
HAL Id: hal-01615019
https://laas.hal.science/hal-01615019

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Injection in the Automotive Standard ISO 26262:
An Initial Approach

Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Leeman,
Matthieu Roy

To cite this version:
Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Leeman, Matthieu Roy. Fault Injection
in the Automotive Standard ISO 26262: An Initial Approach. 14th European Workshop, EWDC 2013,
May 2013, Coimbra, Portugal. 8p., �10.1007/978-3-642-38789-0_11�. �hal-01615019�

https://laas.hal.science/hal-01615019
https://hal.archives-ouvertes.fr

Fault Injection in the Automotive Standard
ISO 26262: An Initial Approach

Ludovic Pintard1,4, Jean-Charles Fabre1,2, Karama Kanoun1,3, Michel
Leeman4, and Matthieu Roy1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, BP 54200, F-31031 Toulouse, France
firstName.lastName@laas.fr

2 Univ de Toulouse, INPT, LAAS, F-31400 Toulouse, France
3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

4 VALEO, 2 rue André Boulle, 94046 Créteil cedex, France
fistName.lastName@valeo.com

Abstract. Complexity and criticality of automotive electronic embed-
ded systems is steadily increasing today. A new standard —ISO 26262—
recommends methods and techniques, such as fault injection, to improve
safety. A first goal is to use fault injection earlier at the design stage,
particularly on models providing an appropriate level of abstraction, to
identify errors in the handling of safety requirements. A second objective
is to use the results of these model-based analyzes to efficiently identify
targets and check their implementation by fault injection. Hence, a ver-
ification approach, based on fault injection, has to be defined to com-
plement conventional testing methods and analyzes traditionally used in
automotive development process. The paper discusses the various steps
of this approach, the link between abstraction and implementation, and
gives a brief illustration on a real automotive application.

Keywords: fault injection, automotive systems, ISO 26262, develop-
ment process

Introduction

As safety is a non-negotiable requirement for automotive critical embedded sys-
tems, the development process is evolving to assure that they should not lead
to severe hazards. To respond to this trend a new standard have been proposed.
ISO 26262, published in November 2011, defines the safety aspects of the de-
velopment of electric and electronic automotive systems. A significant aspect of
ISO 26262 is that it recommends fault injection to verify if systems are safe.
To this end, this paper explores the integration of fault injection techniques
throughout the development process, to perform efficient fault removal activi-
ties.

To illustrate our approach described in this paper, we use an electronic auto-
motive component, the Electronic Steering Column Lock (ESCL), that has strong

I 05/04/13 11

Body
Controller Module

ESCL
Lock/Unlock

CMD

Vbat

GND1

GND2

LIN

Underhood Switching
 Module (USM)

ABS/ESP:
Breaking ECU

Engine
running

Car speed

Key
authentication

request

MOTOR

Steering
 Column

Fig. 1. ESCL Component and its Environment at System Level

safety requirements. Indeed, according to a conventional automotive scale of crit-
icality, the highest Automotive Safety Integrity Level (ASIL D) is allocated to
this component.

The ESCL, as shown in Fig. 1, is a component intended to manage the
locking/unlocking of the steering column of a vehicle, so that if a thief tries to
steal the vehicle, he cannot turn the vehicle wheels. However, this component
may endanger the safety of the driver, since a spurious blocking of the steering
column when the vehicle is at high speed could obviously threaten passengers
safety.

The article is structured as follows. Section 1 describes the problem state-
ment. In Section 2, we discuss the motivation and the benefits of using fault
injection at the design stage, particularly on models. We briefly describe con-
ventional fault injection on implementation in Section 3, and conclude on the
lessons learnt.

1 Problem Statement

The new ISO 26262 standard highly recommends the use of fault injection tech-
niques throughout the development process to verify safety requirements and
safety mechanisms. Requirements of ISO 26262 highlight several targets for fault
injection into the V-Cycle represented in Fig. 2.

The possible targets can be classified in two categories, namely (1) during
the design steps down to the implementation, and (2) up to the verification and
the validation of the integrated system. In the left side of the cycle, targets are
models or representations of the system before the implementation. The right
side of the cycle corresponds to an implementation of the system components,
their integration and their validation.

Models: The standard recommends fault injection on models of system level and
hardware level. There are two goals: i) to check that specifications related to
the behavior in the presence of faults do not contain any omission or error, and
ii) to ensure if the system implements appropriate mechanisms to prevent the
violation of safety properties.

Components: These are effective targets linked to the verification of a system
implementation, from the unit tests, through the integration phase, to the veri-

I 05/04/13 10

System design

Refinement of
specification and

HW/SW design
Unitary tests of HW
and SW functions

Implementation

Hardware =
electronic circuit

and Software = code

Integration tests

Verification &
Validation of the

system Specification of the
requirements

Fig. 2. ISO 26262 V-cycle Development Process.

fication and validation of the complete system. At this stage, we seek to charac-
terize the effectiveness of fault tolerance mechanisms (detection and recovery of
errors) that have been implemented to increase safety as well as reliability and
availability.

A first challenge is to define fault injection methods throughout the devel-
opment process of an electronic/electrical system and particularly explore the
possible contribution of fault injection at each stage of the process to improve the
quality of the design. In a certain sense, we introduce the notion of multi-level
fault injection and aim at analyzing possible links between targets, objectives
and results at various development stages. This paper reports on our initial
approach to tackle this problem.

Concerning integration, our second objective is to analyze how fault injec-
tion experiments related to a system can benefit from the results obtained to
its components by fault injection. However, the composition of fault injection
experiments in a hierarchical way is out of the scope of this paper, but will be
highly explored during the project.

Fault injection [1] is a mature technology that has been successfully applied
using several techniques on different targets [3–5, 7, 8, 14], that are usually com-
ponents implementation. However, to the best of our knowledge, fault injection
has not been studied throughout a development process at various development
or abstraction levels in cooperation with usual testing methods.

2 Fault Injection During System Design

2.1 Fault Injection before Implementation

The high-level specifications of the system are progressively refined to provide
detailed specifications of the hardware and of the software before implementa-
tion. During this refinement process, the form in which the specifications are

written may evolve. These specifications can be expressed in natural language,
or in the form of a well-structured and formalized model (e.g., in an enterprise
proprietary language), or in the form of a formal model, based on a standard
formal language. Two kinds of requirements are usually distinguished: functional
requirements and safety requirements.

At the initial step, the requirements are related to very high-level functions
of the system, without addressing the system structure. A functional model may
exist or can be built. Faults can be defined only at the same level of abstraction.
Fault injection consists in assuming (or simulating) a failure of a basic function,
and analyzing the impact of this failure on the other system functions and on
the overall system functions. In this case, fault injection constitutes a way i) to
check the impact of the failure of each basic function on the other function(s), and
ii) to ensure that the safety requirements are satisfied. Hence, fault injection can
be seen as a method very similar to the well-known and widely used approach,
usually referred to as Failure Mode and Effect Analysis, FMEA [2], or Failure
Mode and Effect and Criticality Analysis, FMECA (depending on whether the
criticality is analyzed or not).

The primary benefit of fault injection is the same as for FMECA: the early
identification of all critical system failure modes so they can be eliminated or
minimized through design modification at the earliest phase in the development
process. Another benefit is to identify the parts of the system and functions that
require error detection and/or fault-tolerance mechanisms.

As for FMECA, the results of the fault injection analysis become more precise
when more details about system functions are available (i.e., when the abstrac-
tion level of the system functional description becomes lower).

From the system requirements, a functional model is created. A fault injection
"experiment" consists in selecting a failure mode of a function (or a component)
and analysing its resultant effects on system operation, taking into account the
overall safety requirements. The effects are usually defined with respect to the
impact of the failures on the safety properties; they are referred to as "system
failure modes". Each fault injection experiment corresponds to a single failure
mode of one basic function (or of one component). A function or a component,
with several potential failure modes, requires one experiment per failure mode.
Indeed, each fault injection experiment corresponds to one line of a FMECA
worksheet (or spreadsheet). Examples of information items that can be included
in one line (or provided after a fault injection experiment) are: identification
of the basic function (or component) analyzed, its potential failure mode ad-
dressed, the potential causes of this failure mode, the local effect of the failure
mode, the next assembly layer effect, system level effect, the risk level, detection
mechanisms to put in place, actions for further investigation.

Even though, the analyses can be performed manually for high-level prelimi-
nary design, the support of a modelling formalism and a tool becomes mandatory
as soon as detailed information becomes available.

From a modelling point of view, at a high-level, the analyses can be performed
based on data flow diagrams and/or state charts, to help the analyst to propagate

errors between the components of the system. When more details are available,
languages such as UML (Unified Modelling Language) or AADL (Architecture
Analysis Design Language) can be used. Their main advantage is that they
have been extended to perform quantitative dependability assessment of critical
systems (see e.g., [9, 10]).

Finally, several simulation modelling languages have been used for fault in-
jection. At these levels, the model can be very similar to the real implementa-
tion of the system (see e.g., VHDL [6], SystemC [11], Matlab/Simulink [12] or
SCADE [13]).

2.2 Illustration on a Case Study

The first objective of our method is to determine a high-level abstraction of our
system. Fig. 1 presents the relation between ESCL and its environment. Indeed,
a component has dependencies with other components. The dependencies are
related to the inputs and outputs, because they link the components. Hence,
fault injection at this level consists in propagating component failures and errors
through the relationships between blocks.

Then, we have to define the safety requirements this system has to verify.
There are two safety requirements, called safety goals according to ISO 26262,
that must be ensured:

– SG1 = The ESCL must not lock the steering column when the vehicle speed
is greater than 10 km/h. (ASIL D)

– SG2 = If the steering column is locked, the ESCL must prevent to start the
engine of the vehicle. (ASIL A)

For example, SG2 will be specified at this level as follow: the ESCL should not
send erroneous messages, via the LIN bus, stating that the steering column is
unlocked while it is locked.

All safety requirements, at each level, are important because they define a
set of invariants that must be satisfied by the system. Would an invariant be
violated, a hazard may occur. To satisfy these properties, the design should
explicitly exhibit each safety mechanism that deals with a property. Here, the
criticality of a mechanism can be defined according to the ASIL level of the
safety requirement, and so, the targeted safety mechanisms must be evaluated
by fault injection techniques.

Then, the error model has to be defined. At this level, we can identify the
hardware architecture of our case study with five components, and the associated
five links. There are four electrical links, with four failures modes: i) there is no
power when it is required, ii) there is power while it is not required, iii) oversup-
ply, iv) and under-supply. The failure modes of the fifth link, a bidirectional LIN
bus, are the following: no message transmitted, erroneous message transmitted,
corrupted message.

Following the approach described in Section 2.1, the fault injection applied
to the functional description of the ESCL enables the identification of critical

blocks and their effect on the system. Considering the link between them, we
can identify whether a safety property may be violated. A critical path is the
propagation of an error through the link that violates the safety properties.

Let’s take the example of a corrupted message from the Body Controller
Module ordering to lock the column when the vehicle is at high-speed. This
could violate SG1, and the study of the architecture allows to check whether a
safety mechanism exists — here, the ABS/ESP switches off the ESCL when the
speed is larger than a threshold and hence the ESCL will not lock the column.
The system level architecture shown on figure Fig. 1 can be considered as the
first modeling level. However, this description is at a too high level to verify the
real hardware architecture or the software architecture of the ESCL.

Considering the hardware, a more detailed model should be used to describe
the architecture in terms of subcomponents: sensors, micro-controllers, memo-
ries, power supply units. This detailed architecture is represented on Fig. 3.

MOTOR
Lock/

Unlock
Command

Motor
Supply Unit

Sensor Unit
Body

Controller Module

Vbatt

GND1

GND2

LIN

ABS/ESP:
Breaking ECU

Underhood Switching
 Module

Power
Supply

Unit

LIN Unit

Memory

Unit

M
ic

ro
-C

on
tr

ol
le

r

� C
on

ne
ct

or
s

Fig. 3. Architectural Model of ESCL Component.

Considering the software, modules and their dependencies can be modeled
through function and procedure calls on a static view with a communication
diagram, and then with sequence diagrams for the dynamic representation of
the interactions. The robustness of implemented components running on the
hardware must be evaluated according to a fault model:

– Hardware errors: errors on the inputs of the micro-controller, errors at the
interfaces of software module due to a corruption of the memory, or error in
sequences and with timing constraints.

– Software errors: coding faults should be represented by malfunctions on the
interface of each software module.

3 Fault Injection during Verification

On the right-hand side of the V-cycle, an implementation of the system is avail-
able, in the form of a hardware support system, a set of software components,
and later on in the form of a global system in which the software components
are integrated on the hardware system. All conventional fault injection methods
are applicable.

Our recommendation is to use the results of the analyses carried out during
the design phase to guide fault injection experiments in the verification phase.
For example, fault injection campaigns will focus on critical components iden-
tified earlier. In our case study, we concentrate our analysis on the internal
architecture of an ESCL component. The goal could be to activate error de-
tection and error recovery mechanisms according to a fault model and evaluate
their robustness. The aim of the experiments will be for example to:

– Check the correct implementation of the system together with the associated
error detection and fault-tolerance mechanisms.

– Assess the error detection coverage and error recovery coverage of safety
mechanisms.

In addition to the conventional aims of fault injection experiments targeting
concrete components, the objective is also to find complementarities with usual
testing methods applied in the automotive industrial domain in order to optimize
the validation process.

Conclusion

The use of fault injection in the development of safety critical embedded automo-
tive systems is explicitly mentioned in the ISO 26262 development standard. One
can easily understand that similar types of techniques are nowadays used dur-
ing the testing phase of embedded automotive systems. Such techniques include
in particular FMECA analyses. However, advocating fault injection at various
levels of the development of the system poses several challenges, not only with
respect to the ISO 26262 application in the automotive domain, but raises more
general scientific challenges. In particular, how to handle the complementari-
ties between FMECA and fault injection at various stages of the development
process.

We observed that FMECA is similar to fault injection when targeting models.
Indeed, these concepts should mutually enrich each other because they share the
same objectives. Yet, in practice, FMECA is often applied to coarse grain models.
The short-term objective of this work is to show that the concept of FMECA
can be applied to more fine grain structural and behavioral models, reaching
finally the implementation. Conventional fault injection is the major technique
on implemented components, but one can understand that FMECA and Fault
Injection are overlapping concepts as models become more and more detailed.

Conversely, fault injection automatized on a detailed model can produce similar
results as those expected with FMECA.

In this paper, we have shown how model-based fault injection could be of
interest to identify drawbacks in the handling of safety requirements but also to
guide lower layers fault injection experiments, for instance with the identification
of key targets for conventional verification by SWIFI.

References

1. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Computing,
IEEE Transactions on, 1(1):11–33, 2004.

2. A. Bouti and D. A. Kadi. A state-of-the-art review of fmea/fmeca. Int. Journal
of reliability, quality and safety engineering, 1(04):515–543, 1994.

3. J. Carreira, H. Madeira, and J. Silva. Xception: A technique for the experimental
evaluation of dependability in modern computers. Software Engineering, IEEE
Transactions on, 24(2):125–136, 1998.

4. D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa. Experimental analysis of
binary-level software fault injection in complex software. In 2012 Ninth European
Dependable Computing Conference, pages 162–172. IEEE, 2012.

5. M. Hsueh, T. Tsai, and R. Iyer. Fault injection techniques and tools. Computer,
30(4):75–82, 1997.

6. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into vhdl
models: the mefisto tool. In Fault-Tolerant Computing, 1994. FTCS-24. Digest of
Papers., Twenty-Fourth International Symposium on, pages 66–75. IEEE, 1994.

7. J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-
ion radiation to validate fault-handling mechanisms. Micro, IEEE, 14(1):8–23,
1994.

8. P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz. Comparing oper-
ating systems using robustness benchmarks. In Reliable Distributed Systems, 1997.
Proceedings., The Sixteenth Symposium on, pages 72–79. IEEE, 1997.

9. A.-E. Rugina, K. Kanoun, and M. Kaaniche. The adapt tool: From aadl architec-
tural models to stochastic petri nets through model transformation. In Dependable
Computing Conference, 2008. EDCC 2008. Seventh European, pages 85–90, 2008.

10. A.-E. Rugina, K. Kanoun, and M. Kaaniche. Software dependability modeling
using aadl (architecture analysis and design language). International Journal of
Performability Engineering, 7(4):313, 2011.

11. R. A. Shafik, P. Rosinger, and B. M. Al-Hashimi. Systemc-based minimum intru-
sive fault injection technique with improved fault representation. In 14th IEEE
Intl. On-Line Testing Symposium. IOLTS’08, pages 99–104. IEEE, 2008.

12. R. Svenningsson. Model-implemented fault injection for robustness assessment,
2011. QC 20111205.

13. J. Vinter, L. Bromander, P. Raistrick, and H. Edler. Fiscade-a fault injection tool
for scade models. In Automotive Electronics, 2007 3rd Institution of Engineering
and Technology Conference on, pages 1–9. IET, 2007.

14. S. Winter, C. Sârbu, B. Murphy, and N. Suri. The impact of fault models on
software robustness evaluations. In Software Engineering (ICSE), 2011 33rd In-
ternational Conference on, pages 51–60. IEEE, 2011.

