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The adoption of the Internet of Things (IoT) drastically witnesses an increase in different domains, and 

contributes to the fast digitalization of the universe. Henceforth, next generation of IoT-based systems are set 

to become more complex to design and manage. Collecting real-time IoT generated data unleashes a new wave 

of opportunities for business to take more precise and accurate decisions at the right time. However, a set of 

challenges including the design complexity of IoT-based systems and the management of the ensuing 

heterogeneous big data as well as the system scalability; need to be addressed for the development of flexible 

smart IoT-based systems. Consequently, we proposed a set of design patterns that diminish the system design 

complexity through selecting the appropriate/combination of patterns based on the system requirements. These 

patterns identify four maturity levels for the design and development of smart IoT-based systems. In this paper, 

we are mainly dealing with the system design complexity to manage the context changeability at runtime. Thus, 

we delineate the autonomic cognitive management pattern, which is most mature level. Based on the autonomic 

computing, this pattern identifies a combination of management processes able to continuously detect and 

manage the context changes. These processes are coordinated based on cognitive mechanisms that allow the 

system perceiving and understanding the meaning of the received data to take business decisions, as well as to 

dynamically discover new processes meeting the requirements evolution at runtime. We demonstrated the use 

of the proposed pattern with a use case from the healthcare domain, more precisely the patient comorbidity 

management based on wearables. 
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1 INTRODUCTION 

The emergence of the Internet of things (IoT) has revolutionized the healthcare through capturing 

real-time and individualized data concerning patients. It fosters providing patient centric 

management as well as preventing health complications. The wearable computing, as an example 

of IoT technologies, is fast gaining momentum. The use of wearable computing allows enhancing 

the patient’s care and life style management through enabling remote data stream processing and 

detecting anomalies at the right time which profoundly impacts the decision process. Its utility goes 

further to enable disabled person’s feeling motions and doing actions, despite their impairment 

[1].Real-time analyzing the data stemming from the patient wearable devices, and integrating them 

with the patient medical history and with medical knowledge could reach benefits for accelerating 

the decision-making and personalizing the patient treatment. 

As these technologies sense the physical world, it is easy to collect data, but hard to manage. 

Automating the management of IoT-based systems may address the system complexity, accelerate 

and facilitate the interaction with the domain experts for better decision making. In software 

engineering, the autonomic computing initiative [2] has been proposed to enable the design of 

context-aware systems and automate their management based on the MAPE-K loop pattern 

(abbreviation of Monitoring, Analysis, Plan, Execution, and Knowledge). It has been widely used 



 

[3-5] for designing self-managed systems that automatically adapt their structure and behavior based 

on the context changes. Adopting the autonomic computing for managing the patient treatment using 

the wearable technologies seems promising to detect the patient health anomaly and to provide 

personalized treatment that will be sent to the physician for validation [6]. 

Systems implementing real-world applications continuously evolve and generate unforeseen 

requirements [7]. Thus, conceiving only one MAPE-K loop is not sufficient to manage the evolution 

of context changeability. For instance, in healthcare, we consider managing patients with diabetes 

as a primary requirement. During treating diabetes, because of aging and biological changes, a new 

requirement such as managing the hypertension may occur. Thus, new processes for monitoring and 

controlling hypertension need to be integrated into the system. However, traditional management 

systems are considered as ad-hoc systems –designed and implemented from scratch, which impedes 

the dynamic self-management and requires additional human efforts to integrate and activate these 

processes. To enable the smart manageability, the system should be able to support the dynamic 

discovery of the management processes, their composition and dynamic coordination to manage 

more complex situations, especially those unpredictable at design-time. We refer to management 

processes any process that can control the context changeability of the system. The purpose of these 

processes is to monitor the system status, detect anomalies and/or generate recommendations. A 

management process can be the combination of existing management processes. The autonomic 

computing functions (Monitoring, analysis, Plan and Execution) are considered in our work as 

management processes. A smart IoT-based system requires also the integration of cognitive 

capabilities that allows not only understanding and perceiving the meaning of the received data but 

also the features of management processes in order to dynamically generate the adequate 

combination of processes to manage complex requirements. 

Consequently, to facilitate the selection of the appropriate management processes, we defined 

in this paper four maturity levels for the development of smart IoT-based systems. These maturity 

levels definea set of the automated management processes that should be implemented based on the 

system requirements. For each maturity level, we defined a software design pattern that delineates 

the interaction among these management processes with the knowledge component and the human 

in order to enable the cognitive management with minimal human intervention. In this paper, we 

mainly detail the Autonomic Cognitive Management pattern which its implementation defined the 

most mature level. This pattern describes the coordination of the management processes and the 

ability of the system to dynamically discover new processes that can be combined at runtime with 

existing ones to manage unpredictable requirements. The ultimate objective is to provide flexible 

and smart IoT-based system that automatically adapts its processes based on the business context 

changeability.   

This paper is organized as follows. Section 2 highlights the trend of wearable computing in 

healthcare. Section 3 discusses existing IoT platforms and their ability to manage the system context 

changes. Section 4identifies the maturity levels that we propose for the design and development of 

smart IoT-based systems. Then, Section 5delineates the autonomic cognitive management pattern 

for smart IoT-based system manageability. Section 6 illustrates the utility of the proposed pattern 

when managing a patient with diabetes and hypertension diseases (comorbidity management). 

Finally, conclusion and future work are presented in Section 7. 

2 WEARABLE COMPUTING TREND IN HEALTHCARE 

The wide adoption of wearable technologies propels industries and researchers to team up 

together and provide more efficient solutions to track the human activities and continuously 

monitoring the patient vital’ signs [8-11]. Their integration in healthcare to monitor patients with 

serious conditions contributes to potentially reducing the healthcare cost by 88%1. Recently, Penders 

                                                                 
1http://healthcare.orange.com/eng/news/latests-news/2014/infographic-wearable-tech-boom-in-healthcare 

http://healthcare.orange.com/eng/news/latests-news/2014/infographic-wearable-tech-boom-in-healthcare


 

et al. [12] have pointed out the importance of tracking the lifestyle behaviors including physical 

activity, sleep, stress, diet, and weight management based on wearable sensors during pregnancy. 

The objective is to adapt and personalize the life style behaviors based on the collected data to 

provide healthier pregnancy. The use of wearable devices also pinpoints its impetus in the Active 

and Assisted Living (AAL) area, which aims at helping the disabled persons and elderly to offer a 

better quality of life. For instance, the work of Nicolelis [13] proposed to connect the brain to 

external devices in order to transform the brain signals into actions executed by the machine such 

as moving the limbs just by thinking [1] to help people suffering from catastrophic body paralysis 

performing the desired action2. 

Nowadays, the wearable market focuses on producing a new range of tiny wearables embedded 

within clothing and accessories to provide more efficient services and offer an easy interaction with. 

For instance, Ford is collaborating with RWTH Aachen University to integrate heart-monitoring 

sensors in the car seats to detect abnormal heartbeat and heart attacks. If detected, automated steering 

and braking systems will be activated3. Furthermore, Google X research lab has collaborated with 

the pharmaceutical business Novartis and Alcon's to create smart contact lenses4 that measure 

glucose levels in tears for diabetes patients and correct vision for people with presbyopia. Other 

research activities focus on managing IT challenges related to the integration of IoT. For instance, 

IBM Watson Health and Apple have announced a new collaboration that focuses on providing 

cloud-based platform for a secure management of the patient data. Based on Apple ResearchKit, 

IBM’s secure cloud and advanced analytics capabilities provide additional tools to accelerate 

discoveries across a wide variety of health issues5. At the University of Southern in Los Angeles, 

computer scientists and medical experts collaborate together and created an algorithm that uses data 

generated by various sensors including body sensors to better treat Parkison’s disease [14]. In this 

way, medical experts can evaluate the treatment efficiency and notify patients. 

The integration of wearables requires strengthening healthcare information systems in order to 

provide more personalized and high quality of care to patients. These technologies spawned a 

growing of the dataset and emphasized not only the huge volume of data but also its diversity and 

the speed at which it must be managed. According to the International Data Corporation (IDC)6, the 

worldwide wearable market forecast is expected to reach 126.1 million units in 2019. The 

heterogeneity and the large amount of the generated data are challenging. It requires automating the 

data processing in order to facilitate the interaction with experts, while guaranteeing the scalability 

of the system and optimizing the processing cost in terms of allocated resources and response time. 

Moreover, in complex systems, the system requirements and context evolution may be unpredictable 

at design time. Thus, the coordination and the integration of these management processes such as 

new sensors to monitor the system status are required. Thus, it is important to provide a flexible 

architecture able to integrate new processes that cooperate with existing processes to generate new 

knowledge concerning the patient and/or to manage detected/predicted anomalies. 

In the next section, we discuss existing works dealing with the integration and the management 

of IoT-based systems.  

3 RELATED WORK 

With the recent integration of IoT, different research activities focused on proposing platforms and 

architectures to manage IoT-based systems in various domains. IoT-A [15] is an IoT reference 

architecture that has been proposed to enable the interoperability among IoT connected devices. It 

describes sensors properties based on Semantic Sensor Network Ontology (SSN) [16], which is the 
                                                                 
2http://www.ctvnews.ca/sci-tech/cyborg-soccer-how-a-paraplegic-took-first-kick-at-the-world-cup-1.1868837 
3http://www.medtees.com/content/ecg_seat_fact_sheet_2.pdf 
4http://www.cnet.com/news/google-extends-smart-lens-tech-for-those-with-diabetes-vision-problems/ 
5IBM Press: http://www-03.ibm.com/press/us/en/pressrelease/46583.wss 
6International Data Cooperation: http://www.idc.com/getdoc.jsp?containerId=prUS25519615 

http://www.ctvnews.ca/sci-tech/cyborg-soccer-how-a-paraplegic-took-first-kick-at-the-world-cup-1.1868837
http://www.medtees.com/content/ecg_seat_fact_sheet_2.pdf
http://www.cnet.com/news/google-extends-smart-lens-tech-for-those-with-diabetes-vision-problems/
http://www-03.ibm.com/press/us/en/pressrelease/46583.wss
http://www.idc.com/getdoc.jsp?containerId=prUS25519615


 

most used ontology describing sensors and devices proposed by the W3C, the service model with 

OWL-S and extends them with an IoT information Model [17]. Moreover, IoT-A integrates the 

cloud computing for complex event processing [18] to guarantee scalability and efficiency. 

OpenIoT [19] is a semantic cloud-based approach for implementing and integrating IoT 

solutions. It uses X-GSN to annotate the sensors and observed value based on SSN ontology, and 

stores them in RDF stores in a cloud infrastructure in order to guarantee the scalability and the 

elasticity of the platform. Based on the semantic annotation, OpenIoT enables the semantic search 

and discovery of sensors and services. The observed data is stored as linked data and processed 

based on SPARQL queries which are continuously executed once data arrive. Mobile devices are 

connected to the X-GSN middleware via publish/subscribe Mobile broker in order to guarantee near-

real time management.  

Mingozzi et al. [20] proposed the Building the Environment for the Things as a Service 

(BETaaS) for the integration of distributed and heterogeneous existing IoT systems.  The solution 

adopted in BETaaS concentrates on exposing things as services (TaaS) through service-oriented 

interfaces, thus the integration is achieved with limited efforts and modifications. BETaaS is a  

semantic-driven solution where two ontologies [21] are defined: the BETaaS Things Ontology 

which reuses existing ontologies such as SSN, OWL-Time and QUDT, and the BETaaS Context 

Ontology which is the integration of the BOnSAI ontology, GeoNames ontology and GeoSPARQL 

ontology. BETaaS[22] includes also a big data manager in the TaaS and service layers that have the 

main functionalities gathering, storing, adapting, processing, and analyzing data. BETaaS is 

conceived to the management of smart building. 

In healthcare domain, Lasierra et al. [23] proposed an ontology to describe the patient’s vital 

signs and to enable semantic interoperability when monitoring patient data by formalizing the X73 

standard. Following the same direction, Kim et al. [24] proposed an ontology driven interactive 

healthcare with wearable sensors (OdIH_WS) to acquire context information at real time using 

ontological methods by integrating external data such as meteorological web site in order to prevent 

disease. Forkan et al. [25] proposed a cloud-based context-aware system called CoCaMAAL which 

covers challenges related to data collection and data processing in ambient assisted living systems. 

The authors proposed to mitigate the complexity of data computation from sensors to the cloud. 

They identified an abstract ontology to describe the context including patient information, the 

environment and devices. Jiang et al. [26] are interested in big data solutions for wearable systems 

in healthcare. They proposed a wearable sensor system with an intelligent information forwarder 

that adopts the Hidden Markov Model (HMM) to estimate the hidden wearer’s behaviors from 

sensor readings, and to determine the probability of the patient has a specific health state. 

Based on the state of the art, we noted that these works mainly address the heterogeneity of the 

IoT-generated data, the big data management and scalability management. Almost works are using 

ontologies to describe sensors and their properties. However, an IoT-based system includes also 

actuators which are considered as the entry point to manage the system based on the monitored and 

analyzed data. Moreover, there is a lack of self-management properties that allows the system 

automatically detecting anomalies, planning and performing actions to manage the system business 

context evolution. In this context, Ben Alaya et al. [27] have proposed the FRAMESELF framework 

implementing the autonomic computing paradigm for the self-management of M2M systems in the 

context of smart cities. Through implementing a rule-based approach, FRAMESELF detects the 

context changes based on the collected data from sensors, plans for new actions and performs them 

through the actuators. These management processes are referring to a knowledge base describing 

the sensors and actuators. In order to manage the heterogeneity of devices, the authors extended 

their work with the definition of the IoT-O [28] ontology, which enriches and reused existing 

ontologies such as SSN, DUL, HREST, ACT, TIME, MSM and QUDT, to semantically describe 

sensors and actuators for the autonomic management of M2M systems. IoT-O has been instantiated 

for the management of smart homes.  



 

Despite the diversity of the proposed platform, self-manageability properties of the IoT-based 

systems are rarely introduced, except the work of Ben Alaya et al. [27] which adopted the autonomic 

computing to automatically manage the system context changeability.  However, the authors did not 

consider the coordination of the management processes in complex systems where multiple MAPE-

K loops are required to manage the system requirements evolutions. Such situation is quite presented 

in healthcare, especially when managing the treatment of patients with chronic diseases based on 

the collected wearable data in order to predict and prevent health complications. It is important that 

the system should be aware about the context evolution of the patient health, and proposes to the 

experts at the right time the right processes to activate. To this end, we propose in this paper to deal 

with management processes coordination based on the system requirement evolution. Thus, we 

defined four generic maturity levels, independent from the applicative domain, for the development 

of smart IoT-based systems within organizations. These levels are detailed in the next section. 

4 AUTONOMIC COGNITIVE IOT-BASED SYSTEM MATURITY LEVELS 

Integrating new processes to meet new requirements requires additional efforts to understand the 

system process and avoid errors. It is important to provide a methodology that identifies and refines 

the system process improvement. In this context, the maturity levels have been introduced in order 

to define an evolutionary plateau for organization process improvement. Each maturity level 

comprises a set of process goals that, when satisfied, stabilize an important component of the 

software process [33]. 

IoT-based systems witness a rapid adoption in organizations. According to Gartner, more than half 

of major new business processes and systems will incorporate some element of IoT by 20207. Thus, 

maturity levels for the development and improvement of IoT-based system processes are required. 

Some efforts have been invested in this area. Capgemini Consulting defines three maturity levels8: 

the basic information support which implements processes that deliver alerts and notifications on 

the product status; the remote operability support which implements processes that remotely 

configure the product; and the performance improvement support which implements processes that 

predict maintenance and enhance productivity based on sensor data. However, these maturity levels 

do not consider the context changeability and the ability of the system to discover new processes 

that meet the system requirements’ evolution. Consequently, we propose in this paper four maturity 

levels implementing a set of processes that incrementally improve the system smartness. These 

processes are based on the combination of two principals: the autonomic computing and the 

cognitive computing in order to provide smart IoT-based systems. 

The maturity levels that we propose enriched the autonomic computing maturity levels9 (managed, 

adaptive, predictive and autonomic levels) with cognitive capabilities to represent the timeline 

evolution of the smart IoT-based systems development, as portrayed in Fig.1. The proposed maturity 

levels are the following: 

The Cognitive Monitoring Management level is the basic level that allows IoT-based system 

interacting with human through collecting and visualizing the observations. At this level, 

only the monitoring process is automated and it implements cognitive capabilities that 

allow perceiving the received data streams. This level is adequate for near real-time 

visualization of the system context evolution. For example, in healthcare, it is important to 

continuously monitor the glucose level of prediabetes or elderly people, who have the risk 

to develop diabetes, and automatically detect possible degradation. 

                                                                 
7http://www.gartner.com/newsroom/id/3185623 
8https://www.capgemini-consulting.com/resource-file-access/resource/pdf/the-internet-of-things.pdf 
9http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf 

http://www.gartner.com/newsroom/id/3185623
https://www.capgemini-consulting.com/resource-file-access/resource/pdf/the-internet-of-things.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf


 

The Predictive Cognitive Management level is an evolution of the Cognitive Monitoring 

Management level. At this level, the system goes further the visualization and detection to 

apply intelligent mechanisms such as machine learning and data mining algorithms that 

allow the system learning and predicting other related anomalies initially imperceptible 

from existing observable parameters. For example, if the patient has confirmed diabetes 

and is following specific treatments to manage her glucose level, it is important to predict 

the hypertension as it is a risk factor of diabetes, especially if the patient is not equipped 

with a blood pressure sensor. 

 

Fig.1. Autonomic cognitive IoT-based system maturity levels 

At the Prescriptive Cognitive Management level, the system is able to provide business 

decisions to the expert based on the system context and through reasoning on the procedural 

knowledge, which includes the business rules populated by the business experts. As 

decisions are business related, the system sends the recommendations to the appropriate 

practitioner. For example, if the system detects that a patient with diabetes is getting worse 

while following a specific treatment; it will adapt the treatment through generating another 

personalized treatment and send it to the right physician. 

The most mature level is the Autonomic Cognitive Management level. In complex systems, the 

context is dynamically changing, especially if the subsystems are interconnected and 

dependent. Thus, the system should be able to dynamically discover management processes 

based on the sub-systems’ context evolution in order to provide a proactive management. 

For example, we consider a patient who is managed through (Md, Ad, Pd, Ed) deployed for 

diabetes management. Because of aging, the patient may develop hypertension, thus, it is 

important that the system should be able to automatically search and activate the 

appropriate management processes managing the hypertension disease, besides diabetes, 

while interacting with experts who validate their activation as well as their 

recommendations for automatic execution. 

We associated for each level a pattern defining the coordination of the management processes. 

In the next section, we mainly delineate the pattern associated to the most mature level which 

enables the smart manageability of the IoT-based systems. 



 

5 AUTONOMIC COGNITIVE MANAGEMENT PATTERN FOR SMART IOT-BASED 

SYSTEMS 

The Autonomic Cognitive Management pattern answers the following question: “How a complex 

IoT-based system is able to dynamically manage the context changeability which may be 

unpredictable at design time?” We followed a pattern template to describe the context, the problem 

that this pattern dealt with, the proposed solution and the consequences of its application. 

Context. A smart IoT-based system is a system that should be able to manage its changes and 

evolution at runtime. The dynamic evolution of the business context requires dynamically 

integrating the management processes implementing business logic (such as new sensors for the 

monitoring, new analysis processes, etc), while interacting with the experts. Managing a complex 

system refers to simultaneously managing its sub-systems and coordinating the actions and their 

side effects that may impact the system functioning and state evolution, while optimizing the system 

design cost. 

Problem. Management processes (Monitoring, Analysis, Plan and Execution) may be 

heterogeneous and distributed, which hinder the coordination and the collaboration of these 

processes to manage complex requirements at runtime. Moreover, in business-oriented applications 

such as healthcare, the interaction with experts is required to automate the execution of the generated 

treatment plans as well as to learn business rules for the adaptation. Furthermore, in complex 

systems, the massive deployment of management processes may lead to an increased cost. It is 

important to think about the ability of sharing and reusing processes such as the Analysis and the 

Plan processes in order to help reducing the cost. 

Solution. To ensure the coordination of the management processes, we referred to the 

blackboard pattern [29].  This pattern has been widely used in the Artificial Intelligence domain for 

the dynamic control and coordination of the knowledge sources (KS) based on a control component 

(C). The control component supervises the shared blackboard among the KS. If the blackboard is 

modified, the control component activates the appropriate KS.  

In our pattern, we consider that the management processes and the human experts are KS and 

we introduced a set of control components that coordinate the execution of these management 

processes based on the shared blackboard. We decomposed the Blackboard component into 4 sub-

components: the SensoryKnowledge that semantically describes the used devices and the meaning 

of the generated data; the DataCuratedBlackborad that stores the monitored data; the 

ContextKnowledge that semantically describes the target goals of the monitored parameters and 

time-related information of each sub-system; and the ProceduralKnowledge describing the know-

how for decision making. Each management process refers to these sub-components to read or write 

information. We identified also four control components controlling these different blackboards in 

order to coordinate the execution of the management processes. The proposed pattern coordinates 

the following interactions: Monitoring-Analysis, Analysis-Analysis, Analysis-Plan, Plan-Expert, 

Expert-Execution. For instance, the ControlAA-AP is observing the ContextKnowledge. If the 

context has changed, the controller activates the appropriate Analysis process. If an anomaly is 

detected, it activates the Plan process to generate recommendations. 

 



 

 

Fig. 2.Autonomic cognitive management pattern 

To ensure the dynamic discovery and activation of the management processes in order to meet 

the system’s requirements evolution, we propose to extend the basic control components with a 

semantic model, named Management Process Ontology (MPO), describing the management 

processes as well as their conditions of activation, as presented in Fig.3. The “Management Process” 

class represents a generalization of the Monitoring, Analysis, Plan and Execution processes. The 

coordination is achieved through the control components that automatically discover the 

management process that should be activated to meet the system context evolution. 

Fig.3 delineates the Management Process Ontology. We associated for each managed element 

a set of conditions describing the context, and a set of management processes managing its context 
changeability. Each management process is considered as an atomic process that has a set of 

preconditions expressed as conditions in order to guarantee its activation and enactment. These 

management processes can be the “mpo:MonitoringProcess”, the “mpo:AnalysisProcess”, the 

“mpo:PlanProcess” or the “mpo:ExecutionProcess”. As we consider all processes are atomic, so the 

“mpo:MonitoringProcess” monitors only one “mpo:Parameter” and stores the measured data in the 

“mpo:DataBlackBoard” identified through an ID and an endpoint that will be used to retrieve the 

stored data. In case of observing more than one parameter, the “mpo:ManagedElement” is 

supervised by multiple “mpo:MonitoringProcess”. 



 

 

Fig. 3.Management Process Ontology (MPO) 

MPO reuses existing ontologies such as the Minimal Service Model(MSM) ontology10which is 

a lightweight approach to the semantic modeling of Web service descriptions. Thus, each 

management process is a sub-class of the “msm:Operation” that has inputs and outputs represented 

respectively through the “msm:hasInput” and “msm:hasOutput” properties.MPO specializes the 

“msm:hasInput” and “msm:hasOutput” by introducing the following properties to guarantee the 

consistency of the acquired knowledge: 

• “mpo:TakesInput” to specify that the analysis process takes as input at least one parameter. 

• “mpo:GeneratesOutput” to specify that the analysis process analyzes one parameter. 

“mpo:TakesInputAnomaly” to specify that the plan process takes as input at least one 

anomaly. 

• “mpo:Generates” to specify that the plan process generates a personalized plan. 

The MPO has been conceived to allow the business experts populating the business rules 

through creating relations among these classes. Thus, the system easily interprets the business logic 

and enables the self-provisioning through dynamically discovering and composing the management 

processes to meet the system evolution. To this end, a set of SPARQL queries are proposed to enable 

the dynamic discovery of the management processes and keep the control components up-to-date 

with new management processes. Table 1 represents an example of a generic query that aims at 

discovering the monitoring processes and activating them based on the context changes. For 

instance, a patient with diabetes needs to check each 3 months his/her hypertension. Thus, the 

system should be able to search for possible available monitoring process to activate it. Thus, if the 

                                                                 
10http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html 

http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html


 

patient is equipped with a sensor that measures the blood pressure, the system will activate this 

process. Else, if the patient does not have a sensor, the control component executes the query 

presented in Table 2 to enable the predictive cognitive management of the hypertension. If the sensor 

and the monitoring process are activated, the system seeks for the appropriate analysis process in 

order to detect anomalies through enacting the Query3 presented in Table 3.  

Table 1. A query implemented in the ControlMA to activate the monitoring and sensor 

Query1. Discovery of the monitoring process and sensor to be activated based on the context changes 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX xsd: http://www.w3.org/2001/XMLSchema# 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX MPO:<http://homepages.laas.fr/emezghan/untitled-ontology-77#> 

SELECT distinct (?el AS ?ManagedElement) (?s AS ?Sensor) (?ap AS?MonitoringProcess ) (?endp AS ?Endpoint ) 

Where 

{ 

?apMPO:HasEndpoint ?endp. 

{ 

?ap1 rdf:typeMPO:MonitoringProcess. 

?el MPO:IsManagedBy ?ap1. 

?el MPO:HasSensor ?s. 

?s MPO:Implements ?ap. 

Filter (?ap1 != ?ap). 

} 

{Select ?e ?ap Where 

{ 

?aprdf:typeMPO:MonitoringProcess. 

?el MPO:HasCondition ?cond. 

?apMPO:HasActivationCondition ?cond. 

} 

} 

} GROUP BY ?ap ?el ?s ?endp 

 

Query 2 presented in Table 2 allows discovering the required predictive analysis processes that 

should be deployed in order to provide preventive management based on the context of the managed 

element. This query is a sub-query, having three nested queries. At a first stage, it selects the list of 

management processes that have common preconditions with the managed element context. Then, 

from the list of the returned processes, it filters those all preconditions are satisfied and should be 

activated. The next step will focus on selecting from the generated list the processes that can be 

enacted based on the availability of the patient monitored data. For example, if the selected analysis 

process takes as input two parameters while the managed element has only one monitored parameter, 

the process cannot be activated due to knowledge/data incompleteness. 

Table2. A query within the ControlAA-AP to activate a predictive analysis processes 

Query 2. Discovery of the predictive analysis process that should be activated 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX MPO:<http://homepages.laas.fr/emezghan/untitled-ontology-77#> 

Select (?el AS ?ManagedElement) (?ap AS ?AnalysisProcess ) (?endp AS ?Endpoint ) WHERE 

{ Filter (?m1 = ?m2). 

http://www.w3.org/2001/XMLSchema


 

?apMPO:HasEndpoint ?endp. 

{Select distinct ?el ?ap ?m1 (count(?p) AS ?m2) where 

{?apMPO:TakesInputs ?p. 

{SELECT distinct ?el ?ap (count(?param) AS ?m1) Where 

{ 
?apMPO:HasEndpoint ?endp. 
?ap1 rdf:typeMPO:MonitoringProcess. 
?el MPO:IsManagedBy ?ap1. 
?ap1 MPO:MonitorParam ?param. 
?apMPO:TakesInputs ?param. 
?apMPO:HasType ?type. 
?apMPO:generatesOutput ?paramO. 
?el MPO:IsManagedBy ?ape. 
?ape MPO:generatesOutput ?param1. 
?apMPO:HasType ?type. 
Filter (?ap != ?ape). 
Filter (?param1 != ?paramO). 
Filter (?type = ’Predictive’). 
} GROUP BY ?el ?ap ?m1 

} 
} Group by ?el ?ap ?m1 ?m2 
} 

{Select distinct ?ap WHERE 
{Filter (?c1 = ?c2). 

{SELECT distinct ?ap (count(?cond) AS ?c1) (count(?cond1) AS ?c2) Where 
{ 

{ 
?aprdf:typeMPO:AnalysisProcess. 
?apMPO:HasActivationCondition ?cond. 
?el MPO:HasCondition ?cond. 
} 
UNION 
{ 
?apMPO:HasActivationCondition ?cond1. 
} 

} GROUP BY ?ap ?c1 ?c2} 
}}} 

 

Consequence. Reusing management processes such as the Analysis and the Plan process 

reduces the cost of deploying for each managed element its own management processes. Based on 

the semantic description of the management processes and the flexible implementation of the 

business rules, the proposed pattern enables the dynamic discovery and activation of the 

management processes. The proposed pattern also keeps the experts in the loop for decisions 

approval. 

Conflicts when generating plans may occur when two or more Plan processes managing 

dependent sub-systems are simultaneously operating. As example of conflicts in comorbidity 

management is the presence of at least two treatments, identified by two plan processes, where the 

side effect of one of them represents a contraindication of the other; or also if one of them includes 

a drug that may interact with another drug belonging to the other treatment. We noted that when 

adopting a preventive approach, the simultaneous planning is seldom encountered. Thus, we 

proposed an ontology-driven approach [6] that enables the plan processes generating the appropriate 

treatment based on the diseases’ risk factors, the treatment side effects, and patient medical 

conditions. Based on inference rules and reasoning techniques, ontologies ensure the consistency of 

the generated treatments.  



 

In another context where ontologies are not used, standard solutions such as the synchronization 

based on tokens may be explored. 

Table3. Query within ControlMA for the detection analysis process activation 

Query 3.  Discovery of the detection analysis process that should be activated based on the new 

deployed monitoring process 
 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX MPO:<http://homepages.laas.fr/emezghan/untitled-ontology-77#> 
Select (?el AS ?ManagedElement) (?a AS ?AnalysisProcess) (?endpAS ?Endpoint) WHERE  
{ 
Filter (?c1= ?c2). 
?a MPO:HasEndpoint ?endp. 
{ 
Select distinct ?el ?a (count(?param2) AS ?c1) (count(?param3) AS?c2) WHERE 
{ 

{ 
{ 

{?m2rdf:typeMPO:MonitoringProcess. 
?el MPO:IsManagedBy ?m2. 
?m2 MPO:MonitorParam ?param2. 
?a MPO:TakesInputs ?param2. 
} 

Union 
{?aMPO:TakesInputs ?param3. } 

} 
} 
{SELECT distinct ?el ?a WHERE 
{ 
?el MPO:HasSensor ?s. 
?m rdf:typeMPO:MonitoringProcess. 
?s MPO:Implements ?m. 
?el MPO:IsManagedBy ?m. 
?m MPO:MonitorParam ?param. 
?a rdf:typeMPO:AnalysisProcess./ 
?a MPO:HasType ?type. 
?a MPO:generatesOutput ?param. 
?a1 rdf:typeMPO:AnalysisProcess. 
?el MPO:IsManagedBy ?a1. 
Filter (?a != ?a1). 
Filter (?type = ’Detection’). 
} 

} 
} Group By ?el ?a ?c1 ?c2}} 
 

 

The main objective of this pattern is to delineate the interaction and coordination of the 

management processes for the development of smart IoT-based systems. The instantiation of this 

pattern should be deployed in a semantic cloud-based big data platform in order to handle challenges 

related to the heterogeneity, big data and scalability management. In the new section, we propose to 

apply the proposed pattern for managing comorbidity. 

6 USE CASE: COMORBIDITY MANAGEMENT 

Comorbidity refers to the simultaneous or sequential occurrence of two disorders or illnesses in the 

same person. It also implies interactions between the illnesses that affect the course and prognosis 



 

of both [30]. In such cases, multiple management processes should be deployed and coordinated in 

order to manage the presented diseases and avoid possible complications derived from the diseases’ 

interactions. 

We assume that the proposed system is managing a group of patients with diabetes and another 

group of patient with hypertension. Each disease is managed by a set of management processes: for 

instance a patient with confirmed diabetes is managed by the MonitorGlucose, AnalyzeGlucose, 

PlanDiabetes and Execution processes; while a patient with confirmed hypertension is managed by 

BloodPressureMonitor, AnalyzeHypertension, PlanHypertension and Execution processes. Besides 

these processes, others such as the PredictHypertension are also defined and deployed. All these 

processes are annotated using MPO ontology. 

Considering a patient, named Patient1, who is diagnosed with diabetes. He has a wearable that 

can measure blood sugar and blood pressure through two different interfaces implementing two 

measurement services. Initially, only the monitoring of the blood sugar is activated to continuously 

monitor the glucose level, and as there is no need to measure the blood pressure. Thus, the wearable 

may save the battery longer. In general, each 3 months, the blood pressure needs to be checked. 

Patient 1 is managed by the diabetes management processes. We propose to apply the proposed 

pattern in order to smartly manage the patient treatment and detect at early stage comorbidity. 

Fig. 4 describes the behavior of our proposed system when implementing the cognitive 

management pattern to manage the Patient1 treatment. For clarity reasons, we abstract the control 

components, which are responsible of enabling the interaction among the management processes, 

and the blackboard sub-components (knowledge + databases). But, it is worth noting that in this use 

case the SensorKnowledge and the ContextKnowledge are represented using the Wearable 

Healthcare Ontology (WH_O) [31], while the ProceduralKnowledge is represented through the 

Treatment Plan Ontology (TPO) [6] which semantically annotates the medical interventions in order 

to enable the reasoning and generating personalized recommendations. The WH_O reuses: (i) the 

Sensor Model of IoT-O to describe the wearable capabilities, (ii) the Service Model to describe the 

wearable services and methods, and (iii) the Actuator Model for the autonomic management. An 

implementation of the cognitive monitoring management has been elaborated. For confidentiality 

reasons, the platform is not public. However, an evaluation of its performance as well as the list of 

technologies that have been used can be found in [32]. In this paper, we are interested in delineating 

the behavior of the system when implementing the autonomic cognitive management pattern, which 

is an extension of the cognitive monitoring management pattern, in order to discover and activate 

new processes based on the context changeability. 

When receiving new glucose data, the ControlAM activates the AnalyzeGlucose process. If an 

increase of the blood sugar of Patient1 is detected after 2 months, the control component activates 

the PredictHypertension in order to check if the Patient1 presents an increase of the blood pressure 

to be taken into consideration when planning for new diabetes treatment.  

If the hypertension is predicted, the system searches for the list of management processes to 

control hypertension and sends it to the physician for validation. In this case, the management 

processes are MonitorBloodPressure (because the patient is already equipped with a sensor 

measuring the blood pressure) and AnalyzeHypertension. Query1, presented in Table 1, represents 

a SPARQL query that deduces the activation of the MonitorBloodPressure based on the patient 

context, while query 3, represented in Table3, represents the SPARQL query that searches for 

reusable analysis process once the monitoring process is activated.  

In parallel to these steps for deploying the hypertension management processes, the 

PlanDiabetes process takes into consideration the predicted hypertension, generates the appropriate 

treatment and sends it to the physician who validates or adjusts the recommendations.  



 

Fig. 4. Instantiation of the autonomic cognitive management pattern in healthcare 



Finally, the Patient 1 will be managed by both the diabetes and hypertension management processes. 

The activation of these processes was driven by the Patient1 context changes; and dynamically 

composed based on the availability of data and the management processes. 

7 CONCLUSION 

By enabling communication and data exchange amongst heterogeneous devices, the IoT ultimately 

offer new opportunities for business development and/or accurate decision making. Many research 

activities have proposed IoT platforms to deal with such challenges. However, they rarely propose 

self-management properties that automate the system manageability and enable the continuous 

control of context changeability, as well as the coordination of the business processes to manage 

complex requirements. 

To this end, we propose in this paper four maturity levels that define the different stages that an 

IoT-based system implements to reach the smart manageability. For each level, we define a design 

patter that integrates a set of autonomic and cognitive capabilities which are selected based on the 

system requirements. We delineated in this paper the Autonomic Cognitive Management pattern 

which defines the most mature level. The proposed pattern is generic (domain independent). It is 

not limited to manage the context changeability, but it coordinates also the business processes based 

on the collected data from IoT. We demonstrated the use of the proposed pattern in healthcare, in 

particular for comorbidity management. 

Our future work focuses on deploying the instantiated management processes, the control and 

blackboard components within our Knowledge as a Service (KaaS) platform in order to evaluate the 

performance of the proposed solution in terms of response time and scalability management when 

discovery processes.   
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