
HAL Id: hal-01635791
https://laas.hal.science/hal-01635791

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying the Model-Driven Architecture Approach to
Dynamic Structure Applications

Min Zhu, Clément Foucher, Vincent Albert, Alexandre Nketsa

To cite this version:
Min Zhu, Clément Foucher, Vincent Albert, Alexandre Nketsa. Applying the Model-Driven Ar-
chitecture Approach to Dynamic Structure Applications. 31st European Simulation and Modelling
Conference (ESM 2017), Oct 2017, Lisbon, Portugal. 8p. �hal-01635791�

https://laas.hal.science/hal-01635791
https://hal.archives-ouvertes.fr


APPLYING THE MODEL-DRIVEN ARCHITECTURE APPROACH TO
DYNAMIC STRUCTURE APPLICATIONS

Min ZHU, Clément FOUCHER, Vincent ALBERT, Alexandre NKETSA
LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Email: {Min.Zhu, Clement.Foucher, Vincent.Albert, Alexandre.Nketsa}@laas.fr

KEYWORDS
Model Driven Architecture, Reconfigurable Architec-
tures, Meta-Model, Simulator

Abstract

Model-Driven Architecture (MDA) is a system engineer-
ing approach which consists in separating the model de-
scription from the execution platform. It allows build-
ing a model without detailed knowledge of the target
platform, as well as retargeting the execution platform
without changing the model itself.
We present a meta-model called Partial Reconfigurable
DEVS (PRDEVS) that is able to represent dynamic
structure changes of a model. We base our approach
on the DEVS formalism, which is modular and hierar-
chical. Our description paradigm differs from the previ-
ous DEVS-based dynamic meta-models in that it explic-
itly deals with adding and removing components. This
approach is closer to the general reconfigurable embed-
ded system design methodology. Both a software and a
FPGA-based hardware platform are considered as dy-
namic execution platforms.

INTRODUCTION

The Discrete Event System Specification (DEVS) for-
malism introduced by Zeigler et al. (2000) is a strong
mathematical foundation for specifying hierarchical and
modular models. The DEVS formalism allows to build
discrete event systems and provides algorithms for sim-
ulation. DEVS models are made of atomic components,
which define a behavior, and coupled components which
can hold several other components and describe the way
they are connected. As the initial DEVS formalism
was not designed to handle structure changes, either
in model composition or communication, various exten-
sions were proposed to address these dynamic systems.
However, our point of view on existing formalisms which
allow to describe reconfigurable systems is that they are
either too high level, making it difficult to apply to real
systems, or too deeply linked to the execution platform.
The Model-Driven Architecture (MDA) approach
by Object Management Group (2016), derived from
Model-Driven Engineering (MDE), consists in separat-
ing the application model description from the execution

platform. This brings various benefits, such as allow-
ing the teams working on an application to be indepen-
dent from the ones working on the platform, or enabling
deploying an application built from a single model on
various platforms. A complete MDA specification con-
sists in a Platform-Independent Model (PIM), one or
several Platform-Dependent Models (PDM), and sets of
interfaces correspondence to allow building a Platform-
Specific Model (PSM) by merging PIM with PDM, as
depicted on Figure 1.
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Figure 1: MDA Structure of PRDEVS

In this paper, we propose a DEVS-based PIM formalism
able to describe applications whose structure can evolve
dynamically. The aim of this formalism is to comply
with hardware-reconfigurable architectures such as FP-
GAs, without however restricting the execution to these
platforms. We thus take in consideration the generally
observed approach used when building such systems,
but remain sufficiently high level to target any platform
supporting dynamic architecture change of the applica-
tion, such as software-based implementation. We also
introduce PDM candidates in order to show the compli-
ance of the PIM with such architectures.
First, we present the existing work related to DEVS and
its extensions. Then the background of DEVS formalism
and reconfigurable hardware are presented. Afterwards,
the PRDEVS model at PIM level is presented with its
syntax and semantics. A software oriented implementa-
tion with its possible PSM is then presented. Finally, we
conclude this article and present a view of what remains
to be done.



RELATED WORK

Zeigler et al. (2000) initially introduced the DEVS for-
malism in the late 70’s as a way to build models with
a discrete-event approach using a mathematically de-
fined formalism. DEVS was later extended with Par-
allel DEVS (PDEVS), and we now reference the initial
DEVS formalism as Classic DEVS (CDEVS). In this
article, the acronym DEVS thus refers to the general
DEVS ecosystem rather than to the original CDEVS
formalism.
DEVS is a hierarchical set of components of two kinds:
atomic components define a behavior while coupled
components gather and link other components, either
atomic or coupled. The DEVS formalism is inherently
static, and dynamic structure behavior can only be em-
ulated, e.g. using a selector to enable or disable models
over time. Several extensions have been proposed aim-
ing at dynamically adapting the models structure during
the simulation.
DSDEVS, defined in Barros (1997), is based on a 4-tuple
network structure where atomic components can con-
nect directly with other atomic components by a set of
influencers I. The network executive χ is a specific com-
ponent whose state represents the network structure.
The γ function allows to obtain the network structure
from the current state of χ. χ thus takes responsibility
for all changes of model structure, meaning that compo-
nents in the model can not take decision on structural
adaptation. DSDE (Barros (1998)) is a parallel version
of DSDEVS.
The principle of dynDEVS as described in Uhrmacher
(2001) is that each atomic component has its own model
transitions function ρα which controls its own structural
transformation. At coupled component level, the equiv-
alent function is the network model transition function
ρN . However, dynDEVS assumes a static set of ports
which is not adapted for most of the dynamic appli-
cations. Uhrmacher later developed ρ−DEVS, a dyn-
DEVS variation supporting dynamic ports.
The formalisms mentioned above stay at theoretical
level: they propose an abstract simulator and can be
adapted to an actual execution environment.
There are recent works like RecDEVS which consider
hardware models of computation (MoC) together with
DEVS. RecDEVS (Madlener (2013)) proposes a model
based on DEVS for final use on reconfigurable hardware
like FPGA. In RecDEVS the system executive Cχ is
in charge of the structure changes. However RecDEVS
takes into account some hardware specificities from the
beginning, like component communication relying on
a bus structure with an address notion. This limits
the model to a use on the target platform defined by
RecDEVS. Thus, there is no separation between PIM
and PDM. There are other limits on the meta-model
itself, like the fact that a component deletion can only
be triggered by the component itself. Eventually, there

is no final implementation on FPGA, the workflow only
goes to SystemC simulation.

BACKGROUND

Parallel DEVS (PDEVS)

PDEVS (Zeigler et al. (2000)) is the root formalism for
DEVS extensions dealing with parallelism. It defines
two kinds of components: atomic components, which are
the base elements defining a behavior, and coupled com-
ponents, which gather various other components and
define their relationships. PDEVS allows different com-
ponents to evolve simultaneously and provides resolu-
tion mechanisms to deal with conflicting simultaneous
events.

Atomic Models
PDEVS defines an atomic component as an indivisible
unit implementing a behavior. It can evolve in reac-
tion to an external event (external transition), or when
a timeout occurs (internal transition). The formal defi-
nition is as follows:

M =< X,Y, S, s0, δext, δint, δcon, λ, τ > where

X = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of
input ports and values, where
InPorts is the set of input ports
Xp is the set of allowed input values for port p

Y = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of
output ports and values, where
OutPorts is the set of output ports
Yp is the set of possible output values for p

S is the set of sequential states
s0 is the initial state of the component
δext : Q × X → S is the external state transition

function, where
Q = {(s, e) | s ∈ S, 0 ≤ e ≤ τ(s)} is the set
of total states, with e the time elapsed since
latest transition

δint : S → S is the internal state transition function
δcon : Q×X → S is the confluent transition function
λ : S → Y is the output function
τ : S → R+

0,∞ is the time advance function

When an event X occurs on an input port, the external
transition function δext is called which may result in a
state change. The time advance function τ associates a
time to each state which, when reached, triggers the out-
put function λ then the internal transition function δint.
Note that τ accepts both 0 and ∞ as values. When si-
multaneous external and internal events occur, the con-
fluent function δcon is called instead of δint or δext to
solve the conflict. δcon can be as simple as calling δint
or δext, which is a way of prioritizing between these two
functions, or can be a totally different function.



Coupled Models
A coupled component is a way of linking other compo-
nents. Externally, it behaves like an atomic component
and thus can be used in another coupled to form a hier-
archical model. Its definition is:

N =< X,Y,D, {Md}, EIC,EOC, IC > where

X,Y as defined for atomics
D is the set of components names
{Md} is the set of components in this coupled, with

d ∈ D
EIC is the external input coupling function
EOC is the external output coupling function
IC is the internal coupling function

The three coupling functions directly link ports between
them:

EIC links pN ∈ InPortsN to pd ∈ InPortsd, d ∈ D
EOC links pd ∈ OutPortsd, d ∈ D to

pN ∈ OutPortsN
IC links pa ∈ OutPortsa, a ∈ D to pb ∈ InPortsb,

b ∈ D, a 6= b

Parallel Dynamic Structure DEVS (DSDE)

DSDE (Barros (1998)) defines a specific component, χ,
whose state encodes the structure of the network, i.e.
the current network structure can be obtained at any
time from χ state using the structure function γ. A
transition of χ thus can represent a change of the net-
work structure. The DSDE component is defined as:

DSDEN =< XN , YN , χ,Mχ > where

N is the network name
XN , YN ≡ X,Y in PDEVS
χ is the name of the dynamic network executive
Mχ is the model of the executive χ

The model of the executive χ is an extended definition
of an atomic model defined as:

Mχ =< Xχ, Sχ, s0,χ, Yχ, γ,Σ
∗, δχ, λχ, τχ > where

γ : Sχ → Σ∗ is the structure function
Σ∗ is the set of network structures

According to this definition, the set of components is
defined, but their state is not. Barros thus defines the
new components states after a χ transition to be equal to
the same components state before transition (plus time
advance) if the component existed, or to be the initial
state if the component didn’t exist.
In this definition, χ is the only component allowed to
change the network structure. Moreover, the connec-
tions between the components of the network are also
defined by χ state, i.e. a simple change of connec-
tor without affecting the atomic components themselves
must be treated as a χ transition.

RecDEVS

NRec =< Xext, Yext, D,Cχ > where

D : Set of all available DEVS components
Cχ : is the network executive which is a DEVS atomic

RecDEVS defines an unique identifier ID for each com-
ponent. The creation of new RecDEVS components con-
sists of a fixed sequence of messages as follows:

∗ if the component CIDorig wants to create a new
component of type d ∈ D, it sends a message
(CIDorig,Cχ,(new d)) to the network executive.

∗ Cχ receives the message and performs an external
transition δext. This will create a new RecDEVS
component Cidd and add it to the list of instantiated
components

∗ A confirmation message (Cχ, CIDorig, (confirm Cidd ))
with the address of the new component is then sent
to the originator.

∗ Starting from the reception of the confirmation
message, the originator can address the newly cre-
ated component.

FPGA

A Field-Programmable Gate Array (FPGA) is an inte-
grated circuit designed to be configured to form a com-
plex digital circuit. The majority of FPGA architec-
tures carry out combinatorial logic using Lookup Tables
(LUTs) (Koch (2012)), associated to flip-flops to form
sequential circuits. Several LUTs and flip-flops form
a base reconfigurable resource (e.g. configurable logic
block (CLB) in Xilinx technology) which is the small-
est reconfigurable unit in a FPGA. Configuration of the
underlying structure in the FPGA can be stored using
various technologies. The Static RAM-based FPGA is a
common FPGA architecture. There are also flash-based
FPGAs. A bitstream is the configuration data to be
loaded on board to implement the desired logic.
Partial Reconfiguration (PR) (Feist (2012)) is the abil-
ity to dynamically modify the architecture hosted on the
FPGA by loading a partial bitstream (i.e. a configura-
tion of a specific area of the FPGA) while the remaining
logic continues to operate without interruption.

PRDEVS PIM: SYNTAX AND SEMANTICS

We propose a PIM syntax based on PDEVS and in-
spired by RecDEVS. The platform-independent model
is, as stated from the name, a model which is built to
represent an application, without necessary knowledge
of the simulation environment or of the target platform
that will run the application or the application simula-
tion. Thus, our PIM syntax must be able to represent
dynamic structure models, but it shouldn’t assume any-
thing about how the structure changes will actually be



applied. This is the first difference with RecDEVS, as
the RecDEVS meta-model makes no distinction between
PIM and PDM. The target architecture is assumed from
the model definition, notably with the use of address no-
tions within the models.

PRDEVS PIM Abstract Syntax

A PRDEVS is a model which contains all required
information about components, structure, and allows
for structural changes. Though we use PDEVS and
RecDEVS as a base reference, we slightly rewrite some
definitions to clarify specific points. A major difference
with RecDEVS is that we do not use a specific compo-
nent like Cχ which stores the network structure in its
state: we directly manipulate the sets, adding and re-
moving elements. The first motivation for this approach
is to be closer to the current engineering approach to
describe dynamic systems. This is slightly equivalent to
the software notion of new/delete instructions for ob-
ject manipulation. Moreover, this way of doing offers
the ability to reach structure states which may not have
been predicted when first designing the system, allowing
for auto-adapting systems to be more flexible.

Concerning the D set, on one hand PDEVS defines D
to be the set of components names, i.e. a list of all
the names of the components inside the coupled. On
the other hand, RecDEVS definition of set D is “a list
of available component names”, and this set is com-
pared to a list of components types. They both define
the set {Md | d ∈ D}, which contains the components
themselves. In our component sets-based description,
we rather directly manipulate the components sets, and
we think this description is redundant, as one can be
obtained from the other. So we chose to merge these
two sets, so that the D set directly contains the com-
ponents themselves. Instead of storing the names of the
components, we rather use the notions of identifiers and
types.

The identifier follows the notion introduced by
RecDEVS where an identifier ID ∈ N is attributed to
each component. For the type notion, we can make the
connection with object-oriented programming, where
there can be various instances of a class, we call objects.
Here, the notion of type is equivalent to class, i.e. it de-
fines a component structure and initial state, but there
can be various components (≡ objects) sharing the same
type with a different state. The identifier is then used to
differentiate the components. We use here a definition
close to RecDEVS but formalize the notation: we use
T as the list of defined types, i.e. a list of components
types which can be instantiated.

A PRDEVS component then has an identifier, which is
unique and dynamically defined, and a type, which can
be shared.

Main PRDEVS Component
The dynamic structure ability relies on a library of avail-
able components, each being of a specific type, which
can be added to the system. The library is defined as
L = {Ct | t ∈ T}. Components in the library expose a
null identifier, as it is defined on instantiation.
Components in use still have a type t ∈ T , but also an
identifier id, and are noted Cidt . The notation can be
simplified to Cid. Unlike RecDEVS, we do not restrict
id ∈ N: although a PSM implementation will probably
have to impose such a restriction, the PIM doesn’t re-
quire so. We thus define an arbitrary set ID which
contains the allowed identifiers.

PRDEV S =< L,CTop > with

L = {Ct | t ∈ T}, library of available components
CTop a coupled containing the application structure

To have a clear and simple definition, we do not include
the sets T and ID in the definition. Indeed, T can be
retrieved from L using the definition T = {t | Ct ∈ L},
while ID can be any arbitrary set. We also define the
set IDPRDEV S which contains all the identifiers of the
components in CTop, regardless of the hierarchy.

Coupled Component
A coupled component will be very alike PDEVS defini-
tion:

Nnid =< X,Y,D,EIC,EOC, IC > with

D = {Cidt | t ∈ T, id ∈ ID} the set of components
contained in the coupled

All of the sets defined here can be linked to a specific
component by displaying its identifier, e.g. Xnid refers
to the set of inputs X of coupled component Cnid. A
coupled component Cnid does not have a specific type,
as the component structure can change during execution
when a component is added to or removed from Dnid.
For convenience, we define a few additional sets:

IDnid = {id | Cid ∈ Dnid}, the set of all identifiers of
components in the coupled whose identifier is nid

DN the set of all coupled in the PRDEVS
IDN = {id | Cid ∈ DN}, the set of coupled identifiers

Atomic Component
As our formalism deals with structure changes, the
atomic components definition adds a structure change
function to the PDEVS atomic formalism:

Mmid
t =< X,Y, S, s0, δext, δint, δcon, λSC , λ, τ > with

λSC : S → SC the structure function with
SC = {addComponent(),
removeComponent(), addPort(), removePort(),
addConnection(), removeConnection()} the
list of structure change functions.



The remark on sets identifiers applies to atomic com-
ponents, e.g. Smid is the set of states S of component
Cmid.
As for coupled, we define the following sets:

DM the set of all atomics in the PRDEVS
IDM = {id | Cid ∈ DM}, the set of atomics identifiers

PRDEVS Implementation
The L set can be represented as a list of available mod-
els, which are defined by the modeler or provided by a
predefined library. The list must match a type name
and a component. This way, when adding a component
to a model, only its type must be provided, and the list
is used to retrieve model information.

Components Common Characteristics
The coupled and atomic models share two properties:
the Ports set and the identifier. Any number of ports
can be present on a component.
The main difference with RecDEVS is that they use
the identifier to manage communication between com-
ponents on a message-passing paradigm. As we separate
the implementation from the high-level model, we do not
presuppose of a communication scheme in the PIM.
The ports of a component are implicitly defined by the
couples (p, v) of X and Y sets. However, a specific def-
inition can be derived to formally identify the ports as
mathematical objects. This representation of ports as
independent objects, i.e. not only as names belonging
to a set, and whose allowed values are defined by the X
and Y sets, is easier to manipulate.
The ports of the components must be uniquely iden-
tified, but only among a component. Thus, the name
of the port on the component is sufficient to iden-
tify it uniquely, as long as the component itself has a
unique identifier. Moreover, a port has a direction (in-
put/output), and a set of available values. We then
introduce a definition of what is a port:

P idName =< Name,Dir, Type > with

id the identifier of the component
Name

∈ InPortsid ∪OutPortsid
Direction

∈ Pdir = {in, out}
Type ∈ Ptype

The set of allowed types Ptype can be defined as a set of
allowed definition sets, and will most likely contain N,
R, B = {True, False}, etc.
Concerning the connection between two ports, it must
define a source and a sink. The data type does not have
to be recorded, but type match between source and sink
should be checked when the connection is created.

Coupled Models
The coupled models are actually sets of sets: a set of
components, and a set of connections between ports.
By using the tree representation for holding the struc-
ture, the set of components D is represented by the chil-
dren of the node. Using the previous definition of ports,
the X and Y sets can be better represented as sets of
ports. Thus, X and Y will be merged into a list called
“Ports” containing ports as defined previously. The re-
maining three sets EOC, EIC and IC are represented
by a list of two elements: a source and a sink.

Atomic Models
The atomic models are leafs of the model tree, so they
can be defined as in the abstract syntax.

Structure Change Functions Exposed by the
Simulator

Unlike RecDEVS, we do not restrict which component
can call a structural change function. Indeed, RecDEVS
states that a component can only delete itself, not an-
other component. The main justification provided is
that it avoids accidentally deleting a component which
is still in use. By only allowing self-deletion, the com-
ponent can announce its own deletion to linked com-
ponents before committing deletion. But this approach
doesn’t seem to be a good answer to this issue. In-
deed, deleting a component which is still in use in an
application may be a conception error. Restricting the
remove call to the component itself does not solve the
case where the component itself is badly defined, and
forget announcing its deletion to some of related com-
ponent. Imposing such a constraint do not avoid errors,
so the restriction is irrelevant. We believe the applica-
tion correctness is up to the modeler, and to avoid such
errors, applications should be checked for correctness,
e.g. using formal methods.
By allowing any component to call structure change
functions, we let the modeler decide how to handle its
structure changes: all components can be autonomous
and directly trigger the functions, or there can be one
or more components in the model which are in charge of
the structure, only them being able to call these func-
tions.
Most functions defined here could possibly fail in some
circumstances, but we do not want to handle exceptions
or errors in this early definition, so we assume their use
is made with correct parameters. Error-checking will be
part of future work.
Structure change functions have a different priority level
than other messages in the simulator: the simulator has
a list of pending SC tasks and the list is executed only
at the end of an imminence cycle. As a first approach,
we chose to execute all SC functions in zero time rela-
tively to the simulator, i.e. the simulator is paused while
the structural changes are carried on. In future work



however, we are planning to allow structural changes to
be applied while the simulation is running in order to
allow taking full advantage of hardware partial reconfig-
uration technology. This will require structural checks
on the model such as making sure that a newly added
component will not be required for simulation until it is
fully operational. This can be carried on by separating
the SC function call from its return, obtaining of the
new identifier on a separate external transition of the
component which called the add function.
• addComponent : T × IDN → ID

Adds a new component into an existing coupled com-
ponent. The new component type and the hosting cou-
pled ID are provided as parameters. The identifier of
the new component is returned. The abstract function
getAvailableId : ∅ → ID determines an available identi-
fier in ID. Abstract function getNewComponent : T →
D returns a new component from the library match-
ing the given type, while getExistingComponent :
IDPRDEV S → D returns an existing component from
its identifier, as displayed on Algorithm 1.

input : t ∈ T ; idhost ∈ IDN

output: id ∈ ID
Data: newId ∈ ID; newC ∈ DM ;hostC ∈ DN

newId ← getAvailableId()
newC ← getNewComponent(t)
newC.id ← newId
hostC ← getExistingComponent(idhost)
hostC.D ← hostC.D ∪ {newC}
return newId

Algorithm 1: addComponent procedure

• removeComponent : IDPRDEV S → ∅ Removes the
existing component, whose identifier is passed as a
parameter, from the PRDEVS. The abstract function
getParentComponent : D → DN returns the parent
component of a model, as displayed on Algorithm 2.

input: idremoved ∈ IDPRDEV S

Data: remC ∈ D,hostC ∈ DN

remC ← getExistingComponent(idremoved)
hostC ← getParentComponent(remC)
hostC.D ← hostC.D \ {remC}

Algorithm 2: removeComponent procedure

• addPort : IDN ×Name× Ptype × Pdir → ∅
Adds a port with name Name to a coupled component
whose identifier is provided, with the associated type
and direction, as displayed on Algorithm 3.

input : id ∈ IDN ; pn ∈ Name; pt ∈ Ptype; pd ∈ Pdir

Data: newport ∈ Port;hostC ∈ DN

newport ← (pn, pt, pd)
hostC ← getExistingComponent(id)
hostC.port ← hostC.port ∪ {newport}

Algorithm 3: addPort procedure

• removePort : IDN ×Name→ ∅
Removes the port name Name from the component
whose ID is provided. The abstract function getPort :
DN ×Name → Port gets an existing port from a cou-
pled component, as displayed on Algorithm 4.

input : id ∈ IDN ;pn ∈ Name
Data: hostC ∈ DN ; removedport ∈ Port

hostC ← getExistingComponent(id)
removedport ← getPort(hostC,pn)
hostC.port ← hostC.port \ {removedport}

Algorithm 4: removePort procedure

• addConnection : IDN ×Name× IDN ×Name→ ∅
Adds a connection between two ports. The ports are re-
ferred to using the combination of the component iden-
tifier and the port name. The Zi,d definition must be
respected, i.e. the two components must be in the same
coupled, or one of the two component must be a coupled
and the other one a component inside the coupled, and
one must be an input and the other an output. More-
over, the definition interval type must match between
the two ports, as displayed on Algorithm 5.

input : id1 ∈ IDPRDEV S ; pn1 ∈ Name;
id2 ∈ IDPRDEV S ; pn2 ∈ Name

Data: hostC1 ∈ DN ; hostC2 ∈ DN ;
connection ∈ PortConnection

hostC1 ← getParentComponent(id1)
hostC2 ← getParentComponent(id2)
connection← {(id1, pn1), (id2, pn2)}
if hostC1.id=hostC2.id then

hostC1.IC = hostC1.IC ∪ {connection}
else if hostC1.id=id2 then

hostC1.EOC = hostC1.EOC ∪ {connection}
else if hostC2.id=id1 then

hostC2.EIC = hostC2.EIC ∪ {connection}
Algorithm 5: addConnection procedure

• removeConnection : IDN×Name×IDN×Name→ ∅
Removes a connection between two ports using the same
notation as the previous function, as displayed on Algo-
rithm 6.

input : id1 ∈ IDPRDEV S ;id2 ∈ IDPRDEV S ;pn1 ∈
Name;pn2 ∈ Name

Data: hostC1 ∈ DN ; hostC1 ∈ DN ;
connection ∈ PortConnection

hostC1 ← getParentComponent(id1)
hostC2 ← getParentComponent(id2)
connection← {(id1, pn1), (id2, pn2)}
if hostC1.id=hostC2.id then

hostC1.IC = hostC1.IC \ {connection}
else if hostC1.id=id2 then

hostC1.EOC = hostC1.EOC \ {connection}
else if hostC2.id=id1 then

hostC2.EIC = hostC2.EIC \ {connection}
Algorithm 6: removeConnection procedure



AN EXAMPLE OF PRDEVS PDM AND PSM

While our final aim is to implement PRDEVS on re-
configurable hardware, we choose to first develop a soft-
ware PDM using well-known tools. This is intended as
a proof of concept to check that the simulator structure
is reliable.

Software PDM Definition

We propose a PDM for software simulation that imple-
ments PRDEVS abstract syntax. This implementation
is based on Zeigler’s abstract simulator described in Zei-
gler et al. (2000). This simulator deals with a static
hierarchy of components and we add the dynamic SC
functions to treat SC-messages from λSC .
The simulator described by Zeigler uses a hierarchical
tree of models, which has a coordinator object for each
coupled model and a simulator object for each atomic
model. To each of the simulator objects, a model object
describing the structure of the represented atomic is as-
sociated. There is a single root coordinator which lead
the hierarchical tree. The root coordinator contains a
list of imminent models and their next event time. This
list is updated at the beginning of each event step.
Under root coordinator are coordinators which can be
the parents of coordinators or simulators which are the
leaves of this hierarchical tree. A correspondence from
model to simulation can be seen in Figure 2. We name
this a one-to-one correspondence process. This is part
of the initialization phase.

Coupled 1

Coupled 3

Atomic 1

Coupled 2

Atomic 2

Atomic 3

(a) Model

Root Coordinator

Coordinator 1 Coordinator 2

Coordinator 3 Simulator 1

Simulator 2 Simulator 3

(b) Controller

Figure 2: One-to-One Correspondence

As a first approach, a flat representation is chosen for
our implementation of PRDEVS. That is to say, the
levels of hierarchy are ignored as if all the atomics were
directly instantiated in CTOP . A list of available com-
ponents L is held in the root coordinator. A simulator or
a coordinator which correspond to a type can be created
using the SC-functions.
There are four types of messages sent between simula-
tors and/or coordinators during simulation: X-message,
Y-message, *-message and SC-message which corre-
spond respectively to δext, λ, δint and λSC of atomic

components. The first three messages are defined as
Zeigler’s: imminent models are chosen based on their
minimal next event step and the imminent models trig-
gers *-message. If the conditions to trigger λ on the
current state are met, a Y-message is then integrated
into the Y-message bag. The bag is sent to the tar-
get model and is received as a X-message at the end of
each event cycle. The model which received X-message
will move to upcoming state and wait for next cycle.
SC-message, in some aspect similar to Y-message, will
build a SC-message bag and the dynamic SC functions
are executed at the end of each event cycle. The SC-
message is then treated in zero-time compared to the
simulation time.

Use Case Definition

We apply PRDEVS syntax by creating a PSM simula-
tion implementing a game: Within a size × size grid
co-exist three types of players: chicken, fox and egg.
Each cell can hold only one player and players move un-
der certain rules, as shown in Figure 3: chickens can
move randomly around in four direction while foxes can
move randomly around in all eight directions; eggs can
not move. There is a rules model recording the position
of all players and judging if each move is authorized.
Each round, all players are imminent and move simul-
taneously. If a chicken reaches another chicken, an egg
will be laid randomly around and it stays at the same
position. If a fox reaches a chicken, the chicken is eaten
and its cell occupied by fox. The game ends when there
are no chicken any more or if foxes are blocked by eggs.
Chickens and foxes components communicate using
their ports. valid is an input port and askAvailability
is an output port.
Pvalid =< valid, in, {isChicken, isFree, else} >
PaskAvailability =< askAvailability, out, (positionX ∈
size, positionY ∈ size) >
Players calculate their destination themselves and verify
with the rules component before moving.
The state machine for the Chicken model is as shown in
Figure 4. The initial state of a chicken is S1. When the
chicken component is imminent, it receives a *-message
to execute the internal transition and randomly defines
the desired destination. It moves to state S2. Then
an output is sent to verify the availability of this posi-
tion. It moves to state S3 and wait for an input. The
Y-message arrives to the rules model which responds ac-

. ↑ .
← c →
. ↓ .

(a) Chicken

↖ ↑ ↗
← f →
↙ ↓ ↘

(b) Fox

. . .

. e .

. . .

(c) Egg

Figure 3: Moving Rules for Players
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Figure 4: Internal View of the State Machine of Chicken

cording to the availability. Depending on this response,
the chicken model moves to state S4, S5 or S6 and then
the SC-function or the internal transition is called.
When the SC-function addComponent is triggered, the
simulator stores the call. After simulation cycle is over,
the root coordinator copies the Egg library object into
the CTop component. After what, the simulation cycle
resumes.
The game starts with an initial numbers of players, an
example is presented on figure 5a. After the simulation
runs, we found the result as shown in figure 5b.
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(a) Game Starts

. . . .
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. e . .

(b) Game Ends

Figure 5: Example of game turns

Hardware PDM Overview

A hardware PDM is being formalized, relying on several
reconfigurable areas and two buses: one control bus and
one data bus. There is a correspondence table for each
area and its address. Each reconfigurable area will have
a type and certain limits since their hardware resources
can be different.
Reconfigurable areas can store a component model. An
API (Application Programming Interface) for the SC-
functions can be implemented at software level in spe-
cific area containing a processor. The API is able to
match the configuration of the FPGA, such as which
type of reconfigurable areas are suitable for which type
of component model.

CONCLUSION AND FUTURE WORK

In this article, we presented a system engineering ap-
proach using formal modeling which aims at support-
ing dynamic architectures. This approach leads to a

separation between the model and the final applica-
tion platform. We presented a PIM model which can
adapt its structure dynamically, both component- and
connection-related. With the formal SC-functions pre-
sented in this article, a PIM level of PRDEVS is defined.
A possible PDM and PSM is introduced with applica-
tion on software by a game. With this practical exam-
ple of PRDEVS syntax, the feasibility of the dynamical
formal model is verified. However in practice, the SC-
functions are only applied at the end of each event cycle.
One future work will be to integrate the SC-functions
during the simulation without pausing the other com-
ponents, in order to allow extending beyond simulation
purposes and take advantage of PR.
Finally, the main objective will be the FPGA-based im-
plementation of a use case defined at PRDEVS PIM
level. This will require real-time handling, and partial
reconfiguration scheduling to allow reconfigurations to
be completed before using the component, where the
structure change was carried on in zero time in simula-
tion.
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