of the Y-shaped hexarotor simulation are re-
ported in Fig. 12. The position and orientation error (plot
1 and plot 4) in phase I (before the failure occurs) are
negligible - the hexarotor hovers perfectly at its desired spot.
Accordingly, the translational velocity (plot 2) is very small
(considering the realistic factors introduced in the simulation)
with ‖ṗ‖< 0.07ms−1. At time t =3 s, the failure of propeller 1
is simulated. The actual spinning rates ω1, . . . ,ω6 are reported
in the last plot of Fig. 12. In the moment of rotor 1 failure
ω1 starts to decrease exponentially and the system is clearly
perturbed. Immediately the translational velocity and the po-
sition error are increasing, reaching a peak position error of
‖ep‖ = 0.46m 1.1s after the failure. Subsequent the position
and orientation errors decrease fast and the hexarotor GTM
tracks again well the reference position. It is interesting to
see how propeller 2,3 and 5 are compensating the loss of
generated thrust while propellers 4 and 6 are commanded to
decrease their thrust.

In [24] we already presented simulated results for a tilted
star-shaped hexarotor. Compared to this case, on a Y-shaped
hexarotor it is not advisable to switch off the propeller opposed
to the failed one, which is instead the optimal case in the star-
shaped case.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied two fundamental actuation prop-
erties for the multi-rotor UAVs. First, we considered the
interplay between the control force and the control moment
and we distinguished between fully coupled, partially coupled
and un-coupled platforms according to both the dimension
of the freely assignable force subspace FB and its relation
with the total force subspace F. Then we introduced the
concept of static hovering realizability which rests upon the
possibility to reject any disturbance torque while counter-
balancing the gravity. The robustness properties of a family
of hexarotor parametrized by three angles have been finally
explored in terms of capability to statically hover after a rotor
loss. We found out that the full robustness is guaranteed by
(inward/outward) tilting each propeller on its

−−−→
OBOPi -axis or

by moving towards the Y-shaped hexarotor and thus breaking
the symmetry of the propeller positions in the star-shaped
hexarotor.

It should be straightforward for other research groups to
apply the theory developed in this paper to assess the robust-
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Fig. 12: Realistic simulation of the control of a Y-shaped hexarotor
GTM in case of a motor failure. The moment of motor failure is
indicated by the black vertical bar.

ness other classes of vehicles with n = 6 or more and whose
angular parameters can even change during flight.

An interesting challenge would be also to design a n-rotor
platform that is (fully) robust to the loss of (n−4) propellers,
e.g., a fully 2-losses robust hexarotor, or a fully 3-losses robust
eptarotor, or a fully 4-losses robust octorotor. Indeed, if such
platform exists or not is still an open question.
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Intelligent Mechatronics, Besançon, France, Jul. 2014, pp. 433–440.

[7] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi, “Modeling, control
and design optimization for a fully-actuated hexarotor aerial vehicle with
tilted propellers,” in 2015 IEEE Int. Conf. on Robotics and Automation,
Seattle, WA, May 2015, pp. 4006–4013.

[8] D. Brescianini and R. D’Andrea, “Design, modeling and control of an
omni-directional aerial vehicle,” in 2016 IEEE Int. Conf. on Robotics
and Automation, Stockholm, Sweden, May 2016, pp. 3261–3266.

[9] S. Park, J. J. Her, J. Kim, and D. Lee, “Design, modeling and control of
omni-directional aerial robot,” in 2016 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Daejeon, South Korea, 2016, pp. 1570–1575.

[10] V. G. Adı̂r, A. M. Stoica, and J. F. Whidborne, “Modelling and control
of a star-shaped octorotor,” Applied Mechanics and Materials, vol. 325,
pp. 994–998, 2013.

[11] S. J. Haddadi and P. Zarafshan, “Design and fabrication of an au-
tonomous octorotor flying robot,” in 3rd RSI Int. Conf. on Robotics
and Mechatronics, Tehran, Iran, Oct. 2015, pp. 702–707.

[12] M. Tognon and A. Franchi, “Omnidirectional aerial vehicles with
unidirectional thrusters: Theory, optimal design, and control,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, 2018.

[13] N. Staub, M. Mohammadi, D. Bicego, D. Prattichizzo, and A. Franchi,
“Towards robotic MAGMaS: Multiple aerial-ground manipulator sys-
tems,” in 2017 IEEE Int. Conf. on Robotics and Automation, Singapore,
May 2017.

[14] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis,
and G. Zalidis, “An autonomous multi-sensor UAV system for reduced-
input precision agriculture applications,” in 24th Mediterranean Conf.
on Control and Automation, Athens, Greece, Jun. 2016, pp. 60–64.

[15] M. Makarov, C. S. Maniu, S. Tebbani, I. Hinostroza, J. R. K. M. M. Bel-
trami, R. Menegazzi, C. Salle Moreno, T. Rocheron, and J. R. Lombarte,
“Octorotor UAVs for radar applications: Modeling and analysis for
control design,” in Workshop on Research, Education and Development
of Unmanned Aerial Systems, Linköping, Sweden, Nov. 2015, pp. 288–
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