N

N
N

HAL

open science

Tuning permissiveness for active safety monitoring

Lola Masson, Jérémie Guiochet, Hélene Waeselynck, Kalou Cabrera, Sofia

Cassel, Martin Torngren

» To cite this version:

Lola Masson, Jérémie Guiochet, Héléene Waeselynck, Kalou Cabrera, Sofia Cassel, et al.. Tuning
permissiveness for active safety monitoring. 2017. hal-01637277v1

HAL Id: hal-01637277
https://laas.hal.science/hal-01637277v1

Preprint submitted on 17 Nov 2017 (v1), last revised 1 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://laas.hal.science/hal-01637277v1
https://hal.archives-ouvertes.fr

Tuning permissiveness for active safety monitoring

Lola Masson, Jérémie Guiochet, Hélene
Waeselynck, Kalou Cabrera
LAAS-CNRS

) Toulouse, France
firstname.lasthame@Ilaas.fr

ABSTRACT

Robots and autonomous system have become a part of our
everyday life, therefore guaranteeing their safety is a crucial
issue. Among the possible methods for guaranteeing safety,
monitoring is widely used, but few methods exist to gener-
ate safety rules to implement such monitors. Particularly,
building safety monitors that do not constrain excessively
the system’s ability to perform its tasks is necessary as those
systems operate with few human interventions. We propose
in this paper a method to take into account the system’s de-
sired tasks in the specification of strategies for monitors and
apply it to a case study. We show that we can synthesize a
more important number of strategies and we facilitate the
reasoning about the trade-off between safety and function-
alities.

1. INTRODUCTION

Autonomous systems are becoming an increasing part of
our daily lives: medical robots, self-driving cars, and in-
dustrial robots are good examples. It is critical to be able
to guarantee the safety of such systems, since they oper-
ate independently in the vicinity of humans. One way to
guarantee safety of autonomous systems is to specify them
completely and reason about any dangerous behavior be-
fore deployment. This, however, requires that they behave
predictably in any situation, which is not true as the sys-
tems interact with other humans or autonomous systems,
in unstructured environments. In these cases, monitoring
is an attractive option for guaranteeing safety: it facilitates
the task since a specification of all possible behaviors is not
necessary; it suffices to focus on unsafe behaviors. A safety
monitor watches the system in operation, and intervenes as
soon as potentially dangerous behavior is detected, typically
by blocking the system from performing certain actions.

Such an approach, that only studies unsafe behaviors, may
however restrict the system to the point where it cannot
function in a meaningful way; i.e. availability suffers. For
example, a robot tasked with moving objects might be re-
stricted to only standing still, or to moving without being
able to drop or pick up anything. The system might be safe,
but useless for its purposes.

In this paper, we address the problem of monitoring au-
tonomous systems aiming to avoid too conservative restric-
tions on behaviors. This is the classical trade-off between
safety and availability. For the availability requirements,

Sofia Cassel, Martin Térngren
KTH
_Stockholm, Sweden
sofia.cassel@md.kth.se
martin@md.kth.se

we explicitly consider the system’s purpose, which we call
its functionality. We specify the sequences of behavior that
are essential to the system’s function. We then synthesize
safety strategies for the monitor to follow, such that when it
is triggered, it does not interfere with these sequences. If it
is not possible to generate such strategies, we can iteratively
limit the system’s functionality, e.g., by reducing its speed
or the range of some moving part and keep track of this
limitation. Our approach thus makes it possible to generate
safety monitors that are less restrictive, and it also enables
us to reason explicitly about how safety and functionality
(i.e. availability) interrelate in the context of a particular
system.

The paper is organised as follows: in Section 2, we will dis-
cuss related work; we detail the background of this work in
Section 3; the main contribution of the paper will be pre-
sented in Section 4 and applied to an example in Section 5.
We will conclude in Section 6.

2. RELATED WORK

Safety monitoring is a popular form of fault tolerance [5] usu-
ally implemented as an independent mechanism that forces
the system to stay in a safe state. Several approaches have
been used in robotics such as safety manager [18], autonomous
safety system [20], checker [19], guardian agent [8], or emer-
gency layer [10].

In all these works, the specification of the safety strategies
(i.e. the rules that the monitor follows to trigger safety in-
terventions) is done ad hoc not using any generic approach.
Other authors provide methods to identify safety invariants
either from a hazard analysis [22] or from existing imple-
mentations [12], or to specify safety strategies in a DSL (Do-
main Specific Language) in order to generate code [4], [11].
But none of them offers a complete approach to identify in-
variants from hazards and automatically synthesize safety
strategies to implement for monitoring. In contrast, the ap-
proach detailed in [16] and [14] provides a complete safety
rule identification process, starting from a hazard analysis
using the HAZOP-UML [9] technique and using formal ver-
ification techniques to synthesize the strategies.

Safety monitoring is related to runtime verification and prop-
erty enforcement. Runtime verification [13][6] checks for
properties (e.g., in temporal logic) by typically adding code
into the controller software. Property enforcement [7] ex-
tends runtime verification with the ability to modify the

Margin
>

Safety [nvariant

/F\
catastrophic states

arning states ©

Figure 1: System state space from the perspective
of the monitor

execution of the controller, in order to ensure the property.
These techniques consider a richer set of property classes
than safety ones, and, most importantly, can be tightly cou-
pled to the system. It makes the underlying mechanisms
quite different from the external safety monitors considered
in this paper which have to rely on limited observation and
intervention means.

3. BASELINE AND CONCEPTS

A method to synthesize safety strategies for monitors is pro-
posed in [16]: SMOF (Safety Monitoring Framework). We
briefly explain the SMOF principles below and introduce the
motivation for the extension proposed in this paper.

3.1 Safety invariants, margins and states

As a first step of the process, one identifies a list of haz-
ards that may occur during the system’s operation, using
the model-based hazard analysis HAZOP-UML [9]. Among
the list of hazards, one extracts those that can be treated
by the monitor. Those hazards are reformulated as safety
invariants such that each hazard is represented by the vio-
lation of an invariant. A safety invariant is a logic formula
over a set of observable variables, derived from sensor val-
ues. Note that the reformulation of hazards as invariants
may reveal the need for additional observation means, like
in [17] where the original system design was revised to add
Sensors.

A combination of observation values defines a system state,
as perceived by the monitor. If one of the safety invariants
is violated, the system enters a catastrophic state that is
assumed irreversible. Each safety invariant partitions the
state space into catastrophic and non-catastrophic states as
represented in Figure 1. The non-catastrophic states can in
turn be partitioned into safe and warning states, in such a
way that any path from a safe state to a catastrophic one
traverses a warning state. The warning states correspond to
safety margins on the values of observations.

The monitor has means to prevent the evolution of the sys-
tem towards the catastrophic states: these means are a set

of safety interventions (mostly based on actuators) made
available to it. An intervention is modeled by its effect (con-
straint that cut some transitions) and preconditions (con-
straint on the state in which it can be applied). Interven-
tions are applied in warning states in order to cut all the
existing transitions to the catastrophic states, as shown in
Figure 1. The association of interventions to warning states
constitutes a safety strategy. For example, let us assume
that the invariant involves a predicate v < Vinqee (the veloc-
ity should always be lower than Vinaz). The strategy will
associate an intervention to states corresponding to a veloc-
ity higher than the threshold V... — margin in order to
prevent evolution towards Vine. . The determination of the
size of the margin involves a worst-case analysis, accounting
for the dynamics of the physical system, as well as for the de-
tection and reaction time of the monitor after the threshold
crossing.

3.2 Safety and permissiveness properties

The safety strategy must fulfil two types of properties: safety
and permissiveness properties. Safety is defined as the non
reachability of the catastrophic states. Permissiveness prop-
erties are intended to ensure that the strategy still permits
functionality of the system, or in other words maintain avail-
ability. This is necessary to avoid safe strategies that would
constrain the system’s behavior to the point where it be-
comes useless (e.g., always engaging brakes to forbid any
movement). SMOF adopts the view that the monitored sys-
tem will be able to achieve its tasks if it can freely reach
a wide range of states (e.g., it can evolve towards states
with a non zero velocity). Accordingly, permissiveness is
generically formulated in terms of state reachability require-
ments: every non-catastrophic state must remain reachable
from any other non-catastrophic state. The safety strategy
may remove some of the paths between pairs of states, but
not all of the paths.

3.3 SMOF tooling

SMOF tool support [2] includes a modelling template to
ease the formalization of the different elements of the model:
the behavior model with a partition into safe, warning and
catastrophic states; the available interventions modelled by
their effect on observable state variables; the safety and per-
missiveness properties, both expressed using CTL (Compu-
tation Tree Logic), which allows the expression of reacha-
bility properties. The template offers predefined modules,
as well as auto-completion facilities. For example, the tool
automatically identifies the set of warning states. Also, the
permissiveness properties are automatically generated based
on the identification of non-catastrophic states. Finally,
SMOF provides a synthesis tool based on the model-checker
NuSMV [1]. For this reason the NuSMV language is used
for the formalization and we will use the typewriter font
to refer to it in the following. The synthesis tool returns a
set of adequate strategies for the given invariant to enforce,
where adequate means both safe and permissive.

The formalization and strategy synthesis is done for each
invariant separately. Then a last step is to merge the models
and to check for the consistency of the strategies selected for
the different invariants.

The SMOF method and tool have been applied to real exam-
ples of robots: an industrial co-worker in a manufacturing
setting [16], and a maintenance robot in airfield [17].

3.4 Contribution of this paper

This paper revisits the notion of permissiveness, in order to
address some limitations of the generic definition adopted
in SMOF. By default, it requires the universal reachabil-
ity of all non-catastrophic states, which is a very stringent
requirement. As a result, the synthesis algorithm prunes
any strategy that would cut all paths to a non-catastrophic
state, even though this specific state may be useless for the
accomplishment of the functions of the system.

To give an example, let us consider a classical invariant stat-
ing that the system velocity should never reach a maximal
absolute value Vinq2. The synthesis would reject any strat-
egy preventing reachability of warning states with values
close to Vinae. But the cruise velocity of the system, used to
accomplish its functions, is typically much lower than Vi,ex
and Viez — margin. Requiring the universal reachability
of the warning states is useless in this case, since getting
close to Vinaz is not a nominal behavior. The system opera-
tion could well accommodate a safety strategy that forbids
evolution to close-to-catastrophic velocity values.

From what precedes, it may seem that we could simply
modify the generic definition of permissiveness to require
universal reachability of safe states only, excluding warning
states. However, this would not work for all systems, as
demonstrated by the maintenance robot studied in [17]. For
this robot, some warning states do correspond to a nomi-
nal behavior and are essential to the accomplishment of the
maintenance mission. More precisely, the robot is intended
to control the intensity of lights along the airport runways.
The light measurement task is done by moving very close to
the lights, which, from the perspective of the anticollision
invariant, corresponds to a warning state. Any safety strat-
egy removing reachability of a close-to-catastrophic distance
to the lights would defeat the very purpose of the robot.

Actually, there is no generic definition of permissiveness that
would provide the best trade-off with respect to the system
functions. We would need to incorporate some application-
specific information to tune the permissiveness requirements
to the needs of the system. This paper proposes a way to do
so without essentially changing the principles and tools of
the SMOF method. The custom permissiveness properties
are introduced as an alternative to the generic ones, allowing
more strategies to be found and facilitating the iterative
trade-off decision process.

4. DEFINING CUSTOM PERMISSIVENESS
PROPERTIES

4.1 Process overview

To synthesize a safety strategy using the SMOF tool, we fol-
low the process described in Figure 2. The SMOF algorithm
takes as inputs the permissiveness properties, the safety in-
variant and intervention models. In the shown process, we
assume that the user has not chosen to generate generic

properties (reachability of all the non-catastrophic states)
but has specified custom ones. If no strategy is found, the
user must consider whether restricting one of the function-
alities is feasible. If this is the case, she may adapt the
permissiveness properties consequently, by weakening some
reachability requirements. The synthesis algorithm is then
launched again to find a strategy, and repeated if another
restriction of functionalities is needed. We can therefore pre-
cisely qualify the impact of safety on the system’s ability to
function in a useful manner.

We first present the definition and modeling of permissive-
ness (Section 4.2), then the binding of permissiveness and
safety models (Section 4.3), then the restriction of function-
alities (Section 4.4) and finally the integration of this ap-
proach in the existing tool chain (Section 4.5).

Permissiveness% 4}. Safety

' H
i Interventions : N H -
: ! properties Invariant

e

Lauch strategy
synthesis

IStrategy satisfying the
specified safety and
permissiveness
properties

found ?

No

No possible solution
satisfying specified
No—»| safety and
permissiveness
properties

an the functionality(ies) be
restricted?

Yes

v

Weaken
permissiveness
properties

]

Figure 2: Overview of the strategy synthesis process

4.2 A formal model for the permissiveness

We consider that a functionality is defined by a goal or ob-
jective that the system was designed to achieve. For exam-
ple, if the system is designed to pick up objects, transport
and place them, two of its functionalities could be "move
from A to B” and "pick up an object”. We propose to adapt
the permissiveness to the functionalities of the system and
therefore only require the reachability of a specific subset of
states for the strategy synthesis. Some of the functionalities
are not related to any of the monitored variables, and there-
fore do not need to be considered. For example the safety
monitor does not affect a display functionality which is not
associated to any hazard.

To be used in the synthesis, we must model the permissive-

ness properties associated to the identified functionalities.
While generic permissiveness properties apply to all non-
catastrophic states, we choose to express the custom ones
as the reachability of a subset of states, the ones that are
essential to the system’s functionalities.

The state model for the functionalities is defined as a set
of variables partitioned in classes of values of interest. For
instance, let us consider the functionality £, which requires
observable variable v (e.g. velocity, or position of a tool) to
reach a given value Vyeq (e.g. cruise velocity) with some tol-
erance 0. The domain of the variable v would be partitioned
into three classes:

- 0 corresponding to values lower than Vieq — 6;
- 1 to values in [Vyeq — 9, Vreq + dJ;
- 2 to values greater than Vieq + 9.

Let v+ : {0,1,2} be the abstract variable encoding the par-
tition from the point of vie of the functionality. The SMOF
template provides a predefined module to express the conti-
nuity constraints on the evolution of the variables values.

The corresponding permissiveness property is the following:
AG(EF(vf = 1))). Indeed, EF specifies that the value of in-
terest is reachable from the initial state, and AG extends
this to the reachability from every state. This means that
the monitor’s interventions must not permanently affect the
functionality £ by cutting all paths to useful states.

Every permissiveness property must be expressed following
this template: AG(EF(req))) where req is a predicate over
a variable or set of variables. To each functionality corre-
sponds a (set of) permissiveness property(ies) in CTL. For
example, if two movement functionalities can be identified,
cruise mode and slow mode, then the reachability of the cor-
responding range of values must be specified in two separate
properties.

4.3 Binding invariants and permissiveness

The permissiveness and the safety properties are defined us-
ing two different state models. Some of the abstract vari-
ables used in those state models represent the same physical
observation, or dependent ones. To connect the invariants
and functionalities models, we have to bind their variables.
Two types of bindings can be used: physical dependencies
(speed and acceleration for example), or the use of the same
observation with two different partitions.

In the first case, we specify the constraints on transitions (us-
ing the NuSMV key word TRANS) or on states (using INVAR).
For example, for observations of speed and accelerations, we
would write TRANS next(acc) = 0 — next(speed) = speed,
next(acc) or next(speed) specifying the value of acc or
speed after transitioning, i.e. if the acceleration is null, the
speed cannot change.

In the second case, we need to introduce a “glue” vari-
able to bind the different partitions. This variable
will be partitioned in as many intervals as needed, and
specified as continuous. The different intervals will be
bound with a specification on the states. For exam-
ple, let us assume we have an invariant and a function-
ality using a velocity variable, and the partition used for
the invariant is vin, = {0,1,2} where 0 : stationary or slow,

1 : medium and 2 : high, and the one used for the func-
tionality is vf = {0,1} where 0 : stationary or slow and
1 : medium or high. We introduce a continuous ”glue” vari-
able partitioned as vgue = {0, 1,2}. The binding through the
7glue” variable is specified as follows:
INVAR Vgiye = 0 < Viny = 0 & v¢ = 0
INVAR Vgiee = 1 63 Viny = 1 & ve = 1;
INVAR Vgige = 2 ¢ Viny = 2 & ve = 1.

4.4 Restricting functionalities

In some cases, no strategy can be synthesized with the spec-
ified functionalities. One solution is that the user restricts
the functionalities, i.e., weakens permissiveness. This may
change the system’s objectives, or increase the time or effort
it takes to achieve the objectives. Functionalities can be re-
stricted in several ways. We consider three of them in this
paper.

The required interval of values can be changed. For example,
if the system’s objective is to move from point A to point
B, then the "move” functionality can be restricted to "move
slowly”. The system will still achieve its objective, but not as
quickly. For example, let us consider a "move” functionality
expressed as F : AG(EF(req)), where req means that the
velocity v must reach values greater than Vi. Restricting
this functionality is expressed as F’' : AG(EF(req’)), where
req’ means that v only has to reach V] with Vi < V1.

Another way is to allow the monitor’s intervention to be
irreversible. The "move” functionality could then become
impossible after some monitor’s intervention has been trig-
gered. In that case, we at least require the functionality
to be reachable from the initial state. This is expressed as
EF(vsi = Vreq). The restriction just consists in this case in
removing the AG part from the formula.

The third way is to simply remove the functionality from the
requirements. For example a "manipulation while moving”
functionality is no longer required. Here, the corresponding
CTL property is simply deleted, and the synthesis run again
without it.

Functionalities that cannot be restricted and for which no
safety strategy can be found can also be propagated back to
the hazard analysis step and used to revise the design of the
system or its operation rules.

4.5 Integration in SMOF tooling

So far, the management of custom permissiveness has not
yet been integrated in the tool. Examples and tutorials can
be found online [3]. However, conceptually it would only
require minimal changes.

The template has to be extended to facilitate the modeling
of the permissiveness properties. Syntactic sugar can be pro-
vided so that the user does not directly work with CTL. She
could specify the states of interest with a key word for the de-
sired reachability (from the initial state only or from every
non-catastrophic state). Also, the model auto-completion
facilities have to be adapted to generate the CTL proper-
ties for the custom permissiveness. The other parts of the
template (safety invariant and interventions models) can be
reused unchanged.

The SMOF strategy synthesis algorithm, which is the core of
the tool set, needs not to be changed either. It can transpar-
ently accommodate both types of permissiveness properties
(custom or generic).

S. APPLICATION TO AN EXAMPLE

We will use as a running example a robotic system composed
of a mobile platform and an articulated arm (see Figure 3).
It is an industrial co-worker in a manufacturing setting, shar-
ing its workspace with human workers. Its purpose is to
pick up objects using its arm and to transport them. Some
areas of the workspace are prohibited to the robot. The haz-
ard analysis has been performed on this robot in a previous
project [21] and a list of thirteen safety invariants has been
identified. The complete list can be found in [15]. Only two
of them will be detailed in this paper:

SIp : the arm must not be extended when the platform
moves over a certain speed;
S1I> : the robot must not enter a prohibited zone.

Figure 3: Manipulator robot from Kuka

5.1 The invariant s1,

5.1.1 Modeling

We consider the invariant SIi: the arm must not be ex-
tended when the platform is moving with a speed higher
than speednax. The available observations are speediny, the
speed of the platform; and armin,, the position of the arm.
Note that the variables names are extended with the in-
dex inv to specify that they are the variables used for the
invariant model. The observations are partitioned as de-
tailed in Table 1. Considering the discrete representation
of the variables, the catastrophic state can be expressed
as cata: speedin, = 2 & arminy = 1 (high speed with ex-
tended arm).

To express the relevant permissiveness properties, we iden-
tify what functionalities are related to the invariant. Let us
consider the variables involved in SI;. The speedin, variable
is an observation of the velocity of the mobile platform, in
absolute value. The system is supposed to move around the
workplace to carry objects, i.e. the speed must be allowed
to reach a minimal cruise speed cruise_speedyin value, from
any state. To model this functionality we introduce the
speeds.; variable, which will be partitioned as showed in
Table 2. Note that the variables names are extended with
the index fct to specify that they are the variables used for
the functionalities model. This property can be expressed in
CTL as cruise motion : AG(EF(speedst = 1)). The system

0 1 2
speedm} } } >

/—/%H%

Speed - margin speed .

|
speed, | I

/—«%
0 cruise_speed
\ 0 | ! | 2 | 3
speed, | I I |
g
0 o

/—~/% & N
cruise_speed ; Speed - margin speed_

Figure 4: Partitioning of the speed, variable

must also be able to stop or move slowly, thus another func-
tionality is expressed: slow motion : AG(EF(speedi: = 0)).
Also, the armi,, variable models whether the manipulator
arm is extended beyond the platform or not. To handle
objects, the arm must be allowed from any state to reach
a state where the arm is extended beyond the platform,
and a state where the arm is folded. We introduce the
variable armyc; which is partitioned as showed in Table 2.
In CTL, we have arm extension : AG(EF(arm¢; = 1)) and
arm folding : AG(EF(arme: = 0)).

The speed value and arm position are observed in both the
invariant model (speediny, and armi,,) and the functionali-
ties model (speedsct and armsc;). We need to make their
evolution consistent. To do so, we introduce glue variables,
speedg and armg.

For the speed, we have two different partitions as pre-
sented in Figure 4, one for the speediny (with discrete val-
ues {0,1,2}) and one for the speedsc; (with discrete values
{0,1}). The resulting glue variable speed, will then have
four values as presented in Figure 4. We thus have the for-
mal definition:

INVAR speedg = 0 <> speediny = 0 & speedsct = 0;

INVAR speedg = 1 <+ speediny = 0 & speedsct = 1;

INVAR speedgy = 2 <> speediny = 1 & speedsct = 1;

INVAR speedg = 3 <> speediny = 2 & speedsct = 1.

For the arm variable, it is much simpler:
INVAR arm; = 0 <> armiy, = 0 & armece = 0;
INVAR arm; = 1 4+ armip,, = 1 & armeee = 1.

Additionally, we have to provide a model of the interventions
of the monitor. Let us consider that two interventions are
available: the brakes can be triggered and affect the speed,
and the extension of the arm can be blocked. Concerning the
braking intervention, it can be applied at any time but will
only be efficient if the speed threshold speedp.x — margin has
just been crossed. Indeed, the size of the margin is chosen
precisely to have time to brake before reaching the undesired
value. For the intervention blocking the arm, its effect is to
block the extension and it can only be applied if the arm
is not already extended. The interventions are defined in
Table 3.

5.1.2 Results

We compare in this section the results obtained without
and with the approach through the definition of function-
alities. To graphically describe the strategies, we represent

Speed of the platform

Real speed interval

Discrete variable

The speed is low speedin, < speedmar — Margin speediny = 0
The speed is within the margin speedmar — margin < speedin, < speedmax speediny = 1
The speed is higher than the maximum allowed value speediny, > speedmax speediny = 2

Position of the arm

Discrete variable

The arm is not extended beyond the platform

armipy, = 0

The arm is extended beyond the platform

armip, = 1

Table 1: Partitioning of the variables speed;,, and armin.

Speed of the platform

Real speed interval

Discrete variable

The platform is considered stopped or the speed is lower
than the minimum cruise speed

speedycr < cruise_speedmin

speedsct 0

The platform moves at the minimum cruise speed or
higher

speedyer > cruise_speedmin

speedsct 1

Position of the arm

Discrete variable

The arm is folded

armsey = 0

The arm is extended beyond the platform

armgcy = 1

Table 2: Partitioning of the variables speeds.; and army.

Name Precondition Effect

Brake speediny = O & | next(speediny)
next(speediny) =1 | = speediny — 1

Block_arm armipy = 0 next(armiy) =0

Table 3: Definition of the interventions for the in-
variant SI;

the invariant as a state machine. In the first case, we use
the generic permissiveness, i.e. the reachability of every
non-catastrophic state (the states {safei,safes,wi, w2, w3}
in Figure 5), from every other non-catastrophic state. Note
that the names used have been shortened in the Figure 5:
si = speedinv, Smaz = Sp€€dmaz, M = margin and a; =
arminy. Only one strategy is synthesized by the SMOF
algorithm, using both the interventions of braking the plat-
form and blocking the arm. This strategy is represented in
Figure 5.

i < Smax — M Si > Smazx

Smaz — M < $; < Smazx

ai:0

aizl

Figure 5: Strategy synthesized for the invariant SI;
with generic permissiveness properties.

In the second case, we replace the generic permissive-
ness with the use of the custom permissiveness properties
cruise motion, slow motion, arm folding and arm extension

specified before. We only require the reachability of the
states {safe;, safe,}. After running the synthesis, in addi-
tion to the previous strategy we have the strategy detailed in
Figure 6. This strategy only uses the braking intervention.
This can be preferable in some cases, because the use of the
arm is then never impacted and even if the monitor triggers
the brakes the system can keep manipulating objects.

S$i < Smax — M Si > Smazx

Smaz — M < $i < Smax

aizl

Figure 6: Additional strategy synthesized for the
invariant S7; with the custom permissiveness prop-
erties.

In the previous example, an additional strategy is synthe-
sized as shown in Figure 6 thanks to the definition of custom
permissiveness properties. More generally, considering the
functionalities to define the permissiveness requirements al-
lows to synthesize a more important number of strategies,
or even to synthesize strategies for problems that had no
solution with the generic permissiveness. Indeed, we require
the reachability of a reduced set of states, therefore more
strategies can be found.

5.2 The invariant s1,

5.2.1 Modeling

The considered invariant is: SIz: the robot must not enter

Precondition Effect
d =2 & next(d) =1 | next(vinw) =0

Name
Brake

Table 4: Definition of the interventions for the in-
variant S1s

a prohibited zone. The observation used is d, the distance
to the prohibited zone. The distance variable is partitioned
according to the concept of margin: d: {0,1,2}, 0 repre-
senting the robot into the prohibited zone, 1 the robot close
to the prohibited zone and 2 the robot far from the prohib-
ited zone. According to this partition, the catastrophic state
can be expressed as cata: d = 0.

The only available intervention here is the braking inter-
vention, which stops the robot completely. To model this
intervention, we introduce a velocity variable viny, par-
titioned as follows: vin : {0,1} where O represents the
robot stopped and 1 the robot moving. A dependency be-
tween the distance and the velocity variable is specified as
TRANS next(viny) = 0 — next(d) = d i.e. the distance can-
not change if the robot does not move. The braking inter-
vention is only effective under the precondition that the dis-
tance threshold to the prohibited zone has just been crossed,
and affects the velocity variable. This intervention is mod-
eled as shown in Table 4.

In this case, for the functionalities we just need to specify
that the robot needs to reach a state where it is moving,
and a state where it is stopped. We model the functional-
ities move : AG(EF(vie = 1)) and stop : AG(EF(vi: = 0))
where vt represents the robot moving or stopped. This
variable is directly bound to the vin, variable with a glue
variable vy as:

INVAR vg =0 < Viny = 0 & Vier = 0;
INVAR vg =1 ¢ Vipy = 1 & Veer = 1.

5.2.2 Results

The synthesis of strategies with the braking intervention and
the move and stop functionalities does not give any result.
Indeed, applying the brakes till stopped violates the per-
missiveness property associated to the move functionality
because the system is stopped close to the prohibited zone
and cannot ever move again, i.e. the monitor’s intervention
is irreversible. In term of automata, we reached a deadlock
state. In order to guarantee safety and synthesize a strat-
egy, we need either to change the interventions or to accept
a restriction of the functionality. In our case, we do not
have any other intervention, we thus need to restrict the
functionality.

We can express the restriction as follows: we accept the in-
tervention of the monitor to be irreversible, but we still want
the functionality to be fully performed before the interven-
tion of the monitor. We have the following resulting permis-
siveness property: restricted move : EF(vee = 1). With the
restricted permissiveness property, the synthesis generates
one strategy which is modeled in Figure 7.

As we can see, the w state is a deadlock: the system cannot
reach any other state from this state. It means that if the
robot ever gets too close to a prohibited zone, it will be

d=2 d=1 d=0
@@I@

Figure 7: Strategy synthesized for the invariant SI,
with restricted functionality.

stopped by the monitor and an intervention of the operator
will be needed to continue the mission.

As future work, we wish to synthesize multi-level strategies
using higher level interventions (plan a new trajectory for
example) that would avoid reaching these deadlock states,
and thus avoid the need of a human intervention.

6. CONCLUSION AND PERSPECTIVES

In this paper, we have described an approach to specify
safety monitors for robots, using and extending the SMOF
monitoring framework. We overcome an overly stringent
definition of the monitor’s permissiveness in proposing a
custom definition of permissiveness according to the sys-
tem’s functionalities (the behaviors necessary to fulfill its
purposes). The custom permissiveness properties are ex-
pressed using CTL following a simple template. In defining
the functionalities we require the reachability of a reduced
set of states. Therefore, a more important number of strate-
gies can be synthesized by the SMOF tool. In the studied
example, it provided new strategies only requiring the use of
one intervention instead of two. Also some of the problems
which had no solutions with a generic definition of permis-
siveness properties could have one or several with custom
properties.

Whenever it is not possible to synthesize a safety strategy,
our approach proposes an iterative design strategy: we give
three ways to adapt functionalities by weakening the per-
missiveness properties following a template. In these situ-
ations, some strategies can often still be found with slight
and traceable changes to the functionalities. The impact of
the monitor on the robot’s operation can thus be qualified
and reasoned about.

Integrating the definition and use of custom permissiveness
properties in the existing SMOF tooling would only require
minor changes on the template. The synthesis algorithm can
remain unchanged. In future work, we wish to implement
those minor changes and test them to evaluate the scalability
issues on existing examples.

We also work on extending our approach to cover differ-
ent types of monitor interventions. For example, we could
search for multi-level strategies combining guaranteed and
non-guaranteed interventions (having a probability of suc-
cess different fro one, possibly depending on the operational
situation). The monitor would first try the most permis-
sive interventions even if their effect is not guaranteed, and
would trigger the less permissive but safe ones only in last
emergency.

7.

(1]
2]

[11]

[12]

[13]

[15]

[16]

REFERENCES

NuSMV home page. http://nusmv.fbk.eu/.

Safety Monitoring Framework. LAAS-CNRS Project,
https://www.laas.fr/projects/smof. accessed
September 2017.

Safety Monitoring Framework | resources.
LAAS-CNRS Project,

https://www.laas.fr /projects/smof /resources. accessed
September 2017.

S. Adam, M. Larsen, K. Jensen, and U. P. Schultz.
Rule-based Dynamic Safety Monitoring for Mobile
Robots. Journal Of Software Engineering In Robotics,
7(1), 2016.

A. Avizienis, J. C. Laprie, B. Randell, and

C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11-33,
Jan. 2004.

N. Delgado, A. Q. Gates, and S. Roach. A taxonomy

and catalog of runtime software-fault monitoring tools.

Transactions on Software Engineering,
30(12):859-872, 2004.

Y. Falcone, J.-C. Fernandez, and L. Mounier. What
can you verify and enforce at runtime? International
Journal on Software Tools for Technology Transfer,
14(3):349-382, 2012.

J. Fox and S. Das. Safe and sound - Artificial
Intelligence in Hazardous Applications. AAAT Press -
The MIT Press, 2000.

J. Guiochet. Hazard analysis of human-robot
interactions with HAZOP-UML. Safety Science, 84,
2016.

S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmiiller,
A. Albu-Schiffer, and G. Hirzinger. Towards the
robotic co-worker. In The 14th International
Symposium on Robotics Research (ISRR2011), 2011.
J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo,
A. Sundaresan, and G. Rosu. ROSRV: Runtime
Verification for Robots. In Runtime Verification. Sept.
2014.

H. Jiang, S. Elbaum, and C. Detweiler. Inferring and
monitoring invariants in robotic systems. Autonomous
Robot, 41(4), Apr. 2017.

M. Leucker and C. Schallhart. A brief account of
runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293-303, 20009.

M. Machin, F. Dufossé, J.-P. Blanquart, and

J. Guiochet. Specifying Safety Monitors for
Autonomous Systems Using Model-Checking. In
Computer Safety, Reliability, and Security,
SAFECOMP2014.

M. Machin, J. Guiochet, T. Guhl, S. Walther, and
V. Magnanimo. Saphari d1.3.1. report on safety
monitoring framework and safe control strategies.
LAAS-CNRS 15009, 2015.

M. Machin, G. Jérémie, W. Hélene, J.-P. Blanquart,
M. Roy, and L. Masson. Smof - a safety monitoring
framework for autonomous systems. I[EEE
Transactions On System, Man and Cybernetics:
Systems, Dec. 2016.

(17]

(18]

(19]

20]

(21]

(22]

L. Masson, J. Guiochet, H. Waeselynck, A. Desfosses,
and M. Laval. Synthesis of Safety Rules for Active
Monitoring: Application to an Airport Light
Measurement Robot. In 2017 First IEEE International
Conference on Robotic Computing (IRC), Apr. 2017.
C. Pace and D. Seward. A safety integrated
architecture for an autonomous safety excavator. In
International Symposium on Automation and Robotics
in Construction, 2000.

F. Py and F. Ingrand. Dependable execution control
for autonomous robots. In International Conference
on Intelligent Robots and Systems (IROS), 2004.

S. Roderick, B. Roberts, E. Atkins, and D. Akin. The
ranger robotic satellite servicer and its autonomous
software-based safety system. IEEFE Intelligent
Systems, 19(5), 2004.

SAPHARI. Safe and Autonomous Physical
Human-Aware Robot Interaction. Project supported
by the European Commission under the 7th
Framework Programme, www.saphari.eu, accessed
May 2015, 2011-2015.

R. Woodman, A. F. Winfield, C. Harper, and

M. Fraser. Building aafer robots: Safety driven
control. International Journal of Robotics Research,
31(13), 2012.

