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Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for
Accurate Tracking of High-Speed Trajectories

Matthias Faessler1, Antonio Franchi2, and Davide Scaramuzza1

Abstract— In this paper, we prove that the dynamical model
of a quadrotor subject to linear rotor drag effects is differen-
tially flat in its position and heading. We use this property to
compute feed-forward control terms directly from a reference
trajectory to be tracked. The obtained feed-forward terms are
then used in a cascaded, nonlinear feedback control law that
enables accurate agile flight with quadrotors. Compared to
state-of-the-art control methods, which treat the rotor drag
as an unknown disturbance, our method reduces the trajectory
tracking error significantly. Finally, we present a method based
on a gradient-free optimization to identify the rotor drag
coefficients, which are required to compute the feed-forward
control terms. The new theoretical results are thoroughly
validated trough extensive comparative experiments.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/

VIQILwcM5PA

I. INTRODUCTION

A. Motivation

For several years, quadrotors have proven to be suitable
aerial platforms for performing agile flight maneuvers . Nev-
ertheless, quadrotors are typically controlled by neglecting
aerodynamic effects, such as rotor drag, that only become
important for non-hover conditions. These aerodynamic ef-
fects are treated as unknown disturbances, which works well
when controlling the quadrotor close to hover conditions but
reduces its trajectory tracking accuracy progressively with
increasing speed. For fast obstacle avoidance it is important
to perform accurate agile trajectory tracking. To achieve this,
we require a method for accurate tracking of trajectories that
are unknown prior to flying.

The main aerodynamic effect causing trajectory tracking
errors during high-speed flight is rotor drag, which is a
linear effect in the quadrotor’s velocity [1]. In this work,
we aim at developing a control method that improves the
trajectory tracking performance of quadrotors by considering
the rotor drag effect. To achieve this, we first prove that
the dynamical model of a quadrotor subject to linear rotor
drag effects is differentially flat with flat outputs chosen
to be its position and heading. We then use this property
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Fig. 1: First-person-view racing inspired quadrotor platform used
for the presented experiments.

to compute feed-forward control terms directly from the
reference trajectory to be tracked. The obtained feed-forward
terms are then used in a cascaded, nonlinear feedback control
law that enables accurate agile flight with quadrotors on a
priori unknown trajectories. Finally, we present a method
based on a gradient-free optimization to identify the rotor
drag coefficients which are required to compute the feed-
forward control terms. We validate our theoretical results
through experiments with a quadrotor shown in Fig. 1.

B. Related Work

In [2], it was shown that the common model of a quadrotor
without considering rotor drag effects is differentially flat
when choosing its position and heading as flat outputs.
Furthermore, this work presented a control algorithm that
computes the desired collective thrust and torque inputs
from the measured position, velocity, orientation, and body-
rates errors. With this method, agile maneuvers with speeds
of several meters per second were achieved. In [3], the
differential flatness property of a hexarotor that takes the
desired collective thrust and its desired orientation as inputs
was exploited to compute feed-forward terms used in an
LQR feedback controller. The desired orientation was then
controlled by a separate low-level control loop, which also
enables the execution of flight maneuvers with speeds of sev-
eral meters per second. We extend these works by showing
that the dynamics of a quadrotor are differentially flat even
when they are subject to linear rotor drag effects. Similarly
to [3], we make use of this property to compute feed-forward
terms that are then applied by a position controller.

Rotor drag effects influencing a quadrotor’s dynamics
were investigated in [4] and [5] where also a control law
was presented, which considers these dynamics. Rotor drag
effects originate from blade flapping and induced drag of
the rotors, which are, thanks to their equivalent mathematical

https://youtu.be/VIQILwcM5PA
https://youtu.be/VIQILwcM5PA
http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch


x

B

y

B

z

B

Body

x

W

y

W

z

W

= z

C

World

x

C

y

C

 

�gz

W

Fig. 2: Schematics of the considered quadrotor model with the used
coordinate systems.

expression, typically combined as linear effects in a lumped
parameter dynamical model [6]. These rotor drag effects
were then incorporated in dynamical models of multi rotors
to improve state estimation in [7] and [8]. In this work, we
make use of the fact that the main aerodynamic effects are
of similar nature and can therefore be described together by
lumped parameters in a dynamical model.

In [9], the authors achieve accurate thrust control by
electronic speed controllers through a model of the aerody-
namic power generated by a fixed-pitch rotor under wind
disturbances, which reduces the trajectory tracking error
of a quadrotor. Rotor drag was also considered in control
methods for multi-rotor vehicles in [10] and [11], where
the control problem was simplified by decomposing the
rotor drag force into a component that is independent of
the vehicle’s orientation and one along the thrust direction,
which leads to an explicit expression for the desired thrust
direction. In [13], a refined thrust model and a control
scheme that considers rotor drag in the computation of the
thrust command and the desired orientation are presented.
Additionally to the thrust command and desired orientation,
the control scheme in [14] also computes the desired body
rates and angular accelerations by considering rotor drag but
requires estimates of the quadrotor’s acceleration and jerk,
which are usually not available. In contrast, we compute the
exact reference thrust, orientation, body rates, and angular
accelerations considering rotor drag only from a reference
trajectory, which we then use as feed-forward terms in the
controller.

II. NOMENCLATURE

In this work, we make use of a world frame W with
orthonormal basis {x

W

, y

W

, z

W

} represented in world co-
ordinates and a body frame B with orthonormal basis
{x

B

, y

B

, z

B

} also represented in world coordinates. The
body frame is fixed to the quadrotor with an origin coinciding
with its center of mass as depicted in Fig. 2. The quadrotor is
subject to a gravitational acceleration g in the �z

W

direction.
We denote the position of the quadrotor’s center of mass as
p, and its derivatives, velocity, acceleration, jerk, and snap
as v, a, j, and s, respectively. We represent the quadrotor’s

orientation as a rotation matrix R=
⇥
x

B

y

B

z

B

⇤
and

its body rates (i.e., the angular velocity) as ! represented
in body coordinates. To denote a unit vector along the z-
coordinate axis we write e

z

. Finally, we denote quantities
that can be computed from a reference trajectory as reference
values and quantities that are computed by an outer loop
feedback control law and passed to an inner loop controller
as desired values.

III. MODEL

We consider the dynamical model of a quadrotor with rotor
drag developed in [10] with no wind, stiff propellers, and no
dependence of the rotor drag on the thrust. According to this
model, the dynamics of the position p, velocity v, orientation
R, and body rates ! can be written as

ṗ = v (1)
v̇ = �gz

W

+ cz

B

�RDR

>
v (2)

Ṙ= R!̂ (3)
!̇ = J

�1 (⌧ � ! ⇥ J! � ⌧
g

�AR

>
v �B!) (4)

where c is the mass-normalized collective thrust,
D = diag (d

x

, d

y

, d

z

) is a constant diagonal matrix formed
by the mass-normalized rotor-drag coefficients, !̂ is a
skew-symmetric matrix formed from !, J is the quadrotor’s
inertia matrix, ⌧ is the three dimensional torque input, ⌧

g

are gyroscopic torques from the propellers, and A and B

are constant matrices. For the derivations and more details
about these terms, please refer to [10]. In this work, we
adopt the thrust model presented in [13]

c = c

cmd

+ k

h

v

2
h

(5)

where c

cmd

is the commanded collective thrust input, k
h

is
a constant, and v

h

= v

>(x
B

+ y

B

). The term k

h

v

2
h

acts as
a quadratic velocity-dependent input disturbance which adds
up to the input c

cmd

. The additional linear velocity-dependent
disturbance in the z

B

direction of the thrust model in [13]
is lumped by d

z

directly in (2) by neglecting its dependency
on the rotor speeds. Note that this dynamical model of a
quadrotor is a generalization of the common model found,
e.g., in [2], in which the linear rotor drag components are
typically neglected, i.e., D, A and B are considered null
matrices.

IV. DIFFERENTIAL FLATNESS

In this section, we show that the extended dynamical
model of a quadrotor subject to rotor drag (1)-(4) with four
inputs is differentially flat, like the model with neglected
drag [2]. In fact, we shall show that the states [p,v,R,!]
and the inputs [c

cmd

, ⌧ ] can be written as algebraic functions
of four selected flat outputs and a finite number of their
derivatives. Equally to [2], we choose the flat outputs to be
the quadrotor’s position p and its heading  .

To show that the orientation R and the collective thrust c
are functions of the flat outputs, we reformulate (2) as

cz

B

� (d
x

x

>
B

v) x
B

� (d
y

y

>
B

v) y
B

� (d
z

z

>
B

v) z
B

� a� gz

W

= 0. (6)
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From left-multiplying (6) by x

>
B

we get

x

>
B

↵ = 0, with ↵ = a+ gz

W

+ d

x

v. (7)

From left-multiplying (6) by y

>
B

we get

y

>
B

� = 0, with � = a+ gz

W

+ d

y

v. (8)

To enforce a reference heading  , we constrain the projection
of the x

B

axis into the x

W

� y

W

plane to be collinear with
x

C

(cf. Fig. 2), where

x

C

=
⇥
cos( ) sin( ) 0

⇤> (9)

y

C

=
⇥
� sin( ) cos( ) 0

⇤>
. (10)

From this, (7) and (8), and the constraints that x
B

, y
B

, and
z

B

must be orthogonal to each other and of unit length, we
can construct R with

x

B

=
y

C

⇥↵

ky
C

⇥↵k (11)

y

B

=
� ⇥ x

B

k� ⇥ x

B

k (12)

z

B

= x

B

⇥ y

B

. (13)

One can verify that these vectors are of unit length, perpen-
dicular to each other, and satisfy the constraints (7) - (10).
To get the collective thrust, we left-multiply (6) by z

>
B

c = z

>
B

(a+ gz

W

+ d

z

v) . (14)

Then the collective thrust input can be computed as a
function of c, R, and the flat outputs, as

c

cmd

= c� k

h

(v>(x
B

+ y

B

))2. (15)

To show that the body rates ! are functions of the flat outputs
and their derivatives, we take the derivative of (2)

j = ċz

B

+ cR!̂e

z

�R((!̂D+D!̂>)R>
v +DR

>
a) .

(16)
Left-multiplying (16) by x

>
B

and rearranging terms, we get

!

y

(c� (d
z

� d

x

) (z>
B

v))� !

z

(d
x

� d

y

) (y>
B

v)

= x

>
B

j+ d

x

x

>
B

a. (17)

Left-multiplying (16) by y

>
B

and rearranging terms, we get

!

x

(c+ (d
y

� d

z

) (z>
B

v)) + !

z

(d
x

� d

y

) (x>
B

v)

= �y

>
B

j� d

y

y

>
B

a. (18)

To get a third constraint for the body rates, we project (3)
along y

B

!

z

= y

>
B

ẋ

B

. (19)

Since x

B

is perpendicular to y

C

and z

B

, we can write

x

B

=
x̃

B

kx̃
B

k , with x̃

B

= y

C

⇥ z

B

. (20)

Taking its derivative as the general derivative of a normalized
vector, we get

ẋ

B

=
˙

x̃

B

kx̃
B

k � x̃

B

x̃

>
B

˙

x̃

B

kx̃
B

k3
(21)

and, since x̃

B

is collinear to x

B

and therefore perpendicular
to y

B

, we can write (19) as

!

z

= y

>
B

˙

x̃

B

kx̃
B

k . (22)

The derivative of x̃

B

can be computed as

˙

x̃

B

= ẏ

C

⇥ z

B

+ y

C

⇥ ż

B

, (23)

=
⇣
� ̇x

C

⌘
⇥ z

B

+ y

C

⇥ (!
y

x

B

� !

x

y

B

) . (24)

From this, (20), (22), and the vector triple product a

>(b ⇥
c) = �b

>(a⇥ c) we then get

!

z

=
1

ky
C

⇥ z

B

k

⇣
 ̇x

>
C

x

B

+ !

y

y

>
C

z

B

⌘
. (25)

The body rates can now be obtained by solving the linear
system of equations composed of (17), (18), and (25).

To compute the angular accelerations !̇ as functions of
the flat outputs and their derivatives, we take the derivative
of (17), (18), and (25) to get a similar linear system of
equations as

!̇

y

(c� (d
z

� d

x

) (z>
B

v))� !̇

z

(d
x

� d

y

) (y>
B

v)

= x

>
B

s� 2ċ!
y

� c!

x

!

z

+ x

>
B

⇠ (26)
!̇

x

(c+ (d
y

� d

z

) (z>
B

v)) + !̇

z

(d
x

� d

y

) (x>
B

v)

= �y

>
B

s� 2ċ!
x

+ c!

y

!

z

� y

>
B

⇠ (27)
�!̇

y

y

>
C

z

B

+ !̇

z

ky
C

⇥ z

B

k
=  ̈x

>
C

x

B

+ 2 ̇!
z

x

>
C

y

B

� 2 ̇!
y

x

>
C

z

B

� !

x

!

y

y

>
C

y

B

� !

x

!

z

y

>
C

z

B

(28)

which we can solve for !̇ with

ċ = z

>
B

j+ !

x

(d
y

� d

z

) (y>
B

v)

+ !

y

(d
z

� d

x

) (x>
B

v) + d

z

z

>
B

a (29)
⇠ = R(!̂2

D+D!̂2 + 2!̂D!̂>)R>
v

+ 2R(!̂D+D!̂>)R>
a +RDR

>
j. (30)

Once we know the angular accelerations, we can solve (4)
for the torque inputs ⌧ .

Note that, besides quadrotors, this proof also applies to
multi-rotor vehicles with parallel rotor axes in general. More
details of this proof can be found in our technical report [15].

V. CONTROL LAW

To track a reference trajectory, we use a controller con-
sisting of feedback terms computed from tracking errors as
well as feed-forward terms computed from the reference
trajectory using the quadrotor’s differential flatness property.
Apart from special cases, the control architectures of typical
quadrotors do not allow to apply the torque inputs directly.
They instead provide a low-level body-rate controller, which
accepts desired body rates. In order to account for this pos-
sibility, we designed our control algorithm with a classical
cascaded structure, i.e., consisting of a high-level position
controller and the low-level body-rate controller. The high-
level position controller computes the desired orientation
R

des

, the collective thrust input c
cmd

, the desired body rates
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!
des

, and the desired angular accelerations !̇
des

, which are
then applied in a low-level controller (e.g. as presented
in [16]). As a first step in the position controller, we compute
the desired acceleration of the quadrotor’s body as

a

des

= a

fb

+ a

ref

� a

rd

+ gz

W

(31)

where a

fb

are the PD feedback-control terms computed from
the position and velocity control errors as

a

fb

= �K

pos

(p� p

ref

)� K

vel

(v � v

ref

) (32)

where K

pos

and K

vel

are constant diagonal matrices and
a

rd

= �R

ref

DR

>
ref

v

ref

are the accelerations due to rotor
drag. We compute the desired orientation R

des

such that the
desired acceleration a

des

and the reference heading  

ref

is
respected as

z

B,des

=
a

des

ka
des

k (33)

x

B,des

=
y

C

⇥ z

B,des

ky
C

⇥ z

B,des

k (34)

y

B,des

= z

B,des

⇥ x

B,des

. (35)

By projecting the desired accelerations onto the actual body
z-axis and considering the thrust model (5), we can then
compute the collective thrust input as

c

cmd

= a

>
des

z

B

� k

h

(v>(x
B

+ y

B

))2. (36)

Similarly, we can compute the desired body rates as

!
des

= !
fb

+ !
ref

(37)

where !
fb

are the feedback terms computed from an at-
titude controller (e.g. as presented in [17]) and !

ref

are
feed-forward terms from the reference trajectory, which are
computed as described in Section IV. Finally, the desired
angular accelerations are the reference angular accelerations

!̇
des

= !̇
ref

(38)

which are computed from the reference trajectory as de-
scribed in Section IV.

VI. DRAG COEFFICIENTS ESTIMATION

To apply the presented control law with inputs [c
cmd

,!],
we need to identify D, and k

h

, which are used to compute
the reference inputs and the thrust command. If instead one
is using a platform that is controlled by the inputs [c

cmd

, ⌧ ],
A and B also need to be identified for computing the torque
input. While D and k

h

can be accurately estimated from
measured accelerations and velocities through (2) and (5),
the effects of A and B on the body-rate dynamics (4) are
weaker and require to differentiate the gyro measurements as
well as knowing the rotor speeds and rotor inertia to compute
⌧ and ⌧

g

. Therefore, we propose to identify D, A, B, and
k

h

by running a Nelder-Mead gradient free optimization [18]
for which the quadrotor repeats a predefined trajectory in
each iteration of the optimization. During this procedure, we
control the quadrotor by the proposed control scheme with
different drag coefficients in each iteration during which we

record the absolute trajectory tracking error (39) and use
it as cost for the optimization. Once the optimization has
converged, we know the coefficients that reduce the trajectory
tracking error the most. We found that the obtained values for
D agree with an estimation through (2) when recording IMU
measurements and ground truth velocity. This procedure has
the advantage that no IMU and rotor speed measurements
are required, which are both unavailable on our quadrotor
platform used for the presented experiments, and the gyro
measurements do not need to be differentiated. This is not the
case when performing the identification through (2), (4), and
(5). Also, since our method does not rely explicitly on (2), it
can also capture first order approximations of non modeled
effects lumped into the identified coefficients. Furthermore,
our implementation allows stopping and restarting the opti-
mization at any time, which allows changing the battery.

VII. EXPERIMENTS

A. Experimental Setup

Our quadrotor platform is built from off-the-shelf compo-
nents used for first-person-view racing (see Fig. 1). It features
a carbon frame with stiff six inch propellers, a Raceflight
Revolt flight controller, an Odroid XU4 single board com-
puter, and a Laird RM024 radio module for receiving control
commands. The platform weights 610 g and has a thrust-to-
weight ratio of 4. To improve its trajectory tracking accuracy
we compensate the thrust commands for the varying battery
voltage. All the presented flight experiments were conducted
in an OptiTrack motion capture system to acquire the ground
truth state of the quadrotor which is obtained at 200Hz and
is used for control and evaluation of the trajectory tracking
performance. Note that our control method and the rotor-drag
coefficient identification also work with state estimates that
are obtained differently than with a motion capture system.
We compensate for an average latency of the perception and
control pipeline of 32ms. The high-level control runs on a
laptop computer at 55Hz, sending collective thrust and body
rate commands to the on-board flight controller where they
are tracked by a PD controller running at 4 kHz.

To evaluate the trajectory tracking performance and as
cost for estimating the drag coefficients, we use the absolute
trajectory tracking error defined as the root mean square
position error

E

a

=

vuut 1

N

NX

k=1

��
E

k

p

��2
, where E

k

p

= p

k � p

k

ref

(39)

over N control cycles of the high-level controller required
to execute a given trajectory.

B. Trajectories

For identifying the rotor-drag coefficients and for demon-
strating the trajectory tracking performance of the proposed
controller, we let the quadrotor execute a horizontal circle
trajectory and a horizontal Gerono lemniscate trajectory.
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Fig. 3: The best performing drag coefficients d
x

and d
y

for every
iteration of the identification on both the circle and the lemniscate
trajectory.

The circle trajectory has a radius of 1.8m with a ve-
locity of 4m s�1 resulting, for the case of not consider-
ing rotor drag, in a required collective mass-normalized
thrust of c = 13.24m s�2 and a maximum body rates norm
of k!k = 85 � s�1. Its maximum nominal velocity in the
x

B

and y

B

is 4.0m s�1 and 0.0m s�1 in the z

B

di-
rection. The Gerono lemniscate trajectory is defined by⇥
x(t) = 2 cos

�p
2t
�
; y(t) = 2 sin

�p
2t
�
cos

�p
2t
�⇤

with a
maximum velocity of 4m s�1, a maximum collective mass-
normalized thrust of c = 12.98m s�2, and a maximum body
rates norm of k!k = 136 � s�1. Its maximum nominal ve-
locity in the x

B

and y

B

is 2.8m s�1 and 1.3m s�1 in the
z

B

direction for the case of not considering rotor drag.

C. Drag Coefficients Identification

To identify the drag coefficients in D, we ran the opti-
mization presented in Section VI multiple times on both the
circle and lemniscate trajectories until it converged, i.e., until
the changes of each coefficient in one iteration is below a
specified threshold. We do not identify A and B since the
quadrotor platform used for the presented experiments takes
[c

cmd

,!] as inputs and we therefore do not need to compute
the torque inputs involving A and B according to (4). Since
we found that d

z

and k

h

only have minor effects on the
trajectory tracking performance, we isolate the effects of d

x

and d

y

by setting d

z

= 0 and k

h

= 0 for the presented exper-
iments. For each iteration of the optimization, the quadrotor
flies two loops of either trajectory. The optimization typically
converges after about 70 iterations, which take around 30min
including multiple battery swaps.

The evolution of the best performing drag coefficients is
shown in Fig. 3 for every iteration of the proposed optimiza-
tion. On the circle trajectory, we obtained d

x

= 0.544 s�1

and d

y

= 0.386 s�1, whereas on the lemniscate trajectory
we obtained d

x

= 0.491 s�1 and d

y

= 0.236 s�1. For both
trajectories, d

x

is larger than d

y

, which is expected because
we use a quadrotor that is wider than long. The obtained drag
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Fig. 4: Ground truth position for ten loops on the circle trajectory
without considering rotor drag (solid blue), with drag coefficients
estimated on the circle trajectory (solid red), and with drag co-
efficients estimated on the lemniscate trajectory (solid yellow)
compared to the reference position (dashed black).

coefficients identified on the circle are different than the ones
identified on the lemniscate, which is due to the fact that the
circle trajectory excites velocities in the x

B

and y

B

more
than the lemniscate trajectory. We could verify this claim
by running the identification on the circle trajectory with
a speed of 2.8m s�1, which corresponds to the maximum
speeds reached in x

B

and y

B

on the lemniscate trajectory. For
this speed, we obtained d

x

= 0.425 s�1, and d

y

= 0.256 s�1

on the circle trajectory, which are close to the coefficients
identified on the lemniscate trajectory. Additionally, in our
dynamical model, we assume the rotor drag to be indepen-
dent of the thrust. This is not true in reality and therefore
leads to different results of the drag coefficient estimation
on different trajectories where different thrusts are applied.
These reasons suggest to carefully select a trajectory for the
identification, which goes towards the problem of finding the
optimal trajectory for parameter estimation, which is outside
the scope of this paper. In all the conducted experiments,
we found that a non zero drag coefficient in the z-direction
d

z

does not improve the trajectory tracking performance. We
found this to be true even for purely vertical trajectories with
velocities of up to 2.5m s�1. Furthermore, we found that an
estimated k

h

= 0.009m�1 improves the trajectory tracking
performance further but by about one order of magnitude
less than d

x

and d

y

on the considered trajectories.

D. Trajectory Tracking Performance

To demonstrate the trajectory tracking performance of the
proposed control scheme, we compare the position error of
our quadrotor flying the circle and the lemniscate trajectory
described above for three conditions: (i) without considering
rotor drag, (ii) with the drag coefficients estimated on the
circle trajectory, and (iii) with the drag coefficients estimated
on the lemniscate trajectory.1 Fig. 4 shows the ground truth

1Video of the experiments: https://youtu.be/VIQILwcM5PA
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Fig. 5: Ground truth position for ten loops on the lemniscate
trajectory without considering rotor drag (solid blue), with drag
coefficients estimated on the circle trajectory (solid red), and
with drag coefficients estimated on the lemniscate trajectory (solid
yellow) compared to the reference position (dashed black).

and reference position when flying the circle trajectory under
these three conditions. Equally, Fig. 5 shows the ground
truth and reference position when flying the lemniscate
trajectory under the same three conditions. The tracking
performance statistics for both trajectories are summarized
in Table I. From these statistics, we see that the trajec-
tory tracking performance has improved significantly when
considering rotor drag on both trajectories independently of
which trajectory the rotor-drag coefficients were estimated
on. This confirms that our approach is applicable to any
feasible trajectory once the drag coefficients are identified,
which is an advantage over methods that improve tracking
performance for a specific trajectory only (e.g. [19]). With
the rotor-drag coefficients estimated on the circle trajectory,
we achieve almost the same performance in terms of absolute
trajectory tracking error on the lemniscate trajectory as with
the coefficients identified on the lemniscate trajectory but not
vice versa. As discussed above, this is due to a higher excita-
tion in body velocities on the circle trajectory which results
in a better identification of the rotor-drag coefficients. This
suggests to perform the rotor-drag coefficients identification
on a trajectory that maximally excites the body velocities.

Since the rotor drag is a function of the velocity of the
quadrotor, we show the benefits of our control approach by
linearly ramping up the maximum speed on both trajectories
from 0m s�1 to 5m s�1 in 30 s. Fig. 6, and Fig. 7 show the
position error norm and the reference speed over time until
the desired maximum speed of 5m s�1 is reached for the
circle and the lemniscate trajectory, respectively. Both figures
show that considering rotor drag does not improve trajectory
tracking for small speeds below 0.5m s�1 but noticeably
does so for higher speeds.

An analysis of the remaining position error for the case
where rotor drag is considered reveals that it strongly corre-
lates to the applied collective thrust. In the used dynamical
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P
os
it
io
n
E
rr
or

N
or
m

kE
p
k
[m

]

S
p
ee
d
[m
s
]

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

Fig. 6: Position error norm kEpk when ramping the speed on
the circle trajectory from 0m s�1 up to 5m s�1 in 30 s without
considering rotor drag (solid blue), with drag coefficients estimated
on the circle trajectory (solid red), and with drag coefficients
estimated on the lemniscate trajectory (solid yellow). The reference
speed on the trajectory is shown in dashed purple.

model of a quadrotor, we assume the rotor drag to be
independent of the thrust [c.f. (2)], which is not true in
reality. For the experiment in Fig. 6, the commanded mass-
normalized collective thrust varies between 10m s�2 and
18m s�2 which clearly violates the constant thrust assump-
tion. By considering a dependency of the rotor drag on the
thrust might improve trajectory tracking even further and is
subject of future work.

VIII. COMPARISON TO OTHER CONTROL METHODS

In this section, we present a qualitative comparison to
other quadrotor controllers that consider rotor drag effects
as presented in [10], [11], [13], and [14].

None of these works show or exploit the differential
flatness property of quadrotor dynamics subject to rotor drag
effects. They also do not consider asymmetric vehicles where
d

x

6= d

y

and they omit the computation of !
z

and !̇
z

.
In [10] and [11], the presented position controller de-

composes the rotor drag force into a component that is
independent of the vehicle’s orientation and one along the
thrust direction, which leads to an explicit expression for the

TABLE I: Maximum and standard deviation of the position error
Ep as well as the absolute trajectory tracking error Ea (39) over
ten loops on both the circle and the lemniscate trajectory. For each
trajectory, we perform the experiment without considering drag,
with the drag coefficients identified on the circle trajectory, and
with the drag coefficients identified on the lemniscate trajectory.

Trajectory Params ID max (kEpk) � (kEpk) Ea

[cm] [cm] [cm]

Circle
Not Cons. Drag 21.08 2.11 17.53

Circle 14.54 2.63 6.54
Lemniscate 12.39 2.53 8.16

Lemniscate
Not Cons. Drag 16.79 3.19 11.27

Circle 10.25 2.30 5.56
Lemniscate 10.02 2.23 5.51
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Fig. 7: Position error norm kEpk when ramping the maximum
speed on the lemniscate trajectory from 0m s�1 up to 5m s�1 in
30 s without considering rotor drag (solid blue), with drag coeffi-
cients estimated on the circle trajectory (solid red), and with drag
coefficients estimated on the lemniscate trajectory (solid yellow).
The reference speed on the trajectory is shown in dashed purple.

desired thrust direction. They both neglect feed-forward on
angular accelerations, which does not allow perfect trajectory
tracking. As in our work, [10] models the rotor drag to
be proportional to the square root of the thrust, which
is proportional to the rotor speed, but then assumes the
thrust to be constant for the computation of the rotor drag,
whereas [11] models the rotor drag to be proportional to the
thrust. Simulation results are presented in [10] while real
experiments with speeds of up to 2.5m s�1 were conducted
in [11].

The controller in [13] considers rotor drag in the com-
putation of the thrust command and the desired orientation
but it does not use feed-forward terms on body rates and
angular accelerations, which does not allow perfect trajectory
tracking. In our work, we use the same thrust model but
neglect its dependency on the rotor speed. In [13], also
the rotor drag is modeled to depend on the rotor speed,
which is physically correct but requires the rotor speeds
to be measured for it to be considered in the controller.
They present real experiments with speeds of up to 4.0m s�1

and unlike us also show trajectory tracking improvements in
vertical flight.

As in our work, [14] considers rotor drag for the computa-
tion of the desired thrust, orientation, body rates, and angular
accelerations. However, their computations rely on a model
where the rotor drag is proportional to the rotor thrust. Also,
they neglect the snap of the trajectory and instead require
the estimated acceleration and jerk, which are typically not
available, for computing the desired body rates and angular
accelerations. The presented results in [14] stem from real
experiments with speeds of up to 1.0m s�1.

IX. CONCLUSION

We proved that the dynamical model of a quadrotor subject
to linear rotor drag effects is differentially flat. This property

was exploited to compute feed-forward control terms as
algebraic functions of a reference trajectory to be tracked. We
presented a control policy that uses these feed-forward terms,
which compensates for rotor drag effects, and therefore
improves the trajectory tracking performance of a quadrotor
already from speeds of 0.5m s�1 onwards. The proposed
control method reduces the root mean squared tracking error
by 50% independently of the executed trajectory, which we
showed by evaluating the tracking performance of a circle
and a lemniscate trajectory. In future work, we want to
consider the dependency of the rotor drag on the applied
thrust to further improve the trajectory tracking performance
of quadrotors.
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Figure 1: Schematics of the considered quadrotor model with the used coordinate

systems.

1 Math Basics

1.1 Definitions and Nomenclature

In this work, we make use of a world frameW with orthonormal basis {x
W

, y
W

, z
W

}
represented in world coordinates and a body frame B with orthonormal basis
{x

B

, y
B

, z
B

} also represented in world coordinates. The body frame is fixed
to the quadrotor with an origin coinciding with its center of mass as depicted
in Fig. 1. The quadrotor is subject to a gravitational acceleration g in neg-
ative z

W

direction. We denote the position of the quadrotor’s center of mass
as p, and its derivatives, velocity, acceleration, jerk, and snap as v, a, j, and
s, respectively. We represent the quadrotor’s orientation as a rotation matrix
R=

⇥
x

B

y
B

z
B

⇤
and its body rates (i.e., the angular velocity) as ! repre-

sented in body coordinates. In this work, we often make use of a skew symmetric
matrix formed from the body rates which is defined by

!̂ =

2

4
0 �!

z

!

y

!

z

0 �!
x

�!
y

!

x

0

3

5
. (1)

We define a rotor drag matrix, which is a constant diagonal matrix composed
of the rotor drag coe�cients, as

D =

2

4
d

x

0 0
0 d

y

0
0 0 d

z

3

5
. (2)
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To denote unit vectors along the coordinate axes we use

e
x

=
⇥
1 0 0

⇤>
(3)

e
y

=
⇥
0 1 0

⇤>
(4)

e
z

=
⇥
0 0 1

⇤>
. (5)

Finally, we denote quantities that can be computed from a reference trajectory
as reference values and quantities that are computed by an outer loop feedback
control law and passed to an inner loop controller as desired values.

1.2 Some Useful Identities and Derivations

The skew symmetric matrix !̂ has the following properties:

!̂> = �!̂ (6)

!̂> · b = �!̂ · b = �! ⇥ b = b⇥ ! (7)

where b is an arbitrary vector. The derivative of the orientation is

Ṙ= R · !̂ (8)

and the derivative of the norm of a vector b can be written as

d

dt

kbk =
b> · ḃ
kbk . (9)

Finally, in this work, we make use of the vector triple product of arbitrary
vectors a, b, and c:

a>(b⇥ c) = �b>(a⇥ c). (10)

1.3 Vector Derivatives in Di↵erent Coordinate Frames

Since derivatives of vectors that are represented in di↵erent coordinate frames
are important for the derivations in the proof of di↵erential flatness of quadrotor
dynamics, we introduce them here in detail. To avoid confusion in this section,
unlike in the rest of this report, we use subscripts to explicitly denote what
each variable depicts and in which coordinates it is represented. We denote the
derivative of an arbitrary vector b which is then represented in a coordinate
frame A as

A

˙(b) and the pure element wise derivative as
A

ḃ.
Since the world frame W is an inertial frame, taking the derivative of a

vector represented in world coordinates corresponds to taking the element wise
derivative

W

˙(b) =
W

ḃ. (11)

A vector represented in world coordinates
W

b is related to its representation in
body coordinates

B

b by a rotation R
WB

that represents the orientation of the
body frame B with respect to the world frame W as

W

b = R
WB

·
B

b. (12)
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With this and (8), we can write (11) as

W

˙(b) =
W

ḃ = R
WB

·
B

ḃ +R
WB

·
B

!̂
WB

·
B

b. (13)

Transforming this into body coordinates results in

B

˙(b) = R>
WB

·
W

˙(b) =
B

ḃ +
B

!
WB

⇥
B

b. (14)

In this work, we often make use of derivatives of the basis vectors of the body
frame x

B

, y
B

, and z
B

. Since these vectors are constant when represented in
body coordinates their element wise derivative in body coordinates is zero (e.g.,

B

ẋ
B

= 0). Therefore, we get the derivative of e.g. x
B

represented in world and
body coordinates as

W

˙(x
B

) = R
WB

·
B

!̂
WB

·
B

x
B

(15)

B

˙(x
B

) =
B

!̂
WB

·
B

x
B

=
B

!
WB

⇥
B

x
B

. (16)

Since we almost exclusively represent vectors in world coordinates and the ele-
ment wise derivative of the basis vectors are zero, we will write the derivative
of a basis vector represented in world coordinates as ẋ

B

instead of
W

˙(x
B

), as it
is done in [1], for clarity in the remainder of this report.

Note that a confusion of derivatives of vectors represented in world coordi-
nates or in body coordinates led to mistakes in [2], which we describe in more
detail in Appendix A.

2 Dynamical Model

We consider the dynamical model of a quadrotor with rotor drag developed
in [3] with no wind, sti↵ propellers, and no dependence of the rotor drag on the
thrust. According to this model, the dynamics of the position p, velocity v,
orientation R, and body rates ! can be written as

ṗ = v (17)

v̇ = �gz
W

+ cz
B

�RDR>v (18)

Ṙ= R!̂ (19)

!̇ = J�1 (⌧ � ! ⇥ J! � ⌧
g

�AR>v �B!) (20)

where c is the mass-normalized collective thrust, D = diag (d
x

, d

y

, d

z

) is a con-
stant diagonal matrix formed by the mass-normalized rotor-drag coe�cients, !̂
is a skew-symmetric matrix formed from !, J is the quadrotor’s inertia matrix,
⌧ is the three dimensional torque input, ⌧

g

are gyroscopic torques from the
propellers, and A and B are constant matrices. For the derivations and more
details about these terms, please refer to [3]. In this work, we adopt the thrust
model presented in [4]

c = c

cmd

+ k

h

v

2
h

(21)

5



where c

cmd

is the commanded collective thrust input, k

h

is a constant, and
v

h

= v>(x
B

+ y
B

). The term k

h

v

2
h

acts as a quadratic velocity-dependent input
disturbance which adds up to the input c

cmd

. The additional linear velocity-
dependent disturbance in the z

B

direction of the thrust model in [4] is lumped
by d

z

directly in (18) by neglecting its dependency on the rotor speeds. Note
that this dynamical model of a quadrotor is a generalization of the common
model found, e.g., in [2], in which the linear rotor drag components are typically
neglected, i.e., D, A and B are considered null matrices.

3 Proof of Di↵erential Flatness

In this section, we show that the extended dynamical model of a quadrotor
subject to rotor drag (17)-(20) with four inputs is di↵erentially flat, like the
model with neglected drag [2]. In fact, we shall show that the states [p,v,R,!]
and the inputs [c

cmd

, ⌧ ] can be written as algebraic functions of four selected
flat outputs and a finite number of their derivatives. Equally to [2], we choose
the flat outputs to be the quadrotor’s position p and its heading  .

3.1 Orientation and Thrust

To show that the orientation R and the collective thrust c are functions of the
flat outputs, we reformulate (18) as

cz
B

�RDR>v = a+ gz
W

(22)

cz
B

�
⇥
x

B

y
B

z
B

⇤
2

4
d

x

0 0
0 d

y

0
0 0 d

z

3

5

2

4
x>

B

y>
B

z>
B

3

5 · v = a+ gz
W

(23)

cz
B

� (d
x

x>
B

v) x
B

� (d
y

y>
B

v) y
B

� (d
z

z>
B

v) z
B

= a+ gz
W

. (24)

Left-multiply (24) by x>
B

�d

x

x>
B

v = x>
B

(a+ gz
W

) (25)

x>
B

(a+ gz
W

+ d

x

v) = 0. (26)

Left-multiply (24) by y>
B

�d

y

y>
B

v = y>
B

(a+ gz
W

) (27)

y>
B

(a+ gz
W

+ d

y

v) = 0. (28)

To form an orthonormal basis we additionally require

x>
B

x
B

= 1 (29)

y>
B

y
B

= 1 (30)

x>
B

y
B

= 0. (31)
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To enforce a reference heading  , we constrain the projection of the x
B

axis into
the x

W

� y
W

plane to be collinear with x
C

(c.f. Fig 1), where

x
C

=
⇥
cos( ) sin( ) 0

⇤>
(32)

y
C

=
⇥
� sin( ) cos( ) 0

⇤>
. (33)

From these constraints we can construct R with

x
B

=
y

C

⇥↵

ky
C

⇥↵k (34)

y
B

=
� ⇥ x

B

k� ⇥ x
B

k (35)

z
B

= x
B

⇥ y
B

(36)

as
R=

⇥
x

B

y
B

z
B

⇤
(37)

where

↵ = a+ gz
W

+ d

x

v (38)

� = a+ gz
W

+ d

y

v. (39)

One can verify that these vectors are of unit length, perpendicular to each
other, and satisfy the constraints (26) - (33). To get the thrust input, we left-
multiply (24) by z>

B

c� d

z

z>
B

v = z>
B

(a+ gz
W

) (40)

c = z>
B

(a+ gz
W

+ d

z

v) . (41)

Then the collective thrust input can be computed as a function of c, R, and the
flat outputs, according to the thrust model (21) as

c

cmd

= c� k

h

(v>(x
B

+ y
B

))2. (42)

3.2 Body Rates

To show that the body rates ! are functions of the flat outputs and their
derivatives, we take the derivative of (18)

j = ċz
B

+ cR!̂e
z

�R((!̂D+D!̂>)R>v +DR>a) . (43)

Left multiply (43) by x>
B

x>
B

j = c!

y

� !

z

(d
x

� d

y

) (y>
B

v)� !

y

(d
z

� d

x

) (z>
B

v)� d

x

x>
B

a. (44)

Left multiply (43) by y>
B

y>
B

j = �c!

x

� !

z

(d
x

� d

y

) (x>
B

v)� !

x

(d
y

� d

z

) (z>
B

v)� d

y

y>
B

a. (45)
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By projecting (19) along the y
B

we get

y>
B

Ṙ= y>
B

R!̂ (46)

!

z

= y>
B

ẋ
B

. (47)

Since x
B

is perpendicular to y
C

and z
B

, we can write

x
B

=
x̃

B

kx̃
B

k , with x̃
B

= y
C

⇥ z
B

. (48)

Taking its derivative as the general derivative of a normalized vector, we get

ẋ
B

=
˙̃x
B

kx̃
B

k � x̃
B

x̃>
B

˙̃x
B

kx̃
B

k3
. (49)

Since x̃
B

is collinear to x
B

and therefore perpendicular to y
B

, we can write (47)
as

!

z

= y>
B

˙̃x
B

kx̃
B

k . (50)

The derivative of x̃
B

can be computed as

˙̃x
B

= ẏ
C

⇥ z
B

+ y
C

⇥ ż
B

(51)

where, using (15),

ẏ
C

= R
WC

⇣
 ̇e

z

⇥ e
y

⌘
(52)

=
⇥
x

C

y
C

z
C

⇤ ⇣
� ̇e

x

⌘
(53)

= � ̇x
C

(54)

and

ż
B

= R!̂e
z

(55)

= R

2

4
!

y

�!
x

0

3

5 (56)

= !

y

x
B

� !

x

y
B

(57)

and therefore

˙̃x
B

= � ̇x
C

⇥ z
B

+ !

y

y
C

⇥ x
B

� !

x

y
C

⇥ y
B

. (58)
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From this and (50) and using the property in (10), we then get

!

z

= y>
B

˙̃x
B

kx̃
B

k (59)

=
1

kx̃
B

k

⇣
� ̇y>

B

(x
C

⇥ z
B

) + !

y

y>
B

(y
C

⇥ x
B

)
⌘

(60)

=
1

kx̃
B

k

⇣
 ̇x>

C

(y
B

⇥ z
B

)� !

y

y>
C

(y
B

⇥ x
B

)
⌘

(61)

=
1

kx̃
B

k

⇣
 ̇x>

C

x
B

+ !

y

y>
C

z
B

⌘
. (62)

The body rates can then be computed from a linear system of equations com-
posed of (44), (45), and (62)

!

y

(c� (d
z

� d

x

) (z>
B

v))� !

z

(d
x

� d

y

) (y>
B

v) = x>
B

j+ d

x

x>
B

a (63)

!

x

(c+ (d
y

� d

z

) (z>
B

v)) + !

z

(d
x

� d

y

) (x>
B

v) = �y>
B

j� d

y

y>
B

a (64)

�!
y

y>
C

z
B

+ !

z

ky
C

⇥ z
B

k =  ̇x>
C

x
B

(65)

as

!

x

=
�B1C2D3 + B1C3D2 � B3C1D2 + B3C2D1

A2 (B1C3 � B3C1)
(66)

!

y

=
�C1D3 + C3D1

B1C3 � B3C1
(67)

!

z

=
B1D3 � B3D1

B1C3 � B3C1
(68)

where

B1 = c� (d
z

� d

x

) (z>
B

v) (69)

C1 = � (d
x

� d

y

) (y>
B

v) (70)

D1 = x>
B

j+ d

x

x>
B

a (71)

A2 = c+ (d
y

� d

z

) (z>
B

v) (72)

C2 = (d
x

� d

y

) (x>
B

v) (73)

D2 = �y>
B

j� d

y

y>
B

a (74)

B3 = �y>
C

z
B

(75)

C3 = ky
C

⇥ z
B

k (76)

D3 =  ̇x>
C

x
B

. (77)

3.3 Torque Inputs

To show that the angular accelerations !̇ are functions of the flat outputs and
their derivatives, we take the derivative of (43)

s = c̈z
B

+ 2ċR!̂e
z

+ c

⇣
R!̂2e

z

+R ˙̂!e
z

⌘
�R

⇣
˙̂!D+D ˙̂!

>
⌘
R>v � ⇠ (78)
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where

⇠ = R(!̂2D+D!̂2 + 2!̂D!̂>)R>v +2R(!̂D+D!̂>)R>a +RDR>j. (79)

Left multiplying (78) by x>
B

and rearranging terms

!̇

y

B1 + !̇

z

C1 = x>
B

s� 2ċ!
y

� c!

x

!

z

+ x>
B

⇠. (80)

Left multiplying (78) by y>
B

and rearranging terms

!̇

x

A2 + !̇

z

C2 = �y>
B

s� 2ċ!
x

+ c!

y

!

z

� y>
B

⇠. (81)

We get a third constraint for the angular accelerations by di↵erentiating (65)
and using (48) as

� !̇

y

y>
C

z
B

� !

y

ẏ>
C

z
B

� !

y

y>
C

ż
B

+ !̇

z

ky
C

⇥ z
B

k+ !

z

x̃>
B

˙̃x
B

kx̃
B

k
=  ̈x>

C

x
B

+  ̇ẋ>
C

x
B

+  ̇x>
C

ẋ
B

(82)

which can be simplified to

�!̇
y

y>
C

z
B

+ !̇

z

ky
C

⇥ z
B

k =  ̈x>
C

x
B

+ 2 ̇!
z

x>
C

y
B

� 2 ̇!
y

x>
C

z
B

� !

x

!

y

y>
C

y
B

� !

x

!

z

y>
C

z
B

(83)

by using the following derivations:
From (54) we get

� !

y

ẏ>
C

z
B

=  ̇!

y

x>
C

z
B

. (84)

From(57) and the fact that y>
C

x
B

= 0, we get

� !

y

y>
C

ż
B

= !

x

!

y

y>
C

y
B

. (85)

From (48) and using (10) and (58) we get

!

z

x̃>
B

˙̃x
B

kx̃
B

k = !

z

x>
B

˙̃x
B

(86)

= !

z

x>
B

⇣
� ̇x

C

⇥ z
B

+ !

y

y
C

⇥ x
B

� !

x

y
C

⇥ y
B

⌘
(87)

= !

z

⇣
� ̇x>

B

(x
C

⇥ z
B

)� !

x

x>
B

(y
C

⇥ y
B

)
⌘

(88)

= !

z

⇣
 ̇x>

C

(x
B

⇥ z
B

) + !

x

y>
C

(x
B

⇥ y
B

)
⌘

(89)

= !

z

⇣
� ̇x>

C

y
B

+ !

x

y>
C

z
B

⌘
. (90)

Similarly to (54), we can derive

ẋ
C

= R
WC

⇣
 ̇e

z

⇥ e
x

⌘
(91)

=
⇥
x

C

y
C

z
C

⇤ ⇣
 ̇e

y

⌘
(92)

=  ̇y
C

(93)
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and with this and the fact that y>
C

x
B

= 0

 ̇ẋ>
C

x
B

=  ̇

2y>
C

x
B

= 0. (94)

And finally, similarly to (57), we get

ẋ
B

= R!̂e
x

(95)

= R

2

4
0
!

z

�!
y

3

5 (96)

= !

z

y
B

� !

y

z
B

(97)

which leads to
 ̇x>

C

ẋ
B

=  ̇!

z

x>
C

y
B

�  ̇!

y

x>
C

z
B

. (98)

The derivative of the thrust can be obtained by left multiplying (43) by z>
B

ċ = z>
B

j+ !

x

(d
y

� d

z

) (y>
B

v) + !

y

(d
z

� d

x

) (x>
B

v) + d

z

z>
B

a. (99)

The angular accelerations can now be computed from a linear system of equa-
tions composed of (80), (81), and (83)

!̇

y

B1 + !̇

z

C1 = E1 (100)

!̇

x

A2 + !̇

z

C2 = E2 (101)

!̇

y

B3 + !̇

z

C3 = E3 (102)

as

!̇

x

=
�B1C2E3 + B1C3E2 � B3C1E2 + B3C2E1

A2 (B1C3 � B3C1)
(103)

!̇

y

=
�C1E3 + C3E1
B1C3 � B3C1

(104)

!̇

z

=
B1E3 � B3E1
B1C3 � B3C1

(105)

where

E1 = x>
B

s� 2ċ!
y

� c!

x

!

z

+ x>
B

⇠ (106)

E2 = �y>
B

s� 2ċ!
x

+ c!

y

!

z

� y>
B

⇠ (107)

E3 =  ̈x>
C

x
B

+ 2 ̇!
z

x>
C

y
B

� 2 ̇!
y

x>
C

z
B

� !

x

!

y

y>
C

y
B

� !

x

!

z

y>
C

z
B

. (108)

The torque inputs can finally be computed from (20).

4 Special Cases

In this section, we present some practical workarounds for some special cases
where the presented math is not valid. These workarounds typically only work
if we can assume that these special cases only occur for very short durations at
a time.
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Case - y
C

⇥↵ = 0: This case occurs if either y
C

is aligned with ↵ (defined
in (38)) or ↵ = 0. In this case, any x

B

that is perpendicular to y
C

satisfies the
constraint (26). To overcome this ambiguity, we compute x

B

by projecting the
estimated body x-axis into the x

C

� z
C

plane and normalizing it as

x
B

=
x

B,est �
�
x>

B,estyC

�
y

C��x
B,est �

�
x>

B,estyC

�
y

C

�� . (109)

If the obtained
��x

B,est �
�
x>

B,estyC

�
y

C

�� = 0, we set x
B

= x
C

. Note that this
might lead to jumps in the desired orientation. By assuming that this special
case only occurs for a short duration it might be better to just remember the
last desired orientation that was computed before the special case occurred.

Case - � ⇥ x
B

= 0: This case occurs if either x
B

is aligned with � (defined
in (39)) or � = 0. In this case, any y

B

that is perpendicular to x
B

satisfies
the constraint (54). To overcome this ambiguity, we compute y

B

by the cross
product of the estimated body z-axis z

B,est and x
B

and normalizing it as

y
B

=
z

B,est ⇥ x
B

kz
B,est ⇥ x

B

k . (110)

If the obtained kz
B,est ⇥ x

B

k = 0, we set y
B

= y
C

. Note that this might lead
to jumps in the desired orientation. By assuming that this special case only
occurs for a short duration it might be better to just remember the last desired
orientation that was computed before the special case occurred.

Case - Inverted Flight where z>
W

↵ < 0: In the case where z>
W

↵ < 0, (34)
leads to a body x-axis x

B

which has a projection into the x
W

� y
W

plane that
points into the �x

C

direction. It is still collinear to x
C

but this causes the
actual heading to be o↵ by 180� from the reference heading  

ref

. Enforcing the
reference heading during inverted flight by changing the sign of the desired x

B

axis might lead to a jump in the desired orientation. However, to the best of
our knowledge, it is not possible to prevent jumps in the orientation for any
trajectory. For example, when performing a vertical loop where parts of it are
flown upside down, we end up with a continuous orientation of the quadrotor
for a reference heading  

ref

= 0� when allowing the quadrotor to have its actual
heading 180� o↵ as long as it flies upside down. When doing the same with a
reference heading  

ref

= 90�, we do not end up with a continuous orientation of
the quadrotor when applying the same method. In this particular case, changing
the sign of x

B

when the quadrotor is inverted, would lead to a continuous
orientation over the entire loop. In summary, the presented computation of the
desired orientation is not well suited for inverted flights, which require special
considerations.

Case - A2 = 0 or (B1C3 � B3C1) = 0: The solutions of the body rates (66)-
(68) and angular accelerations (103)-(105) are obtained by divisions where the

12



denominator is composed of coe�cients as defined in (69)-(77). These denom-
inator can become zero which makes the body rates and angular accelerations
undefined. Similarly to ↵ = 0 and � = 0, this is the case where the quadrotor
is executing ballistic trajectories. In such cases we set ! = 0 and !̇ = 0.
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Appendices

A Incorrectnesses in Original Di↵erential Flat-
ness Derivation

The work presented in [1] extends the work of [2], which can be considered the
first paper that proves di↵erential flatness for quadrotors without considering
rotor drag. However, we would like to point out two incorrectnesses found in [2]
that might be confusing when comparing it to our derivations. For this, we
use red color to refer to equations in [2]. Note that in this work we are using
a di↵erent index convention, i.e., we denote the rotation rates of e.g. B with
respect to W as !

WB

whereas it is denoted as !
BW

in [2] but in this section, we
adopt their convention when referring to their equations.

The first incorrectness in [2] is due to a confusion of the representation of vectors
in world or body coordinates (see Section 1.3 for details). In equation (7) the
derivative of equation (3) is computed as

mȧ = u̇1zB

+ !
BW

⇥ u1zB

. (111)

However, equation (3) including z
B

is represented in world coordinates. By
taking its derivative, we get

mȧ = u̇1zB

+ u1 żB

(112)

= u̇1zB

+ u1R!̂e
z

. (113)

The fallacy in (111) is that ż
B

is computed as if z
B

was represented in body
coordinates (c.f. (16)) but it is represented in world coordinates and hence its
derivative is ż

B

= R!̂e
z

, (c.f. (15)). However, by chance, the correct roll and
pitch rates are obtained in [2] since the projections of !

BW

⇥ z
B

and R!̂e
z

onto
the x

B

and y
B

axes are equal. Note that when taking the second derivative of
equation (3) as done in [2] and computing the angular accelerations from that,
unlike for the body rates, would not result in correct values anymore.

The second incorrectness in [2] in the same section in the computation of the
third component of the body rates. It is stated that ”the third component r is

found by simply writing !
BW

= !
BC

+ !
CW

and observing that !
BC

has no z
B

component”, which is not correct, i.e., generally !
BC

· z
B

6= 0. Based on this
incorrect assumption, the third component of the body rates is then computed
as

r = !
CW

· z
B

=  ̇z
W

· z
B

(114)

but for
!

BW

= !
BC

+ !
CW

(115)

to hold, all vectors must be expressed in the same coordinate frame, which
in this case has to be the B frame since the body rates !

BW

are expressed

14



in body coordinates. Conversely, !
CW

=  ̇z
W

as used in (114) is only valid if
!

CW

was expressed in world coordinates, which is not the case. Similarly, the
angular accelerations are computed incorrectly. The necessary third constraint
for computing the correct body rates is (47).
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