
HAL Id: hal-01615018
https://laas.hal.science/hal-01615018

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecting Resilient Computing Systems: Overall
Approach and Open Issues

Miruna Stoicescu, Jean-Charles Fabre, Matthieu Roy

To cite this version:
Miruna Stoicescu, Jean-Charles Fabre, Matthieu Roy. Architecting Resilient Computing Systems:
Overall Approach and Open Issues. Software Engineering for Resilient Systems, Sep 2011, Geneva,
Switzerland. pp.48-62, �10.1007/978-3-642-24124-6_5�. �hal-01615018�

https://laas.hal.science/hal-01615018
https://hal.archives-ouvertes.fr


Architecting Resilient Computing Systems:
Overall Approach and Open Issues?

Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse , France
Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS

Abstract. Resilient systems are expected to continuously provide trust-
worthy services despite changes in the environment or in the require-
ments they must comply with. In this paper, we focus on a methodology
to provide adaptation mechanisms meant to ensure dependability while
coping with various modifications of applications and system context. To
this aim, we propose a representation of dependability-related attributes
that may evolve during the system’s lifecycle, and show why this repre-
sentation is useful to provide adaptation of dependability mechanisms at
runtime.

1 Introduction

One of the main challenges nowadays, as stated by IBM in The Vision of
Autonomic Computing [12], is managing systems for which the total cost of
ownership is ever-increasing as they continuously evolve. The solution to this
problem would be for such systems to become autonomous, to a certain extent,
and no longer depend on humans for performing basic management tasks.

Autonomic Computing is also enticing for ubiquitous systems based on tech-
nologies such as Wireless Sensor Networks. The aim of Autonomic Computing
is described in [22] as addressing “today’s concerns of complexity and total cost
of ownership while meeting tomorrow’s needs for pervasive and ubiquitous com-
putation and communication”.

Our current work shares this vision while adding a fault tolerance axis. A
self-healing system is able to identify when its behaviour deviates from the ex-
pected one and to reconfigure in order to correct the deviation. We understand
a self-healing system as a context-aware fault tolerant system. To ensure a safe
adaptation, a validation step has to be added to this scheme, guaranteeing safety
during any reconfiguration. More precisely, we define the dynamic adaptation,
or self-healing, process as a two-step permanent loop consisting of a monitoring
service and an adaptation engine. The monitoring service is in charge of ob-
serving the system, measuring certain parameters and resource properties and
informing the adaptation engine. The latter must analyze the values, compare
the observed behaviour to the expected one, decide if an adaptation is needed,
choose a reconfiguration strategy and apply it.

? This work is supported by ANR, contract ANR-BLAN-SIMI10-LS-100618-6-01.



Our aim is to develop a method to define fault tolerant applications and to
adapt them during the system’s lifetime. The basic idea is to break them down
into fine-grained components and to minimize the modification to be performed
to update the fault tolerance mechanisms with respect to operational conditions.

This paper presents on-going work on a methodology for developing resilient
applications for systems ranging from workstations to smart sensors. These ap-
plications are context-aware and must be able to adapt their fault tolerance
mechanisms as a consequence of changes in their requirements and/or the en-
vironment. The rest of this paper is organized as follows: Section 2 gives our
view on this matter and a representation of the problem, Section 3 thoroughly
describes our approach, Section 4 presents our work plan, Section 5 presents a
case study, Section 6 presents related works and finally, in Section 7 we give the
concluding remarks.

2 Problem Statement

The evolution of systems may have an impact on dependability, i.e., various
changes may invalidate some dependability properties and thus call for new
solutions. In our work, we consider that any application is attached to one or
several fault tolerance mechanisms (FTMs). Among the evolution scenarios that
can occur during the operational life of a fault-tolerant application, we focus on
those that may have an impact on the FTMs.

Beforehand, we define a frame of reference as a 3-axis space, each axis rep-
resenting multiple variables, namely application assumptions, fault tolerance re-
quirements, and system resources. A fault tolerant application may evolve in
this space during the lifetime of a system due to:

– changes in the application assumptions which influence the choice of the
fault tolerance mechanism,

– changes in the fault tolerance requirements,

– changes in the system resources (e.g., number of processors, memory re-
sources, network bandwidth).

The essence of a resilient application [14] lies in the fact that when faced with
any of these changes or with a combination of them, it must adapt itself while
ensuring the observance of the dependability criteria. The 3-axis space gives an
idea of the change model that we consider.

In Fig. 1, a cloud represents an application attached to a FTM. For a given
application, each cloud represents a region in this 3-axis space. We view the
evolution of a system during its operational life as a trajectory in a space char-
acterized by the parameters which can cause the aforementioned evolution. The
three evolution scenarios can be aggregated into this frame of reference for this
space, the three axes being: the application assumptions (i.e., whether it is de-
terministic or not), the fault tolerance requirements (i.e., the fault model) and
the current system resources.



FTMj 
FTMk

 

FTM4FTM3

FTM1

 
FTMi

Application 
assumptions

Fault Tolerance
requirements

System resources

Fig. 1. Context-aware fault tolerant computing

It is the responsibility of the designer of the system to design the set of
FTMs and foresee all possible evolutions and changes of the system, so that the
trajectory it follows during its operational life is entirely covered by FTMs. We
claim that a system’s evolution can be represented in this vector space as shown
in Fig. 1. The combination of these three types of information indicates the most
convenient FTM to use. A solution in this space addresses a specific fault model,
relies on some specific application assumptions and has a cost determined by a
function with multiple resource parameters.

Given this frame of reference, we consider that each FTM covers a certain
region of space as shown in Fig. 1. Obviously, the regions associated to different
FTMs may partially overlap. To link the system’s current state with this repre-
sentation, a monitor keeps track of changes in terms of the three axes and allows
placing the system status in a certain region of this space, which, by hypothesis,
is covered by at least one FTM.

Once our view of the problem stated, a certain number of issues arise, such as:
how do we associate FTMs with the combination of the three measures? how do
we describe these FTMs in a way which allows us to change them dynamically?
how do we actually perform the transition from one FTM to another? The
following sections present our view on these matters.

3 Our Approach

The work reported in this paper is based on former work carried out on re-
silient computing at LAAS. We investigated the on-line adaptation of component-
based FTMs (primary-bakup and semi-active replication) and applied it to an
automatic control application (an inverse pendulum control system located on a
cart). The modeling of FTMs using Petri nets was used to control their execution
and to synchronize the adaptation, i.e. the change of mechanisms. An interest-
ing point was the analysis and the definition of suitable adaptation states for
performing the adaptation in a consistent manner. A full account of this work



can be found in [8]. Another aspect of the work was the monitoring of timed
properties of real-time applications, using Timed Automata. A monitor checking
behavioural and timing properties was developed and implemented in Xenomai.
Such a monitoring system was used to provide early error detection for fault
tolerance strategies (see [9]). The approach proposed in this paper is based on
the lessons learnt from these works and tries to define a whole development and
runtime process to address the problem of dependable systems evolution.

Separation of concerns is a generally accepted idea for introducing FTMs in
an application in a flexible way which allows subsequent modification and reuse.
Based on the principle of behavioural reflection [16], we describe our approach
using reflective component models (see Section 4.3). According to these princi-
ples, software architectures consist of two abstraction levels where the base level
provides the required functionalities and the top level contains the FTM(s) [7].
As we target the adaptation of FTMs, we must manage the dynamics of the top
level, which can have two causes:

– The application level remains unchanged but the FTM must be modified ei-
ther because the fault model changes or because an event in the environment,
such as resource availability, makes it unsuitable or, at least, non-optimal
from a performance viewpoint.

– Changes in the top level are indirectly triggered by modifications in the
application level which make the FTM unsuitable. In this case both levels
are modified.

In order to achieve the adaptation of the FTMs in both scenarios, we build
on the representation from the previous section and refine it in three steps.

OS

CBSE middleware

Self‑healing middleware

Fault tolerant 
Application

Functional level

FTM
level

Configuration Mgr Monitoring Engine Adaptation Engine

Fig. 2. The architecture of a reconfigurable fault tolerant application

Fig. 2 shows the “big picture” of the system architecture that we target.
Based on a CBSE middleware, we develop a self-healing middleware populated
with design patterns for fault tolerance and key services:

– a FTM repository in charge of storing the descriptions of FTMs in the form
of component-based software architectures (see Section 4.2),



– a monitoring engine in charge of observing changes in the available system
resources detailed in the next section,

– an adaptation engine in charge of performing the actual modifications on
the FTMs for executing the necessary transitions.

3.1 Description of the frame of reference

The three parameters labeling our axes are actually multidimensional vectors
but for the sake of visibility we have chosen an elementary representation.

– The fault tolerance requirements are part of the non-functional specifications
of an application. Our main focus is on the fault model, i.e., the types of
faults which must be tolerated by the application. We base our fault model
classification on known types [1], e.g., physical faults, design faults, leading
to value faults or crash faults only.

– The application assumptions group the characteristics of an application
which have an impact on the choice of the FTM but are not the same as
the functional specifications of the application. These characteristics include:
whether the application is stateless or stateful, whether its state is accessible
or not and whether the application is deterministic or not.

– The system resources axis groups information such as the number of avail-
able processors, the available bandwidth, the memory resources, . . . Some
of these variables can be precisely determined a priori (e.g., the number of
processors) for a given FTM, while others are application-dependent (e.g.,
network bandwidth for replica synchronization). All these parameters must
be continuously monitored.

3.2 Fault Tolerance Mechanisms

In order to place the FTMs in the previously described frame of reference, we
must first be able to classify them using the given criteria. In our approach, there
are three steps in the selection process for finding the most adequate FTM for an
application: first, the fault model is identified, then the application assumptions
and finally the currently available system resources. The same process will be
applied for classifying them, resulting in a tree detailed in Section 4, Fig. 3.

3.3 System evolution

The status of a fault-tolerant application represents a point in the space given
by our frame of reference. The application being fault-tolerant, this point must
be in a region covered by a certain mechanism. A change (in terms of one of
the three axes) is equivalent to a new status of the application, therefore a new
point. As our purpose is to guarantee dependability when facing changes, the
application must always be “accompanied” by an adequate FTM on its evolu-
tionary trajectory. Therefore, we must provide a FTM encompassing a region



F
A

U
L
T

 

T
O

L
E

R
A

N
C

E

p
h

y
s
i
c
a
l
 

f
a
u

l
t
s

d
e
s
i
g

n
 

f
a
u

l
t
s

c
r

a
s
h

 

f
a
u

l
t

p
e
r

m
a
n

e
n

t
 

v
a
l
u

e
 

f
a
u

l
t

t
r

a
n

s
i
e
n

t
 

v
a
l
u

e
 

f
a
u

l
t

d
u

p
l
e
x

a
s
s
e
r
t
i
o

n
 

+
 
d

u
p
l
e
x

t
r

i
p
l
e
 

m
o

d
u

l
a
r

 

r
e
d

u
n

d
a
n

c
y

c
o

m
p
a
r

i
s
o

n
 

+
 
d

o
u

b
l
e
 

d
u

p
l
e
x

a
s
s
e
r
t
i
o

n
 

+
 
d

u
p
l
e
x

t
i
m

e
 

r
e
d

u
n

d
a
n

c
y

c
o

m
p
a
r

i
s
o

n
 

+
 
d

o
u

b
l
e
 

d
u

p
l
e
x

t
r

i
p
l
e
 

m
o

d
u

l
a
r

 

r
e
d

u
n

d
a
n

c
y

r
e
c
o

v
e
r
y
 

b
l
o

c
k

n
-
v
e
r

s
i
o

n
 

p
r

o
g

r
a
m

m
i
n

g

n
-
s
e
l
f
-

c
h

e
c
k
i
n

g
 

p
r

o
g

r
a
m

m
i
n

g

s
t
a
t
e
l
e
s
s

s
t
a
t
e
f
u

l

r
e
s
t
a
r
t

b
a
c
k
w

a
r

d
 

r
e
c
o

v
e
r
y

f
o

r
w

a
r

d
 

r
e
c
o

v
e
r
y

a
c
c
e
s
s
i
b

l
e

a
c
c
e
s
s
i
b

l
e

d
e
t
e
r

m
i
n

i
s
t
i
c

d
e
t
e
r

m
i
n

i
s
t
i
c

d
e
t
e
r

m
i
n

i
s
t
i
c

d
e
t
e
r

m
i
n

i
s
t
i
c

p
a
s
s
i
v
e

a
c
t
i
v
e

p
a
s
s
i
v
e

a
c
t
i
v
e

n
o

 

g
e
n

e
r

i
c
 

s
o

l
u

t
i
o

n

s
t
a
t
e
l
e
s
s

s
t
a
t
e
f
u

l

r
e
p
e
t
i
t
i
o

n

a
c
c
e
s
s
i
b

l
e

a
c
c
e
s
s
i
b

l
e

s
t
a
t
e
f
u

l
 

t
i
m

e
 

r
e
d

u
n

d
a
n

c
y

n
o

 
g

e
n

e
r

i
c
 

s
o

l
u

t
i
o

n

s
t
a
t
e
l
e
s
s

s
t
a
t
e
f
u

l

a
c
c
e
s
s
i
b

l
e

a
c
c
e
s
s
i
b

l
e

s
t
a
t
e
l
e
s
s
 

r
e
c
o

v
e
r
y
 

b
l
o

c
k

s
t
a
t
e
f
u

l
 

r
e
c
o

v
e
r
y
 

b
l
o

c
k

n
o

 

g
e
n

e
r

i
c
 

s
o

l
u

t
i
o

n

F
A

U
L
T

-R
E

L
A

T
E

D
 

M
O

D
E

L
S

A
P

P
L

IC
A

T
IO

N
 

A
S

S
U

M
P

T
IO

N
S

Sy
st
em

 re
so
ur
ce
s:
 

C
os
t f
un

ct
io
n

• 
D
et
er
m
in
is
tic
 p
ar
am

et
er
s 
(e
.g
. n

um
be
r o

f s
ite

s)


• 
A
pp

lic
at
io
n‑
de

pe
nd

en
t p

ar
am

et
er
s 
(s
ta
te
)

O
rd
er
 re
la
tio
n 
be
tw
ee
n 
so
lu
tio
ns


Fig. 3. Classification of fault tolerance mechanisms



which contains the new point. We must design and build our FTMs in view of
such transitions and adaptations. The “distance” (as will be defined later on in
Section 4.4) between two mechanisms as represented in our frame of reference
should be equivalent to the difference between their implementations. If the new
mechanism is close to the old one, we should be able to generate it through
minor adjustments. The transition between distant mechanisms will most likely
demand more complex modifications or even complete replacement.

The planned development process for achieving the smooth and safe transi-
tion between FTMs consists of the following elements:

– a complete classification of the FTMs we intend to use;
– a method for describing and storing the architecture of FTMs;
– a set of tools allowing us to develop applications which are easily reconfig-

urable at runtime;
– one or several algorithms for performing the transition between mechanisms.

The next section describes each stage of this process.

4 Development Process

4.1 Classification of fault tolerance mechanisms

We classified the FTMs according to the three groups of criteria, which were
already described. This led to the tree-graph representation from Fig. 3, where
the nodes represent our criteria and the leaves represent the mechanisms. It
only gives a partial classification because the layer corresponding to the system
resources criteria is not included. For the time being, we consider that this axis
gives an order relation between mechanisms as certain costs in terms of resources
can be associated with each one. We can say, for instance, that active replication
is more demanding in terms of CPU operations than passive replication, as all
requests are processed at all replicas. More precisely, some parameters depend on
the used strategy (e.g., number of sites) while others are application-dependent
(state size, synchronization frequency, checkpoint size), the latter being used to
determine the cost function (for bandwidth usage, for instance).

The FTMs we are considering are well-established solutions for certain use-
cases/scenarios. This has led us to the concept of design patterns for fault tol-
erance (Fault Tolerance Design Pattern — FTDP), by drawing a parallel with
the design patterns from software engineering. Therefore, each leaf of the tree in
Fig. 3 represents a FTDP and also a more accurate view than the one in Fig. 1
as here we refine the axes variables and labels.

4.2 Description of design patterns for fault tolerance

Each FTDP1 has an associated software architecture. In order to operate a
transition between them, we must be able to manipulate the architecture through

1 Recall that FTDP stands for Fault Tolerance Design Pattern



its description file. This is a crucial step because from the descriptions of two
design patterns A and B, we must be able to easily “compute” A ∩B, A/B and
A\B, if we are to perform mechanism replacement at a finer grain, as further
discussed.

A decision must be taken regarding what needs to be stored off-line, before
the application executes. One idea would be to describe the architecture of all
the FTDPs we intend to use and store these files. Another idea would be to
group closely related design patterns, choose the most “representative” one for
each class and store its description as well as describe the strategy for passing
to another one.

An ADL, such as ACME [11], can be used for describing these architectures.
ADLs facilitate the construction of models in which the architecture of a system
is described as a composition of components and connectors. Some of them also
include properties and constraints which can be placed on those entities. The
use of an ADL enables us to reason about a software architecture during the
specification stage. In order to maintain this reasoning consistency at runtime,
we will use a component-based middleware for implementing the system. This
stage is detailed in the next subsection.

4.3 Runtime support and reconfiguration

A design principle that is commonly accepted in the area of reconfigurable
systems is the use of component-based technologies (CBSE) [6] for developing
the management framework. CBSE middleware provide means to develop and
run software as a graph of interconnected components. Applications built using
a component-based middleware consist of components and connectors and can
be modified at runtime by using the methods provided by the middleware for
stopping, unbinding, binding and starting components. In this paper, this tech-
nology will be used to implement FTDPs whereas the application will be seen
as a black box.

As there are many available platforms, during this project stage we will focus
on finding a component-based middleware tailored to our needs. It should provide
runtime reconfiguration facilities, have a small memory footprint, suiting target
systems such as smart sensors with limited resources and provide the right level
of design complexity for our problem. A first step in this direction will be to
define a minimal set of instructions we need for our reconfigurations, detailed in
the next section.

4.4 Transitions between mechanisms

A crucial point concerns the granularity of the reconfiguration. There are two
obvious approaches for replacing a FTM with another one:

– an atomic approach: the old mechanism is replaced by the new one,
– a differential approach: transition operates at a finer level by adding/removing

components corresponding to the difference between the two mechanisms.



The distance between the two mechanisms plays an essential part in the choice
of the approach. The function for computing this measure is, intuitively, the sum
of three basic distances, namely application assumptions, fault model complex-
ity and number of components to be changed. Regarding application assump-
tions, a stateless deterministic application has an associated weight lower than a
stateful non-deterministic application. Regarding fault model complexity, design
patterns that tolerate crash faults have a lower complexity than design pattern
that tolerate design faults. However, the most influencing parameter of this dis-
tance is the number of components to be changed between two component-based
implementations of fault tolerance mechanisms.

FTDPsource 
(configuration A)

FTDPtarget
(configuration B)

CBSE Middleware minimal API

ALGORITHM

A∩B

start   stop   bind   unbind

Fig. 4. Transition between FTMs using a minimal CBSE support

The transitions between mechanisms will most likely be described through
state-machines. The algorithms behind the transitions could lead to design pat-
terns for system evolution.

The transition algorithm is executed by the adaptation engine represented
in Fig. 2 and based on a minimal interface enabling components to be manip-
ulated at runtime (see Fig. 4). Our final aim is to define the minimal interface
required to install a component at runtime within a software configuration. Such
an interface consists of at least four operations to manipulate components and
bindings/connections: stop, start, bind, unbind. It also needs customized, user-
defined methods like setState and getState operations for stateful objects. The
stop operation is certainly more subtle than the others: its semantics is “stop af-
ter termination of all operations in progress”. This means that all input requests
are queued while requests already in progress terminate.

Moreover, any algorithm that performs an online adaptation of a mechanism
based on a CBSE middleware must rely on the notion of transaction: when
a transition from a design pattern to another one is triggered, the different
components that have to be replaced must be changed on an all-or-nothing
approach, i.e., the set of basic replacements must be encapsulated in a global
transaction — when all components are modified, then the modification can be
committed; in case of a single failure, the whole transaction is rolled back.



5 Case Study

The detailed classification of our FTMs given in Fig. 3 is the basis for their
adaptation2. Any final FTDP is associated to a software architecture, i.e. the
FTM, ideally a component graph. Our final aim is to examine various transitions
of the change model. This will consist in choosing a starting point, a destination
point and several intermediate points, which all represent system state regions,
associating the most adequate FTM to each one, and develop algorithms to
perform safe transitions between mechanisms.

stateful

backward 
recovery

accessible accessible

deterministic deterministic deterministic deterministic

passive active passive active
no 

generic 
solution

Fig. 5. DUPLEX/STATEFUL subtree

The FTDPs, more precisely their architectural description (component view)
is the basis for a first analysis of the adaptation. Starting from one mechanism,
called FTDPsource, the work consists in analyzing the changes to be performed
to reach another mechanism, called FTDPtarget. For each transition between
FTDPsource and FTDPtarget, an algorithm has to be defined off-line to perform
the change. This algorithm thus takes two configurations derived from the design
descriptions given as inputs and performs the operation using the API of a CBSE
middleware providing control over the components’ lifecycle and bindings.

As an illustration, let us consider two variants of duplex strategy, namely a
passive replication design pattern as a FTDPsource, and an active replication de-
sign pattern as a FTDPtarget (see Fig. 5). Passive replication is a checkpointing-
based fault tolerance strategy for crash faults, with only one replica processing
requests (PBR, Primary Backup Replication model). Active replication, in this
case, is a semi-active fault tolerance strategy for crash faults, with both repli-
cas processing requests and only one delivering output messages (LFR, Leader-
Follower Replication model) (see [17]). Here, we consider simplified implementa-
tions of both strategies we developed in UML using RSA (IBM Rational Software

2 Notice that the rightmost leaf indicates that an ad-hoc solution must be defined,
relying on a roll-forward recovery approach, i.e., defining intermediate valid states
in the computation from which the application can restart.



Architect) tool. The complete design has been created and the passive replica-
tion strategy is described by the class diagram shown in Fig. 6. We assume
that objects can be mapped to components to enable easy manipulation at run-
time. In the design provided here, we consider the following objects mapped to
components: ProxyServer, Communication, Server (ServerPBR), DuplexProtocol,
RemoteCall and the Client.

The proposed simplified design perfectly illustrates our method, i.e., it entails
minimal modifications to execute a transition to an active replication strategy.
The distance being small in this case, the transition corresponds to replacing the
DuplexProtocol component implementing the PBR model with a DuplexProtocol
component variant implementing the LFR model instead. The DuplexProtocol
component performs the main operation of the passive replication strategy (run
method), by getting the state of the server using the CaptureState method inher-
ited from ServerPBR. The LFR variant of DuplexProtocol activates the requested
server method and synchronizes with the follower.

With respect to the state of the protocol, i.e., either the DuplexProtocol is
stateless or stateful, a transfer function must be activated to initialize the new
DuplexProtocol component. In our case, to simplify implementation, we consid-
ered it stateless. Notice that this assumption greatly simplifies switching, as
explained in [8].

6 Related works

As already mentioned in Section 1, one of our first areas of interest was
Autonomic Computing (AC), more precisely self-healing systems, i.e., systems
which are able to repair themselves. However, as [22] also points out, many of
the “hot” issues within AC have been at the core of other disciplines, e.g., fault
tolerant computing and artificial intelligence for a long time. The novelty lies
in the “holistic aim” of regrouping all relevant research areas in this common
project. Focusing on the intersection between AC and fault tolerance computing,
which is our main research axis, the same author, in [23], reaches the conclusion
that dependability and fault tolerance are not only “specifically aligned to the
self-healing facet” of AC but, on a closer view, “all facets of Autonomic Comput-
ing are concerned with dependability” (i.e., self-configuration, self-optimization
and self-protection as well).

A complex example of (re)configurable framework which also touches the ar-
eas of ubiquitous systems, AC and fault tolerant computing is Gaia [19], which
builds on the core concept of active spaces. Heterogeneous devices, such as PCs,
sensors, smart-phones, blend in the environment and interact with the user
through a uniform interface. A method of adding an autonomic dimension to
this framework is the use of a planner from the field of artificial intelligence,
as presented in [18], which has the role of creating a path between the current
state and a goal state given by a user or by a developer. This planner can be
considered analogous to our transition algorithm. In [3], the authors add a fault
tolerance dimension to Gaia by emphasizing the importance of dependability



Fig. 6. UML class diagram for passive replication



in pervasive systems i.e. systems which interact closely with the users, possi-
bly even in a healthcare context. They only endow Gaia with the property of
tolerating fail-stop faults. Although this framework tries to cover issues from
many areas including dependable computing, the proposed solution appears to
be closely linked to an underlying operating system called 2K, the case studies
focus only on managing media presentations with a basic support for fault tol-
erance. RUNES (Reconfigurable Ubiquitous Networked Embedded Systems) [5]
is also a project addressing several of the areas mentioned above: it is an easily
tailorable middleware component framework for resource-constrained systems
(e.g., sensor networks) which aims at the reconfiguration of heterogeneous sys-
tems. The scenario they address in [4] involves fire management in a road tunnel
that is instrumented with sensors and actuators communicating with devices
such as PDAs belonging to firemen.

In the area of reconfigurable software architectures, RAINBOW [11] builds
on the use of architectural models for problem diagnosis and repair. The pro-
posed framework includes a monitoring layer composed of two types of entities,
namely probes which gather basic data from the running system and gauges
which perform computations on the data in order to obtain measures of the
system properties. An architecture manager is in charge of maintaing the archi-
tectural model at runtime and of verifying that the constraints on the system
elements are maintained. The project is very complex as it englobes a very ex-
pressive ADL called ACME [10], already cited, a system in charge of verifying
constraints, called ARMANI, a library of gauges, etc. The idea of placing an
ADL on top of a CBSE middleware, as we intend to do, is the topic of [2], in
which the authors describe their experience in associating an enriched version of
ACME with the OpenCOM middleware for providing programmed and ad-hoc
changes at runtime while maintaining certain constraints. Drawing the parallel
between the entities described by the ADL and those provided and manipulated
by the CBSE will also be an important step in our research.

Although there are a lot of available component-based platforms, not all of
them are equally suitable for runtime reconfiguration and for dealing with self-
healing. In [21], the authors identify the necessary runtime abstractions that
a component model must include in order to efficiently support an autonomic
adaptation service. What we need is not a component model which merely allows
runtime reconfiguration but one which is designed for it. An example is [20] which
builds, as RUNES, on the idea of a basic runtime kernel and a variety of addi-
tional services in the form of modules which can be plugged in. A fertile source of
inspiration are the projects aimed at providing reconfiguration/adaptation prop-
erties to wireless sensor networks such as the works described in [24], [25] and
[26] which present a middleware for wireless sensor networks and a component
model enabling fine-grained adaptation.

The idea of creating design patterns for fault tolerance based on meta-level ar-
chitectures and fault tolerance mechanisms is also described in [15]. [13] presents
reflective design patterns implementing the separation of concerns as well as a



hierarchy of design patterns in the form of a tree-graph where each level acts as
a refinement step.

7 Conclusion and perspectives

In this paper, we presented our approach to design and implement resilient
systems, i.e., systems meant to cope with continuous evolution while guaran-
teeing dependability. Hence, our work lies at the intersection of three research
domains, namely Fault Tolerance, Autonomic Computing and Ubiquitous Sys-
tems.

To that aim, we propose to represent various dependability-related attributes
of the system in a three-axes space. Interestingly, this space allows us to link
application and dependability-related context with fault tolerance strategies.
More precisely, we classified classical fault tolerance patterns with regards to
this space, and showed how every fault tolerance pattern defines a region in this
space.

In this formalism, the evolution of the system can be represented as a path
in this space, and evolution induces modifications of fault tolerance strategies,
as derived from our classification of fault tolerance patterns.

To illustrate our method, we show, on a simple active to passive replication
evolution, how we can provide an algorithmic solution of this evolution, based
on a simplified UML description of such replication strategies.

To go further this simple example, we are currently investigating the pos-
sibility to automatically link fault tolerance design patterns (such as the one
provided in UML) to component-based technologies (CBSE) for developing the
management framework. Using such approach will allow us to define precise al-
gorithms for adaptation, and will ease the development of a generic framework
for adaptation of dependable systems.

References

1. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1:11–33, January 2004.

2. T. Batista, A. Joolia, and G. Coulson. Managing dynamic reconfiguration in
component-based systems. Software Architecture, pages 1–17, 2005.

3. S. Chetan, A. Ranganathan, and R. Campbell. Towards fault tolerance pervasive
computing. Technology and Society Magazine, IEEE, 24(1):38–44, 2005.

4. P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G.P. Picco, T. Siva-
haran, N. Weerasinghe, and S. Zachariadis. The RUNES middleware for networked
embedded systems and its application in a disaster management scenario. 2007.

5. P. Costa, G. Coulson, C. Mascolo, L. Mottola, G.P. Picco, and S. Zachariadis. Re-
configurable component-based middleware for networked embedded systems. In-
ternational Journal of Wireless Information Networks, 14(2):149–162, 2007.

6. G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and
T. Sivaharan. A generic component model for building systems software. ACM
Transactions on Computer Systems (TOCS), 26(1):1–42, 2008.



7. J-C. Fabre. Architecting dependable systems using reflective computing: Lessons
learnt and some challenges. In WADS’09, pages 273–296, 2009.

8. J.C. Fabre, M.O. Killijian, and T. Pareaud. Towards On-line Adaptation of Fault
Tolerance Mechanisms. In EDCC, pages 45–54. IEEE, 2010.

9. J.C. Fabre, T. Robert, and M. Roy. Early Error Detection for Fault Tolerance
Strategies. In RTNS. IEEE, 2010.

10. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. Cambridge University Press, 2000.

11. David Garlan and Bradley Schmerl. Model-based adaptation for self-healing sys-
tems. In Proceedings of the first workshop on Self-healing systems, WOSS ’02,
pages 27–32, New York, NY, USA, 2002. ACM.

12. J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

13. L. Lamour, F. Cećılia, and M.F. Rubira. Reflective Design Patterns to Implement
Fault Tolerance.

14. J-C. Laprie. From dependability to resilience. In DSN, Anchorage, AK, USA, pp.
G8-G9, volume 8, 2008.

15. M.L.B. Lisbôa. A new trend on the development of fault-tolerant applications:
software meta-level architectures. J. of the Brazilian Computer Society, 4(2), 1997.

16. P. Maes. Concepts and experiments in computational reflection. ACM Sigplan
Notices, 22(12):147–155, 1987.

17. D. Powell. Distributed fault tolerance—Lessons learnt from delta-4. Hardware and
Software Architectures for Fault Tolerance, pages 199–217, 1994.

18. A. Ranganathan and R.H. Campbell. Autonomic pervasive computing based on
planning. 2004.

19. M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, and
K. Nahrstedt. A middleware infrastructure for active spaces. IEEE Pervasive
Computing, pages 74–83, 2002.

20. D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and F. Eliassen.
The DigiHome Service-Oriented Platform. Software: Practice and Experience,
2011.

21. S. Sicard, F. Boyer, and N. De Palma. Using components for architecture-based
management: the self-repair case. In Proceedings of the 30th international confer-
ence on Software engineering, pages 101–110. ACM, 2008.

22. R. Sterritt. Autonomic computing. Innovations in systems and software engineer-
ing, 1(1):79–88, 2005.

23. R. Sterritt and D. Bustard. Autonomic Computing-a means of achieving depend-
ability? In Proc. IEEE Engineering of Computer-Based Systems, 2003.

24. A. Taherkordi, F. Eliassen, R. Rouvoy, and Q. Le-Trung. ReWiSe: A New Compo-
nent Model for Lightweight Software Reconfiguration in Wireless Sensor Networks.
In On the Move to Meaningful Internet Systems: OTM 2008 Workshops, pages
415–425. Springer, 2010.

25. A. Taherkordi, Q. Le-Trung, R. Rouvoy, and F. Eliassen. WiSeKit: A Distributed
Middleware to Support Application-Level Adaptation in Sensor Networks. In Dis-
tributed Applications and Interoperable Systems, pages 44–58. Springer, 2009.

26. A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen. Supporting lightweight
adaptations in context-aware wireless sensor networks. In Workshop on Context-
Aware Middleware and Services/COMSWARE, pages 43–48. ACM, 2009.


	Architecting Resilient Computing Systems: Overall Approach and Open Issues

