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Summary

Localization of wireless devices is a crucial requirement for many emerging applications such as envi-

ronmental monitoring, intelligent transportation, home automation, health-care monitoring and social

networking. In this letter, we propose AWL a new Aggregate Weighted Localization algorithm for

mobile wireless networks. The proposed algorithm is distributed and requires low computational and

communication overheads enabling its use in resource-limited devices.
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1 INTRODUCTION

Location awareness is an essential feature for many applications of mobile wireless networks. Indeed, the information collected or communicated
by the wireless mobile nodes is usually valueless without the knowledge of the nodes location. Location information also enhances the interaction
between thenodes and their surroundings.Mobilewireless nodes couldbeequippedwith aglobal positioning system (GPS) toobtain their locations,
but this is currently a costly solution (energy consumption, production price, size of the node). Besides, GPS service may be inaccessible in some
environments such asmountains, dense forests and indoors [1]. Thus, in the recent years, several localization algorithms that aim at obtaining nodes
locations with low costs have been proposed. In such algorithms, a small set of nodes with known positions (called anchors or reference points)
advertise their locations in order to assist nodes with unknown locations (called unknown or normal nodes) to estimate their coordinates [2].
Paper [3] proposed the Centroid Localization (CL) algorithm. In CL, the estimated location of an unknown node is calculated as the centroid

of the coordinates of beacon nodes within its communication range. Instead of using the coordinates of all in-range beacons, in [4] an unknown
node first collects the Received Signal Strength (RSS) of all the nearby beacons, selects those whose RSS is above a given threshold and finally
estimates its location as the average of these chosen beacons. One big issue with centroid localization techniques [5, 6] is that they assume that
all the selected reference points are equally proximate to the unknown node [7]. Since such an assumption is usually not satisfied in practice, the
authors of [8] introduced theWeighted Centroid Localization (WCL) algorithmwhere each reference point is attributed a weight depending on its
distance to the unknown node. Theweight of the ith reference point is equal to 1

(di)g , where di is the distance between the unknown node and the ith

reference point and is estimated through the RSS received from the reference point, g > 0 is a parameter that determines howmuch the distances
affect the weight function. Increasing the value of g increases the weight of the closest reference points. Many recent works have adopted the
WCL approach [9, 10]. However, most of the proposed WCL approaches exclusively rely on a single metric, and especially the RSS, to weight the
collected location information. Depending on a single metric can nevertheless result in poor position estimations particularly when the considered
metric is not sufficiently reliable (RSS is unstable in real environments). Combining severalmeasures fromdifferent categorieswould provide better
performances than just relying on a single metric.
The work in [11, 12, 13, 14] propose Monte Carlo Localization (MCL) algorithms. In MCL techniques each unknown node maintains a set of

weighted samples representing its possible positions and estimates its position as the weighted average of these samples. In [11], each node uses
the positions of its neighboring anchors to weight its samples. The weight of each sample is either 0 or 1. Relying only on the anchors location
information requires an increased anchor density in order to achieve reliable location estimates. Anchor nodes are yet generally more expensive
and are deployed in much lower densities than normal nodes. It will therefore be very advantageous if the estimated locations of the normal nodes
can also be used to improve the localization accuracy. The work in [12] extended [11] by using the location estimates of non-anchor neighbors and
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not just anchor nodes. Nodes use only the information of normal neighbors that havemore accurate estimates than theirs. The quality of a position
estimate ismeasured using a parameter called closeness. Thework in [13] uses a bounding-box that improves the sampling efficiency by reducing the
scope fromwhich the samples are selected. To estimate the unknown nodes locations, the proposed algorithm uses 1-hop neighboring anchors and
normal nodes as well as the 2-hop neighboring anchors location information. Considering 2-hop beacon broadcasting may ameliorate the location
estimations but will on the other hand increase the communication costs particularly in high density networks. The major disadvantages of MCL
techniques is that they require the knowledge of the nodes radio ranges and assume that nodes are synchronized and can send and calculate their
location information at the same discrete time step. In real environments, the radio ranges are nevertheless constantly changing due to different
factors including the nodes residual energy and surrounding environment. Besides, time synchronization is generally a difficult task to achieve in
wireless networks. Finally, the synchronized sending of location information increases the probability of packets collisions and hence the loss of the
location information.
Paper [15], proposes a cooperative localization technique divided into two phases : a start-up phase and a refinement phase. The start up phase

addresses the sparse anchor nodes problem. In this phase, nodes cooperate to spread (hop-by-hop) the anchor nodes positions throughout the
whole network, allowing as such every unknown node to have an initial coarse position. In the refinement phase, normal nodes iteratively amelio-
rate their initial positions by using their 1-hop neighboring normal nodes estimations. Each normal node is attributed aweight reflecting the quality
of its estimation. Likemost of the flooding-based techniques, this algorithm have a very high communication overhead and suffers from severe con-
tention, which can significantly degrade its performance. Cooperation among nodes can increase the position accuracy at the cost of higher energy
consumption. To reduce such an overhead, paper [16] uses a game theoretical approach while [17] proposes a hierarchical approach where nodes
are gradually activated to estimate their positions. Papers [18, 19] assume that anchor nodes are able to dynamically increase their transmission
power in order to ameliorate positions estimation. Increasing the transmission power results in two drawbacks. One is that the anchor nodes are
required to have more energy than the rest of the nodes, and a second is that the higher transmission power increases the interference among the
network nodes. The work in [20] proposes a hybrid system that combines inertial measurements from a smartphone with RSS measurements in
order to determine thepositionof a pedestrian. Experiment results have shown that theuseof theRSS in conjunctionwith the inertialmeasurement
of a smartphone can improve the accuracy of the position estimation. The problem of this work is its restrictive applicability to indoor pedestrian
scenarios.
Taking into consideration the drawbacks of the previously proposed localization techniques, we propose a localization algorithm that (1) does

not require the synchronization of nodes (2) aggregates different metrics of different types in order to weight the received location information
providing as such a better reliability and robustness against the uncertainty of certainmetrics (3) does not require the knowledge of the nodes radio
transmission range (4) requires a low computational cost (basic mathematical operations) and a low communication overhead (1-hop messages
broadcasting). The remaining of this letter is organized as follows. Section 2 presents AWLour novelweighted localization algorithm. Section 3 uses
simulations to evaluate the performance of AWL and compare it with existing localization techniques. Section 4 concludes the letter.

2 AGGREGATE WEIGHTED LOCALIZATION ALGORITHM

In this section, we present our proposed algorithm.We first detail how a normal (unknown) node calculates its aggregateweighted location. Partic-
ularly, a normal node uses a set of basic mathematical operations with a low computational cost such as additions, subtractions andmultiplications.
We then describe the behaviour of both anchor and normal nodeswithin the network. Nodes rely only on 1-hop communication (no flooding) which
minimizes the communication overhead.

Location estimation: The system consists of three categories of nodes: fixed anchor nodes, mobile anchor nodes and mobile normal (unknown)
nodes. Both anchor andnormal nodes broadcastmessageswith their location information. A location informationmessage is as follows: Loc_msg(ID,
(x,y,z), v, a, ε). ID is the identity of the sender; (x,y,z) is the location estimate of the sender; v is the velocity of the sender; a is set to 1 if the message
sender is an anchor and to 0 if the message sender is a normal node. The parameter ε describes the quality of the sender location estimate. The
higher is ε the better is the quality of the location estimation. Each normal nodemaintains a location information table (Loc_tab) inwhich it stores the
received location information. A normal nodeupdates its location information table for each received location informationmessage: once a location
informationmessage is received, the normal node first estimates the distance to the sender d, the distance estimation error∆, the link qualityQ and
then records them alongwith the received location informationmessage and the time of the reception of themessage tr in the location information
table. At any time, a normal node can estimate its location as the weighted average of the coordinates of the recorded location information, as
shown in equation (1). Li(x,y,z) is the ith recorded location information, wi is the weight of Li(x,y,z) and n is the number of the recorded location
information. The weightwi of the ith location information entry is, as shown in equation (2), the aggregation of five different weightswi1,wi2,wi3,wi4

andwi5. Such an aggregation provides a better reliability and robustness against measurement errors [21].
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P(x,y,z) =

n
∑

i=1
wi Li(x,y,z)

n
∑

i=1
wi

(1) wi =
α1wi1 +α2wi2 +α3wi3 +α4wi4 +α5wi5

α1 +α2 +α3 +α4 +α5
(2)

The weight wi1 depends on the source (sender) of the location information. As shown in equation (3), the location information collected from
normal nodes is attributed lower weights than that received from anchor nodes. These weights depend on the location estimation quality ε. The
weight wi2 depends on the freshness of the stored location information and is calculated using equation (4), where T is the maximum time that a
received location information can be stored in the location information table; τi is the duration of time that the ith location information has been
stored. As shown in equation (4),wi2 is inversely proportional to τi. Fresher information is hence attributed higher weights. The weightwi3 depends
on the receiver/sender separating distance and is calculated using equation (5), where di is the estimated distance separating the ith state infor-
mation sender and the normal node when the location message was sent and ∆i describes the distance estimation error. The variable ∆i can be
set to zero if the distance estimation error can not be evaluated. The weight wi3 is inversely proportional to the distance; the location information
received from closer nodes is consequently attributed higher weights.We note that our algorithm does not depend on a specific ranging technique.
Nodes can use any available rangemeasurement technique such as the TimeOf Arrival (TOA) or the Received Signal Strength (RSS). Theweightwi4

depends on the mobility of the sending node and is calculated using equation (6), where vi is the velocity of the sender of the ith recorded location
information and vmax is the maximum velocity within the recorded velocities. As we can see from equation (6), wi4 is inversely proportional to the
velocityof the sender. We attribute higher weights to the location information received from slower nodes. The weight wi4 is particularly needed
in networks with high propagation delays. In such networks, the sending node position may, depending on its velocity, has considerably changed
when the message is received. The weight wi5 depends on the link quality between the ith location information sender and the receiver and is cal-
culated using equation (7), whereQi quantifies the link quality between the sender of the ith recorded location information and the receiver,Qmax is
the maximum link quality within the recorded link qualities. The weight wi5 is proportional to the link quality. We attribute higher weights to more
reliable links. Nodes can use any available link quality estimation technique such as the Packet Reception Ratio (PRR), the Received Signal Strength
Indicator (RSSI) or the Signal to Noise Ratio (SNR). The parameters α1, α2, α3, α4 and α5 are set to either 1 or 0 depending on the availability of the
corresponding information offering hence different configuration possibilities.

wi1 =

1 if the sender is an anchor

ε

1+ε
if the sender is a normal node

(3) wi2 =
T

T + τi
(4) wi3 =

1
di+∆i

n
∑
j=1

1
d j+∆ j

(5)

wi4 =
vmax

vi + vmax
(6) wi5 =

Qi

Qmax
(7)

ε =

n
∑

i=1
wi

n
(8)

To estimate its position, a normal node first determines the maximum velocity vmax and the maximum link quality Qmax within all the recorded
velocities and link qualities. Then, for each stored location information i, it uses equations (3), (4), (5), (6), (7) and then (2) to estimate the weight of
the considered location information entry. The normal node finally uses equations (1) and (8) to estimate its location and the location estimation
quality ε.

Location information sharing: Anchor nodes periodically broadcast (each Ta) their location information. They also broadcast their location upon
the reception of a location requestmessage fromanormal node.Normal nodes are continuously collecting location informationmessages sent from
neighbouring nodes. If the localization is triggered (due to a given event or elapsed timer) at a given normal node u, then u uses the already collected
location information to estimate its location. If this estimation does not satisfy a given requested quality (ε < ε∗) then, in order to ameliorate its esti-
mate, node u broadcasts a location request message (Req_msg) including its identity and the quality of its current estimate. Normal nodes receiving
such a request, estimate their location and the quality of their estimation and respond to this request only if their location estimate quality is bet-
ter than the location estimate of the requester. Anchor nodes receiving the location request automatically respond by sending their position. The
requesting node u collects the answers to its request and then estimates its location. Node u finally broadcasts its estimated position if it satisfies a
given quality (ε > ε∗∗). Both ε∗ and ε∗∗ are parameters to fix.

3 PERFORMANCE EVALUATION

In this section, we use simulations to evaluate the performance of our proposal and compare it the classic Centroid Localization (CL) [3], Weighted
Centroid Localization (WCL) [8] and the cooperative localization algorithm proposed in [15] which wewill refer to as CoopLoc.
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Simulation setup: Our simulations were conducted using the OMNeT++ simulator [22]. For all our experiments, nodes evolve in a square area of
50m x 50m. Fixed anchors are randomly placed using a uniform distribution. We use the random waypoint mobility model with fixed speed and no
pause time [23] for themobile anchors and real world humanmobility traces [24] for the normal nodes. The number of normalmobile nodes is fixed
toN = 19. We adopt the simple path loss signal propagationmodel [25] under which the received signal strength Pr is expressed as:

Pr =

(
λ

4Π

)2

·
(

1
d

)α

·Pt (9)

Where Pt is the maximum transmission power, d is the distance separating the sender and the receiver, α is the path loss coefficient, λ = c
f is the

wavelength of the transmitted signal (c is the speed of light and f is the frequency of the transmitted signal). The path loss coefficient α depends
on the propagation environment. In our simulations we setα to 4, which corresponds to a non-line-of-sight indoor environment [26]. Themaximum
transmission powerPt is set to -34.1dbm resulting in amaximum transmission range of 14m. The nodes communicatewith each other using the IEEE
802.11 standard. The parameter g of the WCL algorithm is set to 3 as it is the most widely used value in literature [27]. Anchors broadcast their
location information every 3s. The parameters of our algorithm are set as follows: T = 7s, α1 = α2 = α3 = α5 = 1, α4 = 0, ε∗ = ε∗∗ = 0.8. We use the
RSSI as the link quality indicator. The distance separating a sending and a receiving nodewas roughly approximated through the RSS received from
the sending node. Thedistance estimation error∆was set to zero for all the nodes (i.e., the distance estimation errors are unknown). Each simulation
scenario lasts 1 hour andwas repeated up to 100 times (with different pseudorandomnumber generator seeds) in order to reach a confidence level
of 95%.

Simulation results: FIGURE 1 shows the average localization error obtained under AWL, WC, CL and CoopLoc. For AWL, WCL and CL we vary
the number of anchors from 2 to 30. CoopLoc considers a network with a minimum of 4 anchor nodes, we hence vary the number of anchors from 4

to 30. We consider three different scenarios: (a) all anchors aremobile with a velocity v = 1m/s (b) all anchors aremobile with a velocity v = 5m/s (c)
a heterogeneous network were 50% of the deployed anchors are static and 50% aremobile with a velocity v = 5m/s.
FIGURE 1 clearly shows that the location accuracy of our algorithm outperforms that of the other algorithms. Unlike WCL and CL that rely

only on the location information received from anchor nodes in a given time instant, our algorithm uses the location information received from
both anchor and normal nodes within the hole time period T and attributes themweights depending on different metrics including their freshness
and accuracy. This enables AWL to provide much more accurate location estimations than WCL and CL particularly when the number of anchors
is low (i.e., when the location information is scarce). In AWL normal nodes are continuously collecting location information messages sent from
neighbouring nodes. If the localization is triggered at a given normal node u, then u can immediately use the already collected location information
to estimate its location. In CoopLoc, on the other hand, a normal node needs first to collect the location information that is flooded through the
hole network to have an initial coarse location estimation and then iteratively ameliorates this estimation using its neighbouring normal nodes
estimations. This iterative two-phase process and particularly the flooding process introduces long delays leading to the mislocalization of the
mobile nodes.
The performance of CL and WCL are similar under a small number of anchors. For a large number of anchors, the accuracy of CL deteriorates

in comparison with that of WCL. This is because, CL neglects the ranging information assuming that all the anchor nodes are equidistant from the
unknown node. Nodes close and far from the true location are equivalently included in the averaging procedure, thereby corrupting the estimates.
Whencomparing the cooperative localizationalgorithmCoopLocwith thatof thenoncooperative techniquesCLandWCL,wecan see thatCoopLoc
outperforms CL and WCL under low number of anchors. Indeed, in cooperative localization, inter-nodes communication removes the need for all
normal nodes to be within the communication range of multiple anchors; thus high anchor density is not required. When the number of anchors
increases, the performance of CL and WCL outperforms that of CoopLoc. This is because, whith higher number of anchors, the unknown nodes
are within the communication range of a sufficient number of anchors. The inter-nodes communication (and particularly the location information
flooding in CoopLoc) is more burdensome (greater contention and packet loss) than beneficial.

4 CONCLUSION

In this letter, we presented AWL a new low-cost localization algorithm for mobile wireless networks. The proposed algorithm uses both neigh-
bouring anchor and normal nodes location information and hence does not require an increased anchor density. It besides weights the collected
location information by aggregating different metrics of different types providing hence a good robustness against the uncertainty of certain met-
rics. We considered three simulation scenarios in order to evaluate the performance of AWL. Simulation results showed that AWL outperforms
the other state of the art techniques under all the considered scenarios. In our simulations, we used fixed values for the different parameters of
our algorithm. However, some tradeoffs need to be deeply analyzed in order to determine the appropriate optimal setting of these parameters. For
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(a) v = 1m/s
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(b) v = 5m/s
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(c) Heterogeneous network
FIGURE 1 Localization accuracy under different number of anchors

instance, decreasing the broadcast period Ta would generally improve the algorithm accuracy but on the cost of higher communication overhead.
There is nevertheless an optimal point after which decreasing Ta will not have a positive effect on the accuracy of the algorithm. Values lower than
the optimal value unnecessarily increase the communication cost. Currently, we are performing a comprehensive study evaluating the performance
of our algorithm under various values and combinations of its parameters. This studywill enable us to draw practical guidelines on how to set these
parameters in order to reach the best performance of the algorithm.
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