
HAL Id: hal-01637277
https://laas.hal.science/hal-01637277v2

Submitted on 1 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tuning permissiveness of active safety monitors for
autonomous systems

Lola Masson, Jérémie Guiochet, Hélène Waeselynck, Kalou Cabrera, Sofia
Cassel, Martin Törngren

To cite this version:
Lola Masson, Jérémie Guiochet, Hélène Waeselynck, Kalou Cabrera, Sofia Cassel, et al.. Tuning
permissiveness of active safety monitors for autonomous systems. Nasa Formal Methods, Apr 2018,
Newport News, United States. �10.1007/978-3-319-77935-5_23�. �hal-01637277v2�

https://laas.hal.science/hal-01637277v2
https://hal.archives-ouvertes.fr


Tuning permissiveness of active safety monitors
for autonomous systems

Lola Masson1, Jérémie Guiochet12, Hélène Waeselynck1, Kalou Cabrera1, Sofia
Cassel3, and Martin Törngren3

1 LAAS-CNRS, CNRS, Toulouse, France, firstname.lastname@laas.fr
2 Université de Toulouse, UPS, Toulouse, France

3 KTH, Stockholm, Sweden, sofia.cassel@md.kth.se, martin@md.kth.se

Abstract. Robots and autonomous systems have become a part of our
everyday life, therefore guaranteeing their safety is crucial. Among the
possible ways to do so, monitoring is widely used, but few methods exist
to systematically generate safety rules to implement such monitors. Par-
ticularly, building safety monitors that do not constrain excessively the
system’s ability to perform its tasks is necessary as those systems oper-
ate with few human interventions. We propose in this paper a method
to take into account the system’s desired tasks in the specification of
strategies for monitors and apply it to a case study. We show that we
allow more strategies to be found and we facilitate the reasoning about
the trade-off between safety and availability.

1 Introduction

Autonomous systems are becoming an increasing part of our daily lives: medical
robots, self-driving cars, and industrial robots are good examples. It is critical to
be able to guarantee the safety of such systems, since they operate independently
in the vicinity of humans. One way to guarantee safety of autonomous systems
is to attempt to specify them completely and reason about any dangerous be-
havior before deployment. This, however, requires that they behave predictably
in any situation, which is not true as the systems interact with other humans
or autonomous systems, in unstructured environments. In these cases, monitor-
ing is an attractive option for guaranteeing safety. It consists in delegating the
safety aspect to an independent component. It facilitates the task since a de-
tailed specification of all possible behaviors is not necessary. A coarse granularity
is sufficient to distinguish between safe and unsafe behavior. A safety monitor
watches the system in operation, and intervenes as soon as potentially danger-
ous behavior is detected, typically by inhibiting certain actions, or by triggering
corrective actions.

Such an approach, that only studies unsafe behaviors, may however restrict
the system to the point where it cannot function in a meaningful way, i.e. avail-
ability suffers. For example, a robot having to transport objects might be kept
standing still, or prohibited from dropping or picking up anything. The system
might be safe, but useless for its purposes.



In this paper, we address the problem of monitoring autonomous systems
while avoiding too conservative restrictions on behavior. This refers to the clas-
sical trade-off between safety and availability (readiness for usage). The system’s
availability depends on what we call the monitor’s permissiveness, i.e. its ability
to let the system reach functional states. We specify permissiveness by identify-
ing the behaviors that are essential to the system’s function. The specification
is introduced as an extension to SMOF [15], a Safety Monitoring Framework we
developed for the synthesis of safety strategies. It aims to facilitate the tuning of
the monitor’s permissiveness and the reasoning about how safety and availability
interrelate in the context of a particular system.

The paper is organised as follows: in Section 2, we give an overview of related
work; we detail the background of this work in Section 3; in Section 4, we present
how we express functionality requirements for the synthesis of safety strategies.
We apply this method to an example in Section 5. We conclude in Section 6.

2 Related work

Safety monitoring is a common mechanism used as part of fault-tolerance ap-
proaches [4] usually implemented as an independent mechanism that forces the
system to stay in a safe state. This principle has been used in robotics under
different names such as safety manager [18], autonomous safety system [19],
guardian agent [7], or emergency layer [9].

In all these works, the specification of the safety strategies (i.e. the rules that
the monitor follows to trigger safety interventions) is essentially done ad hoc: the
user would manually choose what is the best (combination of) action(s) to trigger
to avoid a risk, and when to do so. Other authors provide methods to identify
safety invariants either from a hazard analysis [21] or from execution traces [11].
Some specify safety strategies in a DSL (Domain Specific Language) in order to
generate code [3], [10]. But none of them offers a complete approach to identify
invariants from hazards and formally derive the safety strategies. In contrast,
our previous work [14], [15] provides a complete safety rule identification process,
starting from a hazard analysis using the HAZOP-UML [8] technique and using
formal verification techniques to synthesize the strategies.

Safety monitoring is related to runtime verification and property enforce-
ment. Runtime verification [12][5] checks for properties (e.g., in temporal logic)
by typically adding code into the controller software. Property enforcement [6]
extends runtime verification with the ability to modify the execution of the con-
troller, in order to ensure the property. These techniques consider a richer set
of property classes than safety ones, and, most importantly, can be tightly cou-
pled to the system. It makes the underlying mechanisms quite different from the
external safety monitors considered in this paper which have to rely on limited
observation and intervention means. Though, the transparency property men-
tioned for example in [13] and [16] for the specification of runtime monitors is
close to our permissiveness property: the runtime monitor should not modify
already correct behaviors.



Fig. 1. System state space from the perspective of the monitor

3 Baseline and concepts

Our method to synthesize safety strategies for monitors is presented in [15]:
SMOF (Safety Monitoring Framework). We briefly explain the SMOF principles
below and introduce the motivation for the extension proposed in this paper.

3.1 Safety invariants, margins and states

As a first step of the process, one identifies a list of hazards that may occur during
the system’s operation, using the model-based hazard analysis HAZOP-UML [8].
From the list of hazards, one extracts those that can be treated by the monitor.
Those hazards are reformulated as safety invariants such that each hazard is
represented by the violation of an invariant. A safety invariant is a logic formula
over a set of observable variables, derived from sensor values. The formalization
of hazards as invariants may reveal the need for additional observation means,
like in [17] where the original system design was revised to add sensors.

A combination of observation values defines a system state, as perceived
by the monitor. If one of the safety invariants is violated, the system enters a
catastrophic state that is assumed irreversible. Each safety invariant partitions
the state space into catastrophic and non-catastrophic states as represented in
Fig. 1. The non-catastrophic states can in turn be partitioned into safe and
warning states, in such a way that any path from a safe state to a catastrophic
one traverses a warning state. The warning states correspond to safety margins
on the values of observations.

The monitor has means to prevent the evolution of the system towards the
catastrophic states: these means are a set of safety interventions (mostly based
on actuators) made available to it. An intervention is modeled by its effect (con-
straints that cut some transitions) and preconditions (constraint on the state
in which it can be applied). Interventions are applied in warning states in or-
der to cut all the existing transitions to the catastrophic states, as shown in



Fig. 1 by the red cross. The association of interventions to warning states con-
stitutes a safety strategy. For example, let us assume that the invariant involves
a predicate v < Vmax (the velocity should always be lower than Vmax). In order
to prevent evolution towards Vmax, the strategy will associate one or several
intervention(s) to warning states corresponding to a velocity higher than the
threshold Vmax −margin. The determination of the size of the margin involves
a worst-case analysis, accounting for the dynamics of the physical system, as
well as for the detection and reaction time of the monitor after the threshold
crossing.

3.2 Safety and permissiveness properties

The safety strategy must fulfill two types of properties: safety and permissive-
ness properties. Both properties are expressed using CTL (Computation Tree
Logic) which is well suited for reachability properties. Safety is defined as the
non reachability of the catastrophic states. Permissiveness properties are in-
tended to ensure that the strategy still permits functionality of the system, or, in
other words maintains its availability. This is necessary to avoid safe strategies
that would constrain the system’s behavior to the point where it becomes useless
(e.g., always engaging brakes to forbid any movement). SMOF adopts the view
that the monitored system will be able to achieve its tasks if it can freely reach
a wide range of states (e.g., it can reach states with a non zero velocity). Ac-
cordingly, permissiveness is generically formulated in terms of state reachability
requirements: every non-catastrophic state must remain reachable from every
other non-catastrophic state. We call it universal permissiveness. The safety
strategy may cut some of the paths between pairs of states, but not all of the
paths. In CTL, this is expressed as: AG(EF(nc state)), for each non-catastrophic
state. Indeed, EF specifies that the state of interest is reachable from the initial
state, and AG extends this to the reachability from every state. The user can also
use the simple permissiveness which merely requires the reachability from the
initial state: EF(nc state)). It is much weaker than the universal permissiveness
as it allows some of the monitor’s interventions to be irreversible: after reaching
a warning state in which the monitor intervenes, the system may be confined
into a subset of states for the rest of the execution. For example, an emergency
stop can permanently affect the ability of the system to reach states with a non
zero velocity.

3.3 SMOF tooling

The SMOF tool support [2] includes the synthesis algorithm and a modelling
template to ease the formalization of the different elements of the model: the
behavior model with a partition into safe, warning and catastrophic states; the
available interventions modeled by their effect on observable state variables; the
safety and permissiveness properties. The template offers predefined modules, as
well as auto-completion facilities. For example, the tool automatically identifies
the set of warning states (having a transition to a catastrophic state). Also, the



permissiveness properties are automatically generated based on the identification
of non-catastrophic states. Finally, SMOF provides a synthesis tool based on the
model-checker NuSMV [1]. For this reason the NuSMV language is used for the
formalization and we will use the typewriter font to refer to it in the rest of the
paper. The SMOF synthesis tool relies on a branch and bound algorithm that
associates interventions to warning states and checks some criteria to evaluate if
the branch should be cut or explored. It returns a set of both safe and permissive
strategies for the given invariant to enforce (see [15] for details).

The formalization and strategy synthesis is done for each invariant separately.
Then a last step is to merge the models and to check for the consistency of the
strategies selected for the different invariants.

The SMOF method and tool have been applied to real examples of robots: an
industrial co-worker in a manufacturing setting [15], and a maintenance robot
in airfield [17]. Examples and tutorials can be found online [2].

3.4 On tuning permissiveness properties

This paper revisits the notion of permissiveness, in order to address some limi-
tations of the generic definition adopted in SMOF. By default, SMOF requires
the universal permissiveness, which is a very stringent requirement. As a re-
sult, the synthesis algorithm prunes any strategy that would cut all paths to a
non-catastrophic state, even though this specific state may be useless for the ac-
complishment of the functions of the system. To give an example, let us consider
a classical invariant stating that the system velocity should never reach a max-
imal absolute value Vmax. The synthesis would reject any strategy preventing
reachability of warning states with values close to Vmax. But the cruise velocity
of the system, used to accomplish its functions, is typically much lower than
Vmax and Vmax −margin. Requiring the universal reachability of the warning
states is useless in this case, since getting close to Vmax is not a nominal behav-
ior. The system operation could well accommodate a safety strategy that forbids
evolution to close-to-catastrophic velocity values.

Suppose now that we do not find any solution respecting universal permissive-
ness. The user can choose to require the simple permissiveness. The requirements
would be dramatically weakened. We would accept strategies that permanently
affect the reachability of any non-catastrophic state, e.g., not only the close-to-
catastrophic velocity values but also the moderate ones.

From what precedes, it may seem that we could simply modify the generic
definition of permissiveness to require universal reachability of safe states only,
excluding warning states. However, this would not work for all systems, as
demonstrated by the maintenance robot studied in [17]. For this robot, some
warning states do correspond to a nominal behavior and are essential to the ac-
complishment of the maintenance mission. More precisely, the robot is intended
to control the intensity of lights along the airport runways. The light measure-
ment task is done by moving very close to the lights, which, from the perspective
of the anticollision invariant, corresponds to a warning state. Any safety strat-



egy removing reachability of a close-to-catastrophic distance to the lights would
defeat the very purpose of the robot.

Actually, there is no generic definition of permissiveness that would pro-
vide the best trade-off with respect to the system functions. We would need to
incorporate some application-specific information to tune the permissiveness re-
quirements to the needs of the system. This paper proposes a way to introduce
such custom permissiveness properties into SMOF, allowing more strategies to
be found and facilitating the elicitation of trade-offs in cases where some func-
tionalities must be restricted due to safety concerns.

4 Defining custom permissiveness properties

The custom permissiveness properties are introduced by a dedicated state model,
focusing on the identification of the states that are essential to the system func-
tionalities (Section 4.1). The essential/not essential view is different from the
safe/warning/catastrophic one we have in the safety state model. We thus need
to bind together the functionality and safety models to reflect the fact that they
represent two orthogonal decompositions of the same system state space (Sec-
tion 4.2). Once this is done, custom permissiveness properties can be used as a
replacement for the generic ones: the synthesis tool will search for safe strate-
gies ensuring universal permissiveness with respect a subset of non-catastrophic
states, the ones identified as essential. In case ignoring the non-essential states
does not suffice to allow a strategy to be found, the user may consider whether
restricting one of the functionalities is feasible (Section 4.3). The whole approach
does not essentially change the principles of SMOF, which should facilitate its
integration into the existing toolchain (Section 4.4).

4.1 A formal model for the permissiveness

We consider that a functionality is defined by a goal or objective that the system
was designed to achieve. For example, if the system is designed to pick up objects
and transport them, two of its functionalities could be “move from A to B” and
“pick up an object”. Some of the functionalities are not related to any of the
monitored variables, and therefore do not need to be considered.

To be used in the synthesis, we must model the permissiveness properties
associated to the identified functionalities. While generic permissiveness proper-
ties apply to all non-catastrophic states, we choose to express the custom ones as
the reachability of a subset of states, the ones that are essential to the system’s
functionalities.

The state model for the functionalities is defined as a set of variables parti-
tioned in classes of values of interest. For instance, let us consider the function-
ality f, which requires observable variable v (e.g., velocity, or position of a tool)
to reach a given value Vreq (e.g., cruise velocity, vertical position) with some tol-
erance δ. The domain of the variable v would be partitioned into three classes:



0 corresponding to values lower than Vreq − δ; 1 to values in [Vreq − δ, Vreq + δ];
2 to values greater than Vreq + δ.

Let vf : {0, 1, 2} be the abstract variable encoding the partition from the
point of view of the functionality. The SMOF template provides a predefined
module to express the continuity constraints on the evolution of the variables
values. For example, the velocity cannot jump from 0 to 2 without traversing
the nominal range of values. Generally speaking, the modeling can reuse the
syntactic facilities offered for the safety model, also defined in terms of observable
variables, classes of values of interest and evolution constraints.

The purpose of the functionality model is to allow the user to conveniently
specify sets of states that are essential to a given functionality. A set of states is
introduced by a predicate req over a variable or a set of variables. In the above
example, the user would specify that the functionality requires vf = 1. Each func-
tionality may introduce several requirements, i.e., several essential sets of states.
For instance, a “move” functionality could have two separate requirements, one
for cruise motion and one for slow motion.

The list of req predicates can then be extracted to produce permissiveness
properties of the form: AG(EF(req)). We choose to reuse the same template as
the one for universal permissiveness. However, we now require the reachability
of sets of states, rather than the reachability of every individual state. For ex-
ample, we have no reachability requirement on states satisfying vf = 2, and may
accommodate strategies discarding some of the states vf = 1 provided that at
least one of them remains reachable.

The functionalities that would require another type of template are not con-
sidered yet, but so far the expressivity of this template has been sufficient to
model the considered functionalities.

4.2 Binding together invariants and permissiveness

The permissiveness and the safety properties are defined using two different state
models. Some of the abstract variables used in those state models represent the
same physical observation, or dependent ones. To connect the invariants and
functionalities models, we have to bind their variables. Two types of bindings
can be used: physical dependencies (e.g., speed and acceleration), or the use of
the same observation with two different partitions.

In the first case, we specify the constraints on transitions (using the NuSMV
keyword TRANS) or on states (INVAR). For example, for observations of speed and
accelerations, we would write TRANS next(acc) = 0→ next(speed) = speed.
The NuSMV primitives next(acc) or next(speed) specify the value of acc or
speed after transitioning, i.e., if the acceleration is null, the speed cannot change.

In the second case, we need to introduce a “glue” variable to bind the differ-
ent partitions. This variable will be partitioned in as many intervals as needed.
The different intervals will be bound with a specification on the states. For
example, let us assume we have an invariant and a functionality using a ve-
locity variable, and the partition used for the invariant is vinv = {0, 1, 2} where



0 : stationary or slow, 1 : medium and 2 : high, and the one used for the func-
tionality is vf = {0, 1} where 0 : stationary or slow and 1 : medium or high. We
introduce a continuous “glue” variable partitioned as vglue = {0, 1, 2}. The bind-
ing through the “glue” variable is specified as follows:
INVAR vglue = 0↔ vinv = 0 & vf = 0;
INVAR vglue = 1↔ vinv = 1 & vf = 1;
INVAR vglue = 2↔ vinv = 2 & vf = 1.

Note that those two binding approaches, by adding constraints or glue vari-
ables, are also used in the standard SMOF process when merging models of
different safety invariants.

4.3 Restricting functionalities

Custom permissiveness is weaker than SMOF’s generic permissiveness, since
we get rid of non essential reachability requirements. As a result, the strategy
synthesis tool may return relevant strategies that would have been discarded
with the generic version.

Still, it is possible that the custom requirements do not suffice, and that no
strategy is found by the tool. We want to make it possible that the user re-
stricts the functionalities, i.e., further weakens permissiveness. This may change
the system’s objectives, or increase the time or effort it takes to achieve the
objectives. Functionalities can be restricted in several ways. We consider three
of them in this paper. An important point is that the corresponding trade-offs
are made explicit in the model of functionalities.

First, one of the req predicates can be weakened to correspond to a larger
set of system states. The permissiveness property becomes AG(EF(req′)), with
req => req′. For example, the “move” functionality can be restricted to “move
slowly”, where req′ means that V only needs to reach a velocity Vreq′ lower than
the initially specified cruise one.

Second, it is possible to replace the universal permissiveness property by the
simple one, EF(req). This weak form of permissiveness was already offered by the
generic version of SMOF, but it applied to all individual states. With the custom
list of req predicates, the user can decide for which of these predicates simple
permissiveness would be acceptable. For example, the “move” functionality could
become impossible after some monitor’s intervention has been triggered, but
other functionalities like manipulating objects would have to be preserved.

The third way is to simply remove the functionality from the requirements.
For example a “manipulation while moving” functionality is no longer required.
Here, the corresponding CTL property is simply deleted, and the synthesis run
again without it. This ultimate restriction step can show the user that the in-
tended functionality is not compatible with the required level of safety. This
information can be propagated back to the hazard analysis step and used to
revise the design of the system or its operation rules. Again, not all of the re-
quirements may need a restriction. The functionalities that are not restricted
are guaranteed to remain fully available despite the monitor’s intervention.



4.4 Integration in SMOF tooling

Integrating management of custom permissiveness into SMOF is possible without
any major change of the core toolset. Only the front-end would need to be
updated. The template would include an optional functionality modeling part
with syntactic sugar to introduce the list of req predicates. The auto-completion
facilities would allow for the generation of the CTL properties from the req
predicates and the desired level of permissiveness (universal, simple) for each
of them. The core modeling approach and strategy synthesis algorithm would
remain unchanged.

The SMOF front-end has not been updated yet. Still, we can use the current
version of SMOF for the experimentation, as presented in the next Section. We
manually entered the CTL properties (rather than just the req predicates) and
intercepted a generated command script to instruct the synthesis tool to use the
custom properties, not the generic ones.

5 Application to an example

To explain the approach and study its usefulness we will consider a robotic
system composed of a mobile platform and an articulated arm (see Fig. 2). It is
an industrial co-worker in a manufacturing setting, sharing its workspace with
human workers. Its purpose is to pick up objects using its arm and to transport
them. To do so, the arm can rotate and a gripper at its end can open and
close to hold objects. Some areas of the workspace are prohibited to the robot.
The hazard analysis has been performed on this robot in a previous project [20]
and a list of 13 safety invariants has been identified. Among them, 7 could be
handled by the monitor [15]. Several ways to model those invariants have been
explored, considering various interventions and observation means. We defined
custom permissiveness properties for each of the models and detail here the three
invariants that give different results compared to generic permissiveness:
· SI1: the arm must not be extended when the platform moves with a speed

higher than smax;
· SI2: a gripped box must not be tilted more than α0;
· SI3: the robot must not enter a prohibited zone.

The models for the three mentioned invariants can be found online at [2].
For all of them, the synthesis took less than 0.5 seconds to compute on an Intel
Core i5-3437U CPU @ 1.90GHz x 4 with 16 GB of memory.

5.1 SI1: the arm must not be extended when the platform moves
over a certain speed

Modeling We consider the invariant SI1: the arm must not be extended when
the platform moves with a speed higher than smax. The available observations
are sinv, the speed of the platform; and ainv, the position of the arm. Note that
the variables names are extended with the index inv to specify that they are



Fig. 2. Manipulator robot from Kuka Fig. 3. Partitioning of the sg variable

Speed of the platform Real speed interval Discrete variable

Low sinv < smax −m sinv = 0

Within the margin smax −m ≤ sinv < smax sinv = 1

Higher than the maximum allowed value sinv ≥ smax sinv = 2

Position of the arm Discrete variable

Not extended beyond the platform ainv = 0

Extended beyond the platform ainv = 1

Table 1. Partitioning of the variables sinv and ainv

Speed of the platform Real speed interval Discrete variable

Null or lower than the minimum cruise speed sfct < c smin sfct = 0

At the minimum cruise speed or higher sfct ≥ c smin sfct = 1

Position of the arm Discrete variable

Folded afct = 0

Extended beyond the platform afct = 1

Table 2. Partitioning of the variables sfct and afct

the variables used for the invariant model. The observations are partitioned as
detailed in Tab. 1. Considering the discrete representation of the variables, the
catastrophic state can be expressed as cata : sinv = 2 & ainv = 1 (high speed
with extended arm).

To express the relevant permissiveness properties, we identify in the speci-
fications what functionalities are related to the invariant. Let us consider the
variables involved in SI1. The sinv variable is an observation of the speed of
the mobile platform, in absolute value. The system is supposed to move around
the workplace to carry objects, i.e., the speed must be allowed to reach a min-
imal cruise speed value c smin, from any state. To model this functionality we
introduce the sfct variable, which will be partitioned as showed in Tab. 2. Note
that the variables names are extended with the index fct to specify that they
are the variables used for the functionalities model. This property can be ex-
pressed following the template: cruise motion : AG(EF(sfct = 1)). The system
must also be able to stop or move slowly, thus another functionality is ex-
pressed: slow motion : AG(EF(sfct = 0)). Also, the ainv variable models whether
the manipulator arm is extended beyond the platform or not. To handle ob-
jects, the arm must be allowed from any state to reach a state where the arm
is extended beyond the platform, and a state where the arm is folded. We in-



troduce the variable afct which is partitioned as showed in Tab. 2. We have
arm extension : AG(EF(afct = 1)) and arm folding : AG(EF(afct = 0)).

The speed value and arm position are observed in both the invariant model
(sinv and ainv) and the functionalities model (sfct and afct). We need to make
their evolution consistent. To do so, we introduce glue variables, sg and ag.

For the speed, we have two different partitions as presented in Fig. 3, one for
sinv (with discrete values {0, 1, 2}) and one for sfct (with discrete values {0, 1}).
The resulting glue variable sg will then have four values as presented in Fig. 3.
We thus have the formal definition:
INVAR sg = 0↔ sinv = 0 & sfct = 0;
INVAR sg = 1↔ sinv = 0 & sfct = 1;
INVAR sg = 2↔ sinv = 1 & sfct = 1;
INVAR sg = 3↔ sinv = 2 & sfct = 1.

For the arm variable, it is much simpler:
INVAR ag = 0↔ ainv = 0 & afct = 0;
INVAR ag = 1↔ ainv = 1 & afct = 1.

Additionally, we have to provide a model of the interventions of the monitor.
Let us consider that two interventions are available: the brakes can be triggered
and affect the speed, and the extension of the arm can be blocked. Concerning
the braking intervention, it can be applied at any time but will only be efficient
(i.e. prevent the reachability of sinv > smax) if it is engaged when the speed
threshold smax − m has just been crossed. Indeed, the size of the margin is chosen
precisely to have time to brake before reaching the undesired value. For the
intervention blocking the arm, its effect is to block the extension and it can only
be applied if the arm is not already extended (see definitions in Tab. 3).

Name Precondition Effect

Brake
sinv = 0 &
next(sinv) = 1

next(sinv) = sinv − 1

Block arm ainv = 0 next(ainv) = 0

Table 3. Interventions definition for SI1

Name Precondition Effect

Brake
d = 2 &
next(d) = 1

next(vinv) = 0

Table 4. Interventions definition
for SI2

Results We compare in this section the results obtained without and with
the approach through the definition of custom permissiveness. To graphically
describe the strategies, we represent the invariant as a state machine. In the
first case, we use the generic permissiveness, i.e., the reachability of every non-
catastrophic state (the states {safe1, safe2, w1, w2, w3} in Fig. 4), from every
other non-catastrophic state. Only one minimal strategy (no useless interven-
tions) is both safe and permissive. It is found by SMOF and represented in
Fig. 4.

In the second case, we replace the generic permissiveness with the use of
the custom permissiveness properties cruise motion, slow motion, arm folding and
arm extension specified before. We only require the reachability of the states
{safe1, safe2}. After running the synthesis, in addition to the previous strategy
we have a strategy only using the braking intervention (see Fig. 5). This can be



safe1

si < smax −m

ai = 0 w1

smax −m < si < smax

block arm

w2

si > smax

block arm

safe2ai = 1 w3

brake

cata

Fig. 4. Single strategy synthesized for the
invariant SI1 with generic permissiveness
properties.

safe1

si < smax −m

ai = 0 w1

smax −m < si < smax

brake

w2

si > smax

safe2ai = 1 w3

brake

cata

Fig. 5. Additional strategy synthesized
for the invariant SI1 with the custom per-
missiveness properties.

preferable in some cases, as the use of the arm is then never impacted and even
if the monitor triggers the brakes the system can keep manipulating objects.
This strategy couldn’t be found with the generic permissiveness as it removes
the reachability of w2.

The custom permissiveness requirements may allow to synthesize more strate-
gies, like in the previous example, or even to synthesize strategies for problems
that had no solution with the generic permissiveness. Indeed, we require the
reachability of a reduced set of states, therefore more strategies can be found.

5.2 SI2: a gripped box must not be tilted more than α0

For the initial model presented in [15], the monitor could observe the presence
of a box (inferred through the position of the robot’s arm in the workspace and
the position of the gripper), and the angle of rotation of the arm. No strategy
was found. Indeed, the monitor only could brake the arm (prevent its rotation)
and no control was possible on the gripper. The monitor would thus not be able
to prevent the system from grabbing a box with the gripper already tilted more
than α0. We chose to reformulate the invariant as SI ′2 : a gripped box must not
be tilted mode than α0 if the robot is outside of the storage area. The industrial
partner indicated that dropping a box (tilt it over α0) in the storage area is not
that dangerous as it would fall from a low height.

As an alternative solution to ensure SI2, we also explored the effect of an ad-
ditional intervention: the monitor can lock the gripper (prevent it from closing).
But the automated synthesis with the generic permissiveness failed to return any
strategy. We now revisit this model by specifying custom permissiveness prop-
erties for a manipulation functionality (carrying a box at a low rotation angle).
Using the custom permissiveness, the tool successfully synthesizes a strategy. It
combines the braking of the arm and the lock of the gripper to maintain the
invariant while permitting functionality.



5.3 SI3: the robot must not enter a prohibited zone

Modeling The considered invariant is: SI3: the robot must not enter a prohib-
ited zone. The observation used is d, the distance to the prohibited zone. The
distance variable is partitioned according to the concept of margin: d : {0, 1, 2},
0 representing the robot into the prohibited zone, 1 the robot close to the pro-
hibited zone and 2 the robot far from the prohibited zone. According to this
partition, the catastrophic state can be expressed as cata : d = 0.

The only available intervention here is the braking intervention, which stops
the robot completely. To model this intervention, we introduce a velocity variable
vinv, partitioned as follows: vinv : {0, 1} where 0 represents the robot stopped
and 1 the robot moving. A dependency between the distance and the velocity
variables is specified as TRANS next(vinv) = 0→ next(d) = d, i.e., the distance
cannot change if the robot does not move. The braking intervention is only
effective under the precondition that the distance threshold to the prohibited
zone has just been crossed, and affects the velocity variable. This intervention is
modeled as shown in Tab. 4.

In this case, for the functionalities we just need to specify that the
robot needs to reach a state where it is moving, and a state where it is
stopped. We model the custom permissiveness with move : AG(EF(vfct = 1))
and stop : AG(EF(vfct = 0)) where vfct represents the robot moving or stopped.
This variable is directly bound to the vinv variable with a glue variable vg as:

INVAR vg = 0 ↔ vinv = 0 & vfct = 0;
INVAR vg = 1 ↔ vinv = 1 & vfct = 1.

Results The synthesis of strategies with the braking intervention and the move
and stop functionalities does not give any result. Applying the brakes until the
system is stopped violates the permissiveness property associated to the move
functionality. The system is stopped close to the prohibited zone and cannot
ever move again, i.e., the monitor’s intervention is irreversible. In term of au-
tomata, we reached a deadlock state. In order to guarantee safety and synthesize
a strategy, we need to either change the interventions or accept a restriction of
the functionality as described in Section 4.3. In our case, we do not have any
other intervention, we thus need to restrict the functionality.

We can express the restriction as follows: we accept the intervention of the
monitor to be irreversible, but we still want the functionality to be fully available
before the intervention of the monitor. We have the following resulting permis-
siveness property: restricted move : EF(vfct = 1). The property for stop remains
unchanged. With the restricted permissiveness property, the synthesis generates
one strategy which is modeled in Fig. 6.

As we can see, the w state is a deadlock: the system cannot reach any other
state from this state. It means that if the robot ever gets too close to a prohibited
zone, it will be stopped by the monitor and an intervention of the operator will
be needed to continue the mission. The safety is guaranteed by this strategy.
Specifying the restriction of functionalities highlights the impact of the monitor



safe

d = 2

w

d = 1

brake

cata

d = 0

Fig. 6. Strategy synthesized for the invariant SI3 with restricted functionality.

intervention on the system ability to function, which was not possible with the
use of generic simple permissiveness.

6 Conclusion and perspectives

In this paper, we have described an approach to specify safety monitors for
robots, using and extending the SMOF monitoring framework. We overcome an
overly stringent definition of the monitor’s permissiveness in proposing a custom
definition of permissiveness according to the system’s functionalities (the behav-
iors necessary to fulfill its purposes). The custom permissiveness properties are
expressed following a simple template. We require the reachability of a reduced
set of states, therefore, more strategies can be synthesized. In the studied ex-
ample, the proposed solution provided a new strategy only requiring the use of
one intervention instead of two. Also, a problem which had no solutions with a
generic definition of permissiveness properties had one with custom properties.

Whenever it is not possible to synthesize a safety strategy, we propose an
iterative design strategy: we give three ways to adapt functionalities by weak-
ening the permissiveness properties following a template. In these situations,
some strategies can often still be found with slight and traceable changes of the
functionalities. The impact of the monitor on the robot’s operation can thus be
qualified and reasoned about.

Integrating the definition and use of custom permissiveness properties is now
possible with the existing SMOF tooling with a small change on the front-end.
The synthesis algorithm remains unchanged. In future work we wish to adapt
the template so that the user does not have to use the CTL logic.

We would also like to extend our approach to cover different types of monitor
interventions. We could search for multi-level strategies combining guaranteed
and non-guaranteed interventions (having a probability of success, possibly de-
pending on the operational situation). The monitor would first try the inter-
ventions that would affect the system without compromising the mission (e.g.,
trajectory re-planing). In case of failure of those interventions, the least permis-
sive but guaranteed ones (e.g., emergency stop) would only be triggered in last
emergency.

References

1. NuSMV home page. http://nusmv.fbk.eu/. accessed November 2017.



2. Safety Monitoring Framework. LAAS-CNRS Project,
https://www.laas.fr/projects/smof. accessed December 2017.

3. S. Adam, M. Larsen, K. Jensen, and U. P. Schultz. Rule-based Dynamic Safety
Monitoring for Mobile Robots. Journal Of Software Engineering In Robotics, 2016.

4. A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 2004.

5. N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. Transactions on Software Engineering, 2004.

6. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at
runtime? International Journal on Software Tools for Technology Transfer, 2012.

7. J. Fox and S. Das. Safe and sound - Artificial Intelligence in Hazardous Applica-
tions. 2000.

8. J. Guiochet. Hazard analysis of human-robot interactions with HAZOP-UML.
Safety Science, 84, 2016.

9. S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and
G. Hirzinger. Towards the robotic co-worker. In The 14th International Sym-
posium on Robotics Research (ISRR2011), 2011.

10. J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan, and G. Rosu.
ROSRV: Runtime Verification for Robots. In Runtime Verification. Sept. 2014.

11. H. Jiang, S. Elbaum, and C. Detweiler. Inferring and monitoring invariants in
robotic systems. Autonomous Robot, 2017.

12. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of
Logic and Algebraic Programming, 2009.

13. J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for
run-time security policies. IJIS, 2005.

14. M. Machin, F. Dufossé, J.-P. Blanquart, and J. Guiochet. Specifying Safety Mon-
itors for Autonomous Systems Using Model-Checking. In Computer Safety, Reli-
ability, and Security, SAFECOMP2014.

15. M. Machin, G. Jérémie, W. Hélène, J.-P. Blanquart, M. Roy, and L. Masson. Smof
- a safety monitoring framework for autonomous systems. IEEE Transactions On
System, Man and Cybernetics: Systems, 2016.

16. F. Martinelli, I. Matteucci, and C. Morisset. From Qualitative to Quantitative
Enforcement of Security Policy. In Mathematical Methods, Models and Architecture
for Computer Network Security, 2012.

17. L. Masson, J. Guiochet, H. Waeselynck, A. Desfosses, and M. Laval. Synthesis of
Safety Rules for Active Monitoring: Application to an Airport Light Measurement
Robot. In 2017 First IEEE International Conference on Robotic Computing (IRC),
2017.

18. C. Pace and D. Seward. A safety integrated architecture for an autonomous safety
excavator. In International Symposium on Automation and Robotics in Construc-
tion, 2000.

19. S. Roderick, B. Roberts, E. Atkins, and D. Akin. The ranger robotic satellite
servicer and its autonomous software-based safety system. Intelligent Systems,
2004.

20. SAPHARI. Safe and Autonomous Physical Human-Aware Robot Interaction.
Project supported by the European Commission under the 7th Framework Pro-
gramme, www.saphari.eu, accessed Nov. 2017, 2011-2015.

21. R. Woodman, A. F. Winfield, C. Harper, and M. Fraser. Building aafer robots:
Safety driven control. International Journal of Robotics Research, 2012.


