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In this paper, we investigate the spectral response of whispering-gallery-mode (WGM) resonators coupled to their 
access waveguide with a view to design their constitutive waveguides to promote critical-coupling over a wide 
spectral range and thereby facilitate their use for high-sensitivity sensing or nonlinear frequency conversion 
applications. The carried-out theoretical analysis is based on the universal response functions of singlemode and 
unidirectional devices. A coupled-mode treatment of the coupling region enables to derive two sets of favorable 
designs. The identified resonator/access waveguide systems exploit waveguides with mismatched propagation 
constants forming a coupling section exhibiting either an achromatic beat-length or an achromatic power-transfer 
coefficient. This generic model is followed by a numerical case study of vertically-coupled Si3N4 racetrack 
resonators. The conventional (quasi-)phase-matched configuration, treated as a reference case, is shown to display 
a critical-coupling bandwidth of 23 nm at a wavelength of 1550nm, whereas the proposed new designs 
demonstrate critical bandwidths larger than 330nm, i.e. exhibit bandwidths enhanced by more than one order of 
magnitude. 

OCIS codes:  (130.3120) Integrated optics devices; (230.4555) Coupled resonators; (130.3990) Micro-optical devices; (230.5750) Resonators; 
(230.7370) Waveguides. 
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1. INTRODUCTION 
Over the last decades, integrated whispering-gallery-mode (WGM) 
resonators have been increasingly used as the basic building blocks for 
photonics components [1] since they can provide high-quality factors 
and large field enhancement. For instance, recent developments in 
integrated non-linear optics have demonstrated that parametric 
cascaded four-wave mixing in high-Q Si3N4 micro-resonators is an 
effective approach for optical frequency comb generation [2]. Silicon-
based micro-resonators have also emerged as a new technology for 
highly sensitive detection of analytes in liquid or gas, based on optical 
resonance shift tracking [3][4]. In any case, the performance of these 
WGM resonators is governed by the round-trip propagation loss in the 
resonator section, whose contribution is aimed to be as small as 
possible, and by the evanescent coupling of the light between the 
constitutive cavity and access waveguide(s). For devices with 
transversely singlemode resonator and access waveguides, the system 
is said to be critically coupled when the in-coupling rate balances the 
round-trip loss. In this situation, the intracavity power is maximum [5] 
and the transfer function of the system drops to zero due perfectly 
destructive interference between the input waveguide incident field 
and the outcoupled resonator field [6], thereby maximizing the 
response contrast of the system. A direct consequence of these two 
properties is that, in the aforementioned applications, there is an 
incentive to achieve this critical coupling condition over a large spectral 

range to promote nonlinear interactions or to enhance the sensor 
detection capabilities. Chandran et al have done so by implementing 
symmetric couplers with long  coupler interaction length [7].  
In this article, we theoretically derive two sets of favorable coupling 
conditions to obtain achromatic critically-coupled racetrack resonators   
using asymmetric coupling regions. The benefits of the proposed 
designs in terms of critical coupling bandwidth enhancement with 
respect to the more conventional (quasi-)phase-matched approach are 
subsequently illustrated through the numerical investigation of the 
spectral response of racetrack resonators made of Si3N4/SiO2 and 
whose evanescent coupling takes place vertically between the 
rounded-rectangle resonator and its underlying access waveguide (see 
Fig. 1. ). 

2. THEORETICAL MODEL 
The theoretical analysis carried out here is based on the universal 
description of the system characteristics [6] with a complete Coupled-
Mode Theory (CMT) treatment of the evanescent coupling section of 
length L [8] (see Fig. 1.  and Fig. 3(a)). 



 

Fig. 1.  Schematic of the studied vertically-coupled racetrack resonator. 

 
The resonator intracavity power     (resp. intensity transmission  ) 
consists of a set of Lorentzian peaks (resp. dips) separated by the 
resonator free spectral range and modulated by an upper (resp. lower) 
envelop given, at the resonance wavelength, λ, by [6]: 
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where t(λ) is the amplitude transmission coefficient of the 
codirectional coupler, a(λ) is the single-pass transmission coefficient of 
the resonator and Pi(λ) is the spectral density at the input of the 
system.  
For a resonator of total length, LR, with an averaged intensity loss 
propagation constant, ρ, the latter parameter is given by:   
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Simulating the coupling section as a coupler constituted of two parallel 
waveguides (of length L), the CMT expression of t is given as follows 
[8] : 
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where   

                                         (5) 

is the wavevector of the power transfer oscillations. κa, κb are the 
complete-CMT mode-overlap integrals calculated from the single 
transverse mode distributions of the constitutive access and resonator 

waveguides, and       represents the complete-CMT effective 
propagation constant mismatch  
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where    and    are the complete-CMT self-coupling coefficients, i.e 
corrections induced by the coupling interaction to the propagation 
constants of the isolated waveguides. As mentioned above, maximizing 
the intra-cavity power using (1) (or equivalently minimizing the 
system transmission using (2)), leads to the critical coupling condition:  

                                  (7) 

Expanding the square modulus of the latter relationship and using 
equations (4) to (6) leads to  

                                           (8) 

where        and       represent respectively the coupler 
characteristic beat length and power-coupling efficiency as illustrated 
in Fig. 2 for a fixed wavelength and different coupler designs. The 
expressions for these parameters are respectively: 
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From the above (equations (5),(6) and (9)), it can be inferred that, at a 
set wavelength, as the phase mismatch increases, both F and Lπ 

decrease. As a result and as shown in Fig. 2, the         spatial 
oscillation will progressively evolve from the red (phase matched) to 
the blue and green curves.   

Using                     as merit function, achieving 
broadband critical coupling corresponds to setting  

                       (11) 

Although this might be computer intensive, this problem could be 
solved using a fully numerical optimization procedure allowing the 
routine to vary the waveguide cross-sections, separation, lateral offset 
and coupler length.  To gain some physical insight, we have chosen to 
continue the theoretical treatment slightly further. In particular, the 
relevant solutions will verify, at a given wavelength, λ0, the less 
restrictive set of conditions provided hereafter: 

 

                                                                                        

      

  
 
    

                                                                         
  

Equation (12a) represents the critical coupling condition while (12b) 
enforces the achromatic behaviour. Expanding equation (12a) means 
that the coupler length is restricted to a specific set of critical coupling 
lengths,           (   ), whose expression is: 
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where         is the relative deviation from        given by 
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Fig. 2 illustrates the fact that the system is critically coupled for coupler 
lengths such that the         spatial oscillation (red, blue or green 
depending of the considered phase-mismatch) curve intercepts the 
intensity inner circulation factor       (black line - which, as detailed 
in section 3.B, can be made independent of the coupler length). The 
meaning of equations (13)-(14) can thus clearly be understood : the 
critical coupling lengths are periodically found at a discrete set of 
values, symmetrically positioned around integer multiples (order m) of 
  . These critical coupling points are marked, in the phase-
mismatched case, as the blue crosses occurring at each intersection 
between the         (blue) curve and the       (black) curve. 

 

Fig. 2.  Illustration of the coupler-only power transmission 
characteristics taken at the access-waveguide output port as a function 
of the coupler length and for couplers whose access and resonator 
waveguides exhibit identical (phase-matched, F=1) or different (phase-
mismatched, F<1) propagation constants. The critical coupling lengths 
and Lπ are highlighted in blue, for a phase mismatched case. Inset: 
Zoom-in view of Lπ-coupling sensitivity for the two proposed 
achromatic critical-coupling scenarii. 



 

Noting that a,     and K(λ)=κa(λ)κb(λ) are independent variables, 
expanding equation (12b) leads to: 
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With 
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and 
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Assuming that the resonator losses are wavelength-independent, the 
achromatic critically-coupled designs are solutions of (13) and of the 
simplified equation: 
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Two specific cases can then be considered. The first scenario 
corresponds to the case where the coupler length is such that it is close 
to mLπ(λ0) (i.e. x0 is small). In this case, using a first order Taylor 
expansion, it can be shown that 
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Additionally, taking the wavelength-derivative of equation (9) (and 
using (5)) leads to: 
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Combining the last three equations reveals that 
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This means that, in this situation, the evolution of the resonator and 
access waveguide optical confinement is compensated by the change 
in the mismatch between their propagation constants, i.e. the two 

spectral contributions of Equation (5) (           and       ) 
compensate each other. This achromatic critically-coupled design thus 
corresponds to a system whose coupler beat length is achromatic.  
A second scenario of interest is such that the coupler length is close to 
(2m±1)Lπ(λ0)/2 (i.e. |x0| ~0.5). According to Equations (8) and (12a), in 
this situation (shown in green on Fig. 2), the coupler power–coupling 
efficiency, F(λ0), is close to the cut-off point where the minimum of the 
        spatial oscillations is tangent to      

 
, i.e. 1-F(λ0)~a2(λ0). It 

should be stressed that this entails that the system constitutive 
resonator and access waveguides have to exhibit mismatched effective 
propagation constants (to have F<1) i.e. to be phase mismatched 
(PMM).  Equations (16) and (17) can then be approximated by: 
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and 
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Furthermore, taking the wavelength-derivative of the power-coupling 
efficiency (equation (10)) leads to : 
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An achromatic critically-coupled design whose coupler length is 
L~(2m±1)Lπ(λ0)/2 simultaneously verifies equations (18), (22), (23) 
and presents an achromatic power-coupling efficiency as the 
evaluation of equation (24) shows that: 
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With increasing resonator loss value and spectral dependence, the 
critical coupling conditions will shift away from the above-described 
limit cases (L~mLπ(λ0) or L~(2m±1)Lπ(λ0)/2), thereby the achromatic 
designs will result from a tailored interplay between the cavity loss 
wavelength dependence and the spectral evolutions of the coupler 
beat-length and power-transfer coefficient. Nevertheless, as it will be 
illustrated hereafter, the above scenarii constitute effective guidelines 
to design systems with the desirable achromatic critically-coupled 
behaviour.  

3. NUMERICAL CASE STUDY 

A. General considerations 

At this stage, it is worth emphasizing that the model presented above, 
from which the two sets of favorable coupling conditions to obtain 
achromatic critically-coupled resonators were derived, is relatively 
generic. Indeed, the only assumption made is that the coupling 
between the resonator and the access waveguides occurs over an 
extended length of parallel waveguides and it can therefore be used to 
describe the spectral response of a variety of practical 
implementations including stadium resonators laterally coupled to 
their straight access waveguide [9], microdisk or microring resonators 
laterally (pulley-)coupled to curved waveguides [10], or WGM 
resonators that are vertically-coupled to their access waveguides [11]- 
[14]. The remainder of the article is devoted to a realistic numerical 
assessment of the benefits brought by such designs on a representative 
Si3N4/SiO2 racetrack resonator system. In this study, the resonator is 
taken to be vertically-coupled to its access waveguide as this coupling 
scheme inherently offers the greatest engineering flexibility. Indeed, 
although not exploited in full hereafter, one could, in principle, vary the 
constitutive materials of each of the waveguides, change the 
waveguide cross-sections in two dimensions and also choose the 
relative vertical and lateral positions of the resonator with respect to 
the access waveguide to tailor the spectral characteristics of the 
system.  
The numerical study is carried out with a nonlinear application of 
these systems in mind therefore the results will be presented in terms 
of their normalized intra-cavity power, Pint,N(λ) defined as 
Pint,N(λ)=Pint(λ)/Pmax(λ) where Pmax(λ) is the maximum achievable intra-
cavity power at the considered wavelength whose expression is: 

                             /                 (26) 

As highlighted in the introduction, the objective of the paper is to 
design waveguide-coupled resonators whose critical coupling 
condition is met over the widest-possible wavelength range. To 
quantify this critical-coupling bandwidth, the selected criteria is taken 
to be the spectral range over which Pint,N>80%. The latter definition 
was selected as it can be applied to any system and tuned by 
adjustment of the limiting boundary value depending on the desired 
constraint on the critical coupling. We also note that the second order 
wavelength derivative of the merit function f could be considered as an 
alternative metric except that this parameter would only be 
meaningful for achromatic critically-coupled systems (i.e. systems 
already verifying equation (12a) or (13)). 
 
 
 
 



B. Resonator design and characteristics 

The system geometry under investigation is presented on Fig. 1 and 3.  
It consists of a 200-π-µm-perimeter rectangular resonator with  
50-µm-radius rounded corners lying above its access waveguide. The 
resonator waveguide cross-section (see Fig. 3.a. and Fig. 5) is the same 
in the straight and bent sections and is taken to be 1250-nm-wide and 
500-nm-high throughout this paper. This selection was based on bi-
dimensional effective index calculations including material dispersion 
from references [15][16]. In this case, the resonator presents a near 
zero of averaged dispersion at a wavelength at 1550 nm and sustains 
single transverse TE-polarized guided mode propagation over a 
spectral region slightly larger than the 1500-2200nm wavelength 
range used to display the results. The particular shape of the resonator 
was chosen as a practical way to implement a fixed-loss resonator with 
variable coupling length. This is achieved by varying the distribution of 
the set 100-π-µm length between the four straight sections of the 
resonator (see Fig. 3). The coupling region is minimum when it 
reduces to the overlapping region between the curved portion of the 
resonator and the access waveguide (see lower diagram of Fig. 3a).  
 

 

Fig. 3.  Geometry of the vertically-coupled racetrack resonators under 
study showing (a) the resonator deformation permitting a variation of 
the coupling length while keeping constant the resonator loss and (b) a 
close-up view of the effective coupling length.  

According to the experimentally-validated models of references [11]–
[13], vertically-coupled WGM resonators with single transverse mode 
waveguides can be efficiently modelled using CMT considering the 
coupling region as being made of two parallel one-dimensional slab 
waveguides whose length, L, depends on the waveguides dimensions 
and positions. Following simple geometric considerations [17], for 
center-aligned waveguides as assumed here,  
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where R is the resonator external radius,      and    are respectively 

the resonator and access-waveguide widths and Ls is the length of the 
straight section of the resonator lying above the access waveguide. Lmin 
is the minimum coupling length and occurs when the overlapping 
region is restricted to the overlap between the curved portion of the 
resonator and the access waveguide (see lower diagram of Fig. 3a). As 
an integral part of the above-mentioned approximation, the complete 
set of mode overlap coefficients is calculated by the one-dimensional 
numerical integration along the vertical axis of the TE-polarized guided 
mode profiles of the constitutive (resonator and access) decomposition 
waveguides defined according to the criterion detailed in [17]. The 
accuracy of this approximation will obviously improve as the 
considered waveguides resemble slab-like waveguides i.e. are 
horizontally elongated. 
Given the large bending radius considered, the resonator loss is 
assumed to be dominated by the scattering losses occurring at the 
sidewalls of the waveguides. To estimate the resonator loss spectral 
dependence, we have implemented an analytical expansion of the 

widely accepted and reasonably accurate Payne-Lacey scattering loss 
model [18][19]. The results using a RMS roughness        are 
shown in Fig. 4. At a wavelength of 1550 nm, the propagation loss 
coefficient is calculated to be ρ=0.297 cm-1, corresponding to an 
intrinsic Q-factor Qi=478 103, to a=99.01%, values consistent with 
experimentally reported devices [2]. The spectral loss dependence is 
also found to be relatively weak as ∂a(λ)2/∂λ=2.6 10-6/nm. It is worth 
pointing out here, that since the resonator loss characteristics are kept 
unchanged in the remainder of this study, the maximal intra-cavity 
power value achieved at critical coupling in the coupled systems under 
investigation is independent of the coupler internal design (i.e. 
independent of whether the coupler constitutive waveguides are 
(quasi-)phase matched or phase mismatched). 

 

Fig. 4.  Calculated spectral characteristics of the resonator’s intensity 
inner circulation factor a².  

C. Reference (quasi-)phase-matched scenario 

We begin the study of the coupled resonator systems with a 
configuration considered as the reference or (quasi-)phase-matched 
(QPM) case where by, as conventionally done, the access waveguide 
(1200-nm-) width and (452-nm-) height are chosen in such way that 
the supported mode presents the same effective index as the mode 

propagating in the resonator resulting in        . The latter 
condition is only met at a single wavelength (1550 nm) since the 
surroundings of the two waveguides differ (see Fig. 5), and thereby this 
scenario is strictly-speaking only a quasi-phase-matched situation 
(Δneff(λ)<4.8 10-3 over the spectral range of interest). Nevertheless, for 
a 200.00-nm separation distance, the ratio 

                        shows that the coupler characteristics 
are clearly dominated by the coupling term K and the system can then 
be considered as phase-matched. This waveguide was also checked to 
be singlemode over the spectral region of interest.  

 

 

Fig. 5.  Cross-section of the considered (quasi-)phase-matched 
racetrack resonator 

 



Fig. 6 shows the evolution of the intra-cavity power spectrum as a 
function of the length of the coupler, starting from a value close to its 
minimum value, Lmin~22 µm (see equation (27)), and for a vertical 
separation between the resonator and the access waveguide, dsep, set to 
200.00 nm. The analysis of the plotted map at various fixed 
wavelengths shows that the critical coupling conditions (identifiable as 
the bright areas on Fig. 6) occur for several coupler lengths with a 
periodicity of Lπ (materialized as the black regions) as described by 
equation (13). Defining the fundamental coupling order as the first 
critical coupling order,     

 , such that           
        

(= 22 µm), one can determine that     
 =2, observing that 

Lπ(λ0=1550 nm, dsep=200.00 nm)= 12.18 µm. As evidenced by the 
strong spectral curvature of the bright areas on Fig. 6, the critical 
coupling conditions are clearly strongly chromatic. This is always the 
case for devices with (quasi-)phase-matched waveguides as the 
achromatic condition of equation (15) can not be met 

                
   . Indeed, the observed spectral evolution is a 

direct consequence of the fact that, according to equation (5), when the 
waveguide phase-mismatch is negligible, Lπ is entirely governed by the 
evolution of the modal overlap coefficients               and that 
these parameters monotonically increase with the weakening of modal 
confinement at long wavelengths. Furthermore, as shown in Fig. 6 by 
the increasingly horizontally tilted bright lines as L increases, at a set 
separation between the resonator and its access waveguide, solutions 
with larger critical coupling order    present worse chromatic 
dependence. This can also be inferred from equation (13) where the 
coupling order is shown to exacerbate the influence of the spectral 
curvature of Lπ.  

 

Fig. 6.  Normalized intra-cavity power map for a separation distance 
dsep=200 nm for a system with (quasi-)phase-matched resonator and 
access waveguides. 

In order to better understand the behaviour shown in Fig. 6, and in the 
following intracavity power spectral maps (Fig. 10 and 11), one should 
refer to Fig. 2 recognizing that it corresponds to a cross section of these 
two-dimensional maps at a fixed wavelength. The bright regions in the 
spectral maps thus correspond to the intersection points around 
integer multiples of    and occur periodically along the coupler length 
L  because of the         oscillatory power transfer pattern. 

In the remainder of the paper, we will therefore limit our study to the 
fundamental order cases. The spectral response obtained for     

 , 
shown in red on Fig. 7, is therefore the least wavelength-dependent, 
and its achromatic bandwidth is found to be 23 nm wide. It is worth 
pointing out at this point that, by increasing the separation between 
the resonator and the access waveguides i.e. by increasing       , a 
given coupling length (Lmin for instance) might correspond to several 
critical coupling orders. However, numerical tests (not shown here) 

reveal that the spectral dependence of Lπ at small separation distance 
is weaker and compensates for the curvature enhancement induced by 
the higher critical coupling order and thereby results in almost 
identical achromatic bandwidths. 

D. Phase-mismatched cases 

Having shown that (quasi-)phase-matched structures are not 
suitable to obtain achromatic critically-coupled systems, the study is 
furthered by investigating the opportunities offered by the use of 
phase-mismatched (PMM) structures. 

1. Achromatic beat-length coupler scenario 

To that extent, the access waveguide is modified while keeping the 
resonator design identical. The access waveguide cross-section was 
selected to obtain an achromatic beat-length system, i.e. chosen such 
that it meets equation (19) (or equivalently (21)). Since      exhibits a 
slowly increasing spectral variation, the mismatch is taken to show the 
opposite wavelength dependence (see Fig. 9) over the widest spectral 
range for an appropriately set separation between the resonator and 
the access waveguide, dsep,. As shown in Fig. 8, the resulting access 
waveguide cross-section is 1700-nm-wide and 250-nm-thick and the 
separation between the resonator and access waveguide is 293.75 nm. 
This geometry only supports TE-polarised singlemode propagation 
over the 1500-2200-nm spectral range and, according to equation 
(27), the associated minimum coupling length is Lmin~24 µm.  

 

Fig. 7. Evolution of the normalized intra-cavity power        as a 

function of wavelength in (a) the PM case (red curve) with 
dsep=200.00 nm and the PMM case at (b) optimal waveguide 
separation distance for scenario 1  dsep = 293.75 nm (blue curve), and 
(c) optimimal separation for scenario 2, at the cut-off separation 
distance dsep = 800.00nm (green curve).  

 

Fig. 8.  Cross-section of the phase-mismatched racetrack resonator. 



 

Fig. 9. Evolution of         and        in the PMM case at the optimal 
waveguide vertical separation distance dsep=293.75 nm.  

The analysis of this PMM scenario begins by representing in Fig. 10 the 
dependence of normalized intracavity power spectrum as a function of 
the coupler length for the separation of 293.75 nm. The interpretation 
of this map is similar to the PM case (Fig. 6) except for the fact that, 
here, the critical coupling conditions exhibit insignificant spectral 
dependence (since the bright regions are almost vertical). In these 
circumstances, the system achromatic behaviour results from the 
coupler beat-length achromatic characteristics as attested by the 

evolutions of         and        plotted in Fig. 9 and shown in Fig. 12. 
Selecting the fundamental coupling order (    

 =3 deduced from 
Lcc=24.4 µm ; Lπ= 8.34µm; and leading to x0=0.074 Lπ), the device 
response, displayed as the blue curve in Fig. 7, is shown to have an 
achromatic bandwidth greater than 330 nm. 

 

Fig. 10. Evolution of the normalized intra-cavity power as a function of 
coupler length and wavelength, in the PMM case for the optimal 
waveguide separation distance (dsep= 293.75nm). Here, the coupling 
orders correspond to m=3,4,5. 

2. Achromatic power-transfer coupler scenario 

As suggested in the theoretical section of the paper, moving from the 
achromatic beat-length scenario to the achromatic power-transfer case 
can be achieved by tuning the amplitude of the power transfer 
oscillations, F, such that the minimum of the      spatial oscillations 
becomes tangent to a2 (see Fig. 2), leaving unchanged the resonator 
and access waveguide cross-sections. Since F is a decreasing function of 
dsep (see equation (10)), this occurs when dsep is increased to 
800.00 nm, thickness beyond which equation (12a) no longer has 
solutions as the system operates in the deep under-coupling regime. 
The general behaviour of the system is clearly modified by this 
increase in the separation between the resonator and the access 
waveguides from 293.75 nm (Fig. 10) to 800.00 nm (Fig. 11). In the 

800.00-nm-separation case, spectrally-wide critical coupling regions 
can still be found (bright areas at L~27 µm, 38 µm) in spite of the 
coupler beat-length presenting a strong wavelength dependence 
(oblique black regions). For a wavelength of 1550 nm, the points 
corresponding to the critical coupling condition can be observed to be 
mid-way between the curves associated to the multiple orders of Lπ 
(black region) as ruled by equation (13).  
The numerical investigation of this scenario reveals that equation (25) 

is not strictly satisfied : as shown in Fig. 12, the derivative  
     

  
 
    

is 

non-zero but exhibits its smallest value over the dsep range of interest at 

the cut-off separation distance dsep =800.00 nm (whereas  
   

  
 
    

 is 

strictly zero for dsep = 293,75 nm). The spectrally-wide critical coupling 
regions of Fig. 11 stem from this minimum of chromaticity for F. For 
L=27.94 µm, given that Lπ=11.17 µm, the fundamental coupling order 
can be found to be     

 =3.  The corresponding device response is 
shown in green in Fig. 7 and demonstrates a quasi- achromatic 
bandwidth exceeding 330-nm.  

 
  

Fig. 11.  Evolution of the normalized intra-cavity power spectrum as a 
function of the coupler length in the PMM case for a separation 
between the resonator and the access waveguide of 800.00 nm. 
 

 
Fig. 12. Evolution of the chromaticity of the coupler beat-length    
(left axis, blue dots) and of the power coupling efficiency F (right axis, 
green dots) as a function of the waveguide vertical separation distance 
dsep.  



3. Stability and tolerance study of the achromatic critically-coupled 
designs  
Having established two experimentally-viable designs to obtain 
achromatic or quasi-achromatic critically-coupled Si3N4/SiO2 racetrack 
resonators, we now investigate the stability and parameter tolerance 
of the latter designs. To begin with, the evolution of the normalized 
intracavity power spectrum as a function of the separation between 
the resonator and the access waveguide for a device whose coupler 
length is taken to be the critical-coupling length of order     

 =3- is 
represented in Fig. 13 (a). The associated variation of the selected 
critical coupling length is shown in Fig. 13 (b). The plotted results (Fig. 
13 (a)) prove that wideband critical coupling only occurs at two 
specific separations, 293.75 nm and 800.00 nm, corresponding 
respectively to the achromatic-Lπ scenario and achromatic-F case as 
highlighted above. The adjustment of dsep~300 nm essentially tunes 
the center wavelength of the achromatic critically-coupled regime with 
a minor change in the achromatic bandwidth. We note that both 
achromatic critically-coupled designs require the separation thickness 
to be controlled with a rather stringent but still technologically-feasible 
10-nm precision to keep the critical-coupling bandwidth larger than 
80% of its optimum value. This should be compared to the QPM case 
where the critical-coupling bandwidth of 23nm can be maintained 
within a dsep variation of 100-nm. Although the latter tolerance value 
may suggest that the QPM structures are more forgiving, Fig. 13 (a) 
also highlights that, in the studied PMM case, the critical-coupling 
bandwidth is at least two times larger than the QPM one over the 
entire 600-nm dsep span.                

 

Fig. 13. (a) Evolution of the normalized intra-cavity power as a 
function of the waveguide separation distance and wavelength, in the 
PMM case for the critical coupling order m=3+. (b) Evolution of selected 
critical coupling lengths and coupler characteristic lengths as a function 
of the waveguide separation distance.  

We continue this stability analysis by studying how the chosen phase-
mismatch between the resonator and access waveguides influences 
the remainder of the design and how this parameter impact on the 
achievable performance.  In the achromatic Lπ situation, as shown in 
Fig. 14 (a), when the access waveguide thickness hg is decreased, the 
phase mismatch increases (from Δneff= 3.13 10-2 to 14.5 10-2), and the 
spectral bandwidth over which Lπ can be made wavelength-insensitive 
expands. Therefore the system achromatic bandwidth increases. The 
maximum bandwidth limit is indirectly set by the fact the resonator-
access waveguide separation distance needs to be consequently 
linearly reduced, as highlighted by the blue curve of Fig.14 (b) and by 
the singlemode cut-off wavelength. In the achromatic-F case (see Fig. 
15), choosing a reduced phase mismatch (i.e. increasing the access 
waveguide thickness hg) entails to use a larger resonator-to-access-
waveguide separation as highlited by the blue curve of Fig. 15 (b) and 
reduces the quasi-achromatic critical coupling bandwith. Here again, 
the limiting factors are the resonator to access waveguide separation 
and associated critical-coupling length.  

 

Fig. 14. (a) : evolution of the normalised intracavity power spectrum 
as a function of the access waveguide thickness hg (resulting in a 

varying    ) for the achromatic-Lπ scenario. (b) : evolution of the 
separation distance at which the achromatic-Lπ scenario occurs  (blue 
curve) and of the correspopnding critical coupling length (red curve) 
as a function of the access waveguide thickness hg. 



 

Fig. 15. (a) Evolution of normalised intracavity power spectrum as a 
function of the access waveguide thickness hg (resulting in a varying 

   ) for the achromatic-F scenario. (b) : evolution of the separation 
distance at which the achromatic-F scenario occurs  (blue curve) and of 
the corresponding critical coupling length (red curve) as a function of 
the access waveguide thickness hg. 

4. CONCLUSIONS 
In this work, we have theoretically established two sets of favorable 
conditions to obtain whispering-gallery-mode resonators which are 
critically-coupled over a wide spectral range to their access waveguide. 
Typically, the above-mentioned achromatic designs involved using a 
resonator and an access waveguide with mismatched propagation 
constants and setup in a way to establish a coupling region exhibiting 
either an achromatic beat-length or an achromatic power-transfer 
coefficient. As this theoretical derivation was performed using a 
generic model based on the universal description of the system 
characteristics and a coupled-mode treatment of the parallel-
waveguide coupling section, it could be applied to a variety of practical 
embodiments. Subsequently, a parametric numerical study of 
vertically-coupled Si3N4/SiO2 racetrack resonators showed that the 
achromatic designs were practically implementable and permitted the 
achromatic critical-coupling bandwidth to be broadened by one order 
of magnitude in comparison to a critically-coupled system with (quasi-
)phase-matched waveguides.  
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