

## Impact of acceptor concentration on electrical properties and density of interface states of 4H-SiC n-metal-oxide-semiconductor field effect transistors studied by Hall effect

Guillermo Ortiz, Christian Strenger, Viktoriya Uhnevionak, A Burenkov, Anton J Bauer, Peter Pichler, Fuccio Cristiano, Eléna Bedel-Pereira, Vincent

Mortet

## ▶ To cite this version:

Guillermo Ortiz, Christian Strenger, Viktoriya Uhnevionak, A Burenkov, Anton J Bauer, et al.. Impact of acceptor concentration on electrical properties and density of interface states of 4H-SiC n-metal-oxide-semiconductor field effect transistors studied by Hall effect. Applied Physics Letters, 2015, 106 (6), pp.062104. 10.1063/1.4908123 . hal-01659149

## HAL Id: hal-01659149 https://laas.hal.science/hal-01659149

Submitted on 8 Dec 2017

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. AP Applied Physics Letters



Impact of acceptor concentration on electrical properties and density of interface states of 4H-SiC n-metal-oxide-semiconductor field effect transistors studied by Hall effect

G. Ortiz, C. Strenger, V. Uhnevionak, A. Burenkov, A. J. Bauer, P. Pichler, F. Cristiano, E. Bedel-Pereira, and V. Mortet

Citation: Applied Physics Letters **106**, 062104 (2015); doi: 10.1063/1.4908123 View online: http://dx.doi.org/10.1063/1.4908123 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/106/6?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Influence of the surface morphology on the channel mobility of lateral implanted 4H-SiC(0001) metal-oxidesemiconductor field-effect transistors J. Appl. Phys. **112**, 084501 (2012); 10.1063/1.4759354

Enhanced channel mobility of 4H–SiC metal–oxide–semiconductor transistors fabricated with standard polycrystalline silicon technology and gate-oxide nitridation Appl. Phys. Lett. **80**, 4253 (2002); 10.1063/1.1483125

Using the Hall effect to measure interface trap densities in silicon carbide and silicon metal-oxide-semiconductor devices Appl. Phys. Lett. **80**, 3219 (2002); 10.1063/1.1473867

Relationship between channel mobility and interface state density in SiC metal–oxide–semiconductor field-effect transistor

J. Appl. Phys. 91, 1568 (2002); 10.1063/1.1428085

A cause for highly improved channel mobility of 4H-SiC metal–oxide–semiconductor field-effect transistors on the (1120) face Appl. Phys. Lett. **78**, 374 (2001); 10.1063/1.1340861

> Confidently measure down to 0.01 fA and up to 10 PΩ Keysight B2980A Series Picoammeters/Electrometers



## Impact of acceptor concentration on electrical properties and density of interface states of 4H-SiC n-metal-oxide-semiconductor field effect transistors studied by Hall effect

G. Ortiz, <sup>1,a)</sup> C. Strenger,<sup>2</sup> V. Uhnevionak,<sup>2</sup> A. Burenkov,<sup>2</sup> A. J. Bauer,<sup>2</sup> P. Pichler,<sup>2</sup> F. Cristiano, <sup>1,3</sup> E. Bedel-Pereira, <sup>1,3,b)</sup> and V. Mortet<sup>1,4,c)</sup> <sup>1</sup>LAAS-CNRS, 7 avenue du colonel Roche, BP 54200, 31031 Toulouse Cedex 4, France <sup>2</sup>Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany <sup>3</sup>Univ de Toulouse, LAAS, 31400 Toulouse, France <sup>4</sup>Academy of Sciences of the Czech Republic, v.v.i. Prague 8, Czech Republic

(Received 18 December 2014; accepted 3 February 2015; published online 10 February 2015)

Silicon carbide n-type metal-oxide-semiconductor field effect transistors (MOSFETs) with different p-body acceptor concentrations were characterized by Hall effect. Normally OFF MOSFETs with good transfer characteristics and low threshold voltage were obtained with a peak mobility of  $\sim$ 145 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> for the lowest acceptor concentration. The results are explained in terms of an increase of Coulomb scattering centers when increasing the background doping. These scattering centers are associated to fixed oxide and trapped interface charges. Additionally, the observed mobility improvement is not related to a decrease of the interface states density as a function of background doping. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908123]

The 4H polytype of silicon carbide (SiC) is a wide bandgap semiconductor with superior properties that is foreseen to replace silicon in power and high-temperature applications. In recent years, due to the maturity in material processing and device technology, SiC Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) have become commercially available. However, the low inversion-layer electron mobility in 4H-SiC MOSFETs remains a major limiting problem for applications. This poor mobility is generally assumed to be related to very high densities of interface states (D<sub>it</sub>). Thus, numerous papers have focused on the role of D<sub>it</sub> on electrical properties of Si-face 4H-SiC MOSFETs.<sup>1,2</sup>

It has been shown that  $H_2$  annealing reduces  $D_{it}\xspace$  but the improvement in channel mobility is small.<sup>3–5</sup> Chung et al.<sup>6</sup> demonstrated that the field-effect mobility of Si-face 4H-SiC MOSFETs can be increased to 30-35 cm<sup>2</sup>/V s by NO annealing. The nitridation techniques (NO,  $N_2O$ ,  $N^+$  implantation) have also been intensively investigated to reduce the D<sub>it</sub>, leading to a mobility improvement up to  $80 \text{ cm}^{-2}/\text{V}$  s for a MOSFET with  $5 \times 10^{15}$  cm<sup>-3</sup> p-body acceptor concentration. In addition, it has been shown that in n-type MOS capacitors,  $D_{it}$  near the conduction band edge  $E_{\rm C}$  is reduced by nitrogen implantation.<sup>7–9</sup> In fact, nitrogen treatments are not the only processes that have an influence on electrical properties. For instance, Kimoto et al.<sup>10</sup> reported on the increase of the mobility with decreasing the doping concentration of the p-body for various crystal faces. However, while proposing an explanation for this effect in terms of a reduced surface roughness scattering at low doping concentration, the impact of p-body doping concentration on D<sub>it</sub> was not investigated. Clearly, it is necessary to better understand the influence of the different fabrication processes on SiC devices in order to further improve their electrical properties.

Within this context, the aim of this paper is to study the impact of the p-body acceptor concentration ( $N_A$ ) on electrical properties of SiC n-channel MOSFETs, with an oxide grown under  $N_2O$  atmosphere, and their relationship with  $D_{it}$ . Electrical properties have been determined by the Hall effect technique. Compared to other techniques employed to determine the mobility (effective and field effect mobilities), Hall effect measurements allow the determination of Hall mobility and inversion carrier density independently of threshold voltage, which is difficult to accurately determine in the case of MOSFETs with high  $D_{it}$ .<sup>11</sup> Moreover, the Hall effect allows the determination of  $D_{it}$ , as demonstrated by Saks,<sup>11</sup> without needing to use n-type MOS capacitors, as for the C(V) technique.

Hall-bar n-channel MOSFETs (with a channel length of 500  $\mu$ m and a channel width of 80  $\mu$ m) were fabricated on 4° off-axis (0001) Si-face 4H-SiC epitaxial layers (from CREE Inc.) at the Fraunhofer Institute for Integrated Systems and Device Technology. Aluminum concentrations from  $1 \times 10^{15}$  to  $3.5 \times 10^{17}$  cm<sup>-3</sup> of the p-body region were achieved using two methods: (i) Aluminum (Al) doping during the epitaxial layer growth (epitaxial MOSFET) or (ii) p-well fabrication by multiple Al implants (implanted MOSFET) at 300 K on n-type epitaxial layers. The gate oxide, of about 26 nm, was grown by thermal oxidation in N<sub>2</sub>O atmosphere at 1553 K, followed by annealing in nitrogen for 30 min at the same temperature. Table I summarizes p-body doping concentrations and doping method of the fabricated MOSFETs. The detailed fabrication process is described elsewhere.<sup>12</sup>

Hall measurements were performed using a modified Accent HL 5500PC Hall effect system. All measurements were carried out at 300 K with a source-drain voltage of 100 mV and gate voltages ( $V_G$ ) up to 20 V. A detailed description of the

<sup>&</sup>lt;sup>a)</sup>Now with Spintec (CEA/CNRS/UJF/G-INP), 17 rue des Martyrs, 38054 Grenoble, France. Electronic mail: guillermo.ortiz@cea.fr.

<sup>&</sup>lt;sup>b)</sup>Electronic mail: elena@laas.fr

<sup>&</sup>lt;sup>c)</sup>J. E. Purkyne (ASCR) research fellow. Electronic mail: vmortet@yahoo.com.

TABLE I. Main characteristics of SiC MOSFETs: p-body acceptor concentration.

| Al concentration (cm $^{-3}$ ): N <sub>A</sub> | $3.5 \times 10^{17}$ | $1 \times 10^{17}$ | $5 \times 10^{16}$ | $1 \times 10^{16}$ | $5 	imes 10^{15}$ | $1 \times 10^{15}$ |
|------------------------------------------------|----------------------|--------------------|--------------------|--------------------|-------------------|--------------------|
| Substrate                                      | p-well               | p-well             | p-well             | p-well             | p-well            | Epitaxial          |

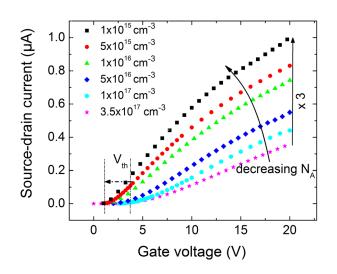



FIG. 1. Drain current as a function of gate voltage for MOSFETs with different acceptors concentrations.

experimental setup can be found in Ref. 13. Concerning the Hall scattering factor  $r_H$ , recent theoretical investigations<sup>14</sup> have proposed that  $r_H$  can be higher than unity; however, reliable experimental measurements of this parameter are still missing. In this work,  $r_H$  was therefore considered equal to 1 for all the investigated samples. This choice is not expected to affect the interpretation of the results.

Figure 1 shows the transfer characteristics  $(I_D-V_G)$  obtained for different values of  $N_A$  at 300 K. A significant improvement of the transistor output current (more than 3 times) and a decrease of  $V_{th}$  are observed when decreasing  $N_A$ . The arrows in Figure 1 indicate the direction of the changes for decreasing  $N_A$ . For all MOSFETs, the  $V_{th}$  values remain positive, i.e., all devices are normally OFF, which is an important aspect for application purposes. However, for  $N_A$  values below  $5 \times 10^{16}$  cm<sup>-3</sup>, such normally OFF MOSFETs cannot theoretically be achieved, <sup>15</sup> unless a large amount of negative charges is present between the gate and the inversion channel region, such as those resulting from carriers trapped by interface states.

Figures 2(a) and 2(b) show, respectively, the Hall mobility  $\mu_{\rm H}$  and the inversion carrier density  $n_{\rm inv}$  as a function of  $V_{\rm G}$  for devices with different  $N_{\rm A}$  measured at 300 K. Similar to the output current, we observe a strong improvement of channel mobility when decreasing NA. This behavior has been also observed in Si (Ref. 16) and in 4H-SiC (Ref. 17) MOSFETs. The maximum peak mobility value is of  $\sim 145 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$  for the MOSFET with lowest N<sub>A</sub>. It is worth noting that this mobility value is among the highest ever achieved, showing the efficiency of the fabrication process.<sup>13</sup> For comparison, we can cite Okamoto et al.<sup>18</sup> who obtained a peak mobility of  $89 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$  by introducing phosphorous atoms at the SiO2/SiC interface or Sveinbjörnsson et al.<sup>19</sup> who achieved a mobility of 150 cm<sup>2</sup>  $V^{-1}$  s<sup>-1</sup> by using alkali atoms leading to contaminated and unreliable oxides. Furthermore, the mobility behavior changes with N<sub>A</sub>. For devices with low N<sub>A</sub>,  $\mu_{\rm H}$  increases with  $V_{G}$  and then decreases while for devices with high  $N_{A}$ ,  $\mu_{\rm H}$  shows a slight increase and then saturates.

Comparing the behavior of  $\mu_{\rm H}$  to that of  $n_{\rm inv}$ , we observe a large increase of  $\mu_{\rm H}$  with decreasing p-body doping concentration while the effect on  $n_{\rm inv}$  is rather limited. Indeed, only a slight difference in slope of  $n_{\rm inv}(V_{\rm G})$  curves can be observed for voltages higher than 12 V, clearly indicating that the inversion carrier density is not correlated to the observed mobility behavior.

Alternatively, considering that Coulomb scattering by interface charges is the dominant mechansim<sup>20</sup> in the channel of SiC MOSFETs, the mobility degradation observed when increasing the p-body doping concentration might be due to the increase of interface charges. These Coulomb scattering centers can be associated with interface trapped charges,  $n_{it}$ , related to the interface state density,  $D_{it}$ , or have their origin in fixed charges located near the interface, such as fixed oxide charges,  $n_{ox}$ . Both types of charges will be calculated and discussed in the following.

In this respect, we first investigated the density of interface states. Using the method detailed in Ref. 21,  $D_{it}$  can be obtained from the comparison of the slopes of theoretical and experimental  $n_{inv}(V_G)$  curves. Theoretical curves stands for calculated curves without taking account of  $D_{it}$  and were obtained using Eq. (1), where  $Q_{sc}$  is the charge in the space charge region (calculated here by solving Poisson equation using Fermi-Dirac statistics<sup>22</sup>),  $C_{ox}$  is the oxide capacitance

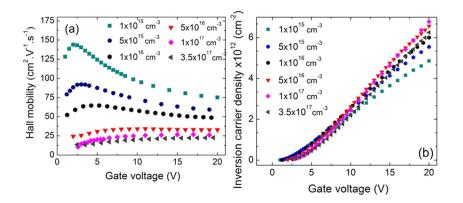



FIG. 2. (a) Hall mobility and (b) inversion carrier density as a function of gate voltage for MOSFETs with different p-body acceptors concentrations at 300 K.

his article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.93.4.10 On: Tue, 10 Feb 2015 14:55:31

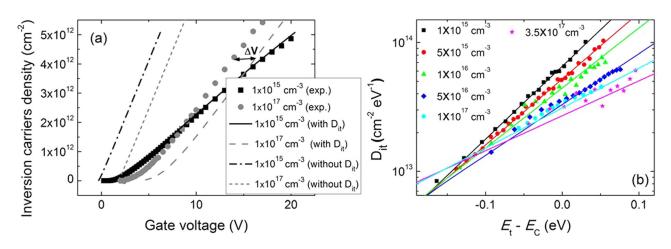



FIG. 3. (a) Experimental (symbols), theoretical ("without  $D_{it}$ "), and calculated ("with  $D_{it}$ ") inversion carriers density as a function gate voltage for devices with  $N_A$  of  $10^{15}$  and  $10^{17}$  cm<sup>-3</sup>, and curves (b) density of interface states as a function of trap energy for  $N_A$  values as specified in the figure.

per unit area determined by classical C(V) measurements,  $n_{it}$  is the density of trapped charges (for theoretical curves:  $n_{it} = 0$ ),  $\psi_s$  is the surface potential and  $\phi_{ms}$  the difference between the work functions of the gate metal and the semiconductor. An example is shown in Figure 3(a) for two pbody doping concentrations ( $10^{15} \text{ cm}^{-3}$  and  $10^{17} \text{ cm}^{-3}$ ). The difference between the slopes of theoretical ("without D<sub>it</sub>") and experimental (symbols)  $n_{inv}(V_G)$  curves indicates that high levels of D<sub>it</sub> are present in these structures

$$V_{\rm G}\left(\psi s\right) = \frac{Q_{SC}\left(\psi s\right)}{C_{\rm ox}} + \frac{q\,n_{\rm it}(\psi s)}{C_{\rm ox}} + \psi s + \phi_{\rm ms}.\tag{1}$$

 $D_{it}$  values for all samples investigated in this work are reported in Figure 3(b) (symbols).  $D_{it}$  extends from the near conduction band edge to a few 100 meV into the conduction band and reaches very high trap concentration levels ( $\sim 10^{14} \text{ cm}^{-2} \text{ eV}^{-1}$ ).  $D_{it}$  curves were fitted (solid lines in Fig. 3(b)) using

$$D_{\rm it} = \Delta \, \exp\left(\frac{E_t - E_c}{\sigma}\right),$$
 (2)

where  $\Delta$  is the band-edge density of states,  $\sigma$  is band-tail energy,  $E_t$  is trap energy, and  $E_c$  is conduction band energy. Calculated values of  $\Delta$  and  $\sigma$  for different MOSFETs are reported in Table II. One can notice, from the values of  $\Delta$  but also directly from Figure 3(b) that, for  $E_t - E_c > -0.1 \text{ eV}$ , devices with low N<sub>A</sub> show higher D<sub>it</sub> than MOSFETs with high N<sub>A</sub>. This important result implies that, in the voltage range of this study, the global increase of mobility observed, when N<sub>A</sub> is decreased, is not related to a decrease of D<sub>it</sub>. Significant  $\mu_H$ improvements in concomitance with small variations in D<sub>it</sub> were also reported when the impact of other experimental parameters, such as the annealing ambient,<sup>24</sup> were investigated.

Knowing  $D_{it}$ , it is now possible to determine the density of fixed oxide charges,  $n_{ox}$ , located near the SiC/SiO<sub>2</sub> interface. To this purpose, the  $n_{inv}(V_G)$  curves were calculated taking into account  $D_{it}$ . These calculations were done using Eq. (1), with  $n_{it}$  obtained by integrating Eq. (2) (with  $\Delta$  and  $\sigma$  values of Table II), from intrinsic level  $E_i$  to Fermi level  $E_F$ .

Figure 3(a) reports the result of this calculation ("with  $D_{it}$ " curves) for two doping levels  $(10^{15} \text{ cm}^{-3} \text{ and } 10^{17} \text{ cm}^{-3})$ . We observe that the simulated curves exhibit the same slope dependence as the experimental ones (symbols), proving that high levels of  $D_{it}$ , calculated in all devices, are responsible for the large differences between experimental and theoretical  $n_{inv}(V_G)$  behaviors.

Moreover, a systematic voltage offset  $\Delta V$  was found for all devices: from 0.4 V for device with  $N_A = 10^5 \text{ cm}^{-3}$ , up to 6.6 V for device with  $N_A = 3.5 \times 10^5 \text{ cm}^{-3}$ . This voltage can be taken into account by simply adding a supplementary constant term (independent of gate voltage) in Eq. (1). In all cases, the simulated n<sub>inv</sub>(V<sub>G</sub>) curves are shifted towards higher voltages with respect to the experimental ones (cf. Figure 3(a) for a background doping of  $10^{17}$  cm<sup>-3</sup>), while the offset increases with increasing NA. The direction of the shift indicates that fixed charges should be positive, and thus, are most probably oxide fixed charges, nox. For all the devices,  $n_{\rm ox}$  was therefore determined from the voltage offset using the following equation:  $\Delta V = q n_{ox}/C_{ox}$ . Results are shown in Fig. 4 (black squares). It clearly appears that  $n_{ox}$  increases with increasing background doping NA. The origin of charges resulting in an increase of nox is not yet well understood but it can be related to oxidation process in N2O atmosphere. Nevertheless, the increase of nox with increasing N<sub>A</sub> can be related to an increase of Coulomb scattering centers and therefore explain the degradation of mobility with increasing  $N_A$  shown in Figure 2(a).

Finally, on the basis of the  $D_{it}$  calculations presented above, the density of charges trapped by interface states,  $n_{it}$ , can be estimated. Indeed, assuming that the parameters used

TABLE II. Calculated values of  $\Delta$  and  $\sigma$  parameters of interface traps density fits.

| Al concentration ( $cm^{-3}$ )                           | $3.5 \times 10^{17}$ | $1 \times 10^{17}$ | $5 	imes 10^{16}$ | $1 \times 10^{16}$ | $5 	imes 10^{15}$ | $1 \times 10^{15}$ |
|----------------------------------------------------------|----------------------|--------------------|-------------------|--------------------|-------------------|--------------------|
| $\Delta (\text{cm}^{-2} \text{ eV}^{-1}) \times 10^{13}$ | 2.7                  | 3.1                | 3.3               | 4.3                | 4.9               | 6.3                |
| $\sigma$ (eV)                                            | 0.16                 | 0.14               | 0.11              | 0.095              | 0.09              | 0.08               |

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.93.4.10 On: Tue. 10 Feb 2015 14:55:31

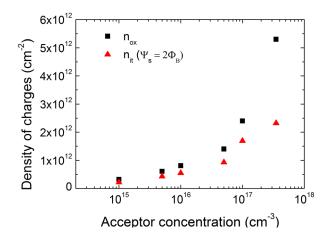



FIG. 4. Density of fixed oxide charges  $(n_{ox})$  and density of interface trapped charges related to  $D_{it}$   $(n_{it})$  as a function of the p-body acceptor concentration.

to fit the calculated  $D_{it}$  values (cf. Table II and Figure 3(b)) are still valid at energies lower than those used for their determination, it is possible to estimate the value of  $n_{it}$  at the onset of strong inversion (i.e.,  $\psi_S = 2 \phi_B$ ) using the following equation:<sup>21</sup>

$$n_{\rm it}(\psi_S = 2\phi_B) = \int_{E_i}^{E_i + q(2\phi_B)} D_{\rm it} dE, \qquad (3)$$

where  $\psi_{\rm S}$  and  $\phi_{\rm B}$  are the surface and bulk potential, respectively,  $E_{\rm i}$  is the intrinsic energy level and Eq. (2) was used for  $D_{\rm it}$  with  $\Delta$  and  $\sigma$  values of Table II.

The calculated  $n_{it}$  values are presented in Figure 4 (red triangles). Similar to the fixed oxide charges  $n_{ox}$ , it can be noted that  $n_{it}$  also increases with increasing  $N_A$ . Indeed, with increasing  $N_A$ , the band bending at the onset of strong inversion increases. As a consequence, the energetic distance between the Fermi level and the conduction band edge at the SiC/SiO<sub>2</sub>-interface decreases. Hence, an increasing number of interface states will be energetically located below the Fermi level. Thereby, interface traps below the Fermi level effectively trap electrons and thus contribute to an increase of the interface trapped charge density  $n_{it}$  with increasing  $N_A$ .<sup>23</sup>

The results presented in this study clearly show that the mobility degradation observed when increasing the background doping is not directly related to an increase of  $D_{it}$  (which exhibits a weak dependence on doping) but rather to an increase of Coulomb scattering centers associated to interface charges. This implies that when the highest mobility values are measured (i.e., for low background doping and at low V<sub>G</sub> values), other scattering mechanisms (such as phonon or surface scattering) might control the carrier transport behavior, contributing for instance to the appearance of the mobility peaks observed below 5 V for doping levels lower than  $10^{16}$  cm<sup>-3</sup>. Further experiments, involving field and temperature dependent mobility measurements, supported by theoretical simulations, should be able to clarify this issue.

In summary, a systematic study was carried out by Hall effect on transport properties in the n-channel of silicon carbide MOSFETs with different p-body acceptor concentrations. Normally OFF MOSFETs with better transfer characteristic, low threshold voltage, and high carrier mobility have been obtained at low p-body acceptor concentration. Peak Hall mobility varies from ~20 to ~145 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> as the p-body acceptor concentration varies from  $3.5 \times 10^{17}$  to  $10^{15}$  cm<sup>-3</sup>. The mobility improvement observed when N<sub>A</sub> is decreased is not correlated to a decrease of density of interface traps in itself. In contrast, Coulomb scattering centers associated with fixed oxide charges as well as interface trapped charges are found to increase when increasing the background doping, thus explaining the mobility degradation when N<sub>A</sub> is increased.

This work has been carried out in the framework of the project MobiSiC (Mobility engineering for SiC devices) and supported by the Program Inter Carnot Fraunhofer (PICF 10) by BMBF (Grant 01SF0804) and ANR. J. E. Purkyne fellowship awarded to Vincent Mortet by Academy of Sciences of the Czech Republic.

- <sup>1</sup>V. Afanas'ev, A. Stesmans, M. Bassler, G. Pensl, M. J. Schulz, and C. I. Harris, Appl. Phys. Lett. 68, 2141 (1996).
- <sup>2</sup>R. Schorner, P. Friedrichs, D. Peters, and D. Stephani, IEEE Electron Device Lett. **20**(5), 241 (1999).
- <sup>3</sup>S. Suzuki, S. Harada, R. Kosugi, W. J. Cho, and K. Fukuda, J. Appl. Phys. **92**, 6230 (2002).
- <sup>4</sup>V. Afanas'ev, M. Bassler, G. Pensl, and M. Schulz, Phy. Status Solidi A 162, 321 (1997).
- <sup>5</sup>K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, Appl. Phys. Lett. **76**, 1585 (2000).
- <sup>6</sup>G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonalds, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and
- J. W. Palmour, IEEE Trans. Electron Devices 22, 176 (2001).
- <sup>7</sup>S. Wang, S. Dhar, S. Wang, A. C. Ahyi, A. Franceschetti, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Phys. Rev. Lett. 98, 026101 (2007).
- <sup>8</sup>A. Poggi, F. Moscatelli, Y. Hijikata, S. Solmi, and R. Nipoti, Microelectron. Eng. 84, 2804 (2007).
- <sup>9</sup>M. K. Das, Mater. Sci. Forum **457–460**, 1275 (2004).
- <sup>10</sup>T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, Jpn. J. Appl. Phys., Part 1 44(3), 1213 (2005).
- <sup>11</sup>Silicon Carbide—Recent Major Advances, edited by N. Saks, W. J. Choyke, H. Matsunami, and G. Pensl (Springer, New York, 2004), p. 387.
  <sup>12</sup>C. Strenger, V. Häublein, T. Erlbacher, A. J. Bauer, H. Ryssel, A. M.
- Beltran, S. Schamm-Chardon, V. Mortet, E. Bedel-Pereira, M. Lefebvre, and F. Cristiano, Mater. Sci. Forum **717–720**, 437 (2012).
- <sup>13</sup>V. Mortet, E. Bedel-Pereira, J. F. Bobo, F. Cristiano, C. Strenger, V. Uhnevionak, A. Burenkov, and A. J. Bauer, Mater. Sci. Forum 740–742, 525 (2013).
- <sup>14</sup>V. Uhnevionak, A. Burenkov, C. Strenger, G. Ortiz, V. Mortet, E. Bedel-Pereira, F. Cristiano, A. J. Bauer, and P. Pichler, in Proceedings of European Conference on Silicon Carbide and Related Materials ECSCRM 2014, Grenoble, France, 21–25 September 2014, Mater. Sci. Forum (to be published).
- <sup>15</sup>K. Matocha, Solid-State Electron. **52**, 1631 (2008).
- <sup>16</sup>S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices 41, 2357 (1994).
- <sup>17</sup>G. Gudjonsson, H. O. Olafsson, F. Allerstam, P.-A. Nilsson, E. O. Sveinbjornsson, H. Zirath, T. Rodle, and R. Jos, IEEE Electron Device Lett. 26, 96 (2005).
- <sup>18</sup>D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. **31**, 710 (2010).
- <sup>19</sup>E. Ö. Sveinbjörnsson, G. Gudjonsson, F. Allerstam, H. Ö. Ólafsson, P. Å. Nilsson, H. Zirath, and R. Jos, Mater. Sci. Forum **527**, 961 (2006).
- <sup>20</sup>A. Perez-Tomas, P. Brosselard, P. Godignon, J. Millan, N. Mestres, M. R. Jennings, J. A. Covington, and P. A. Mawby, J. Appl. Phys. **100**, 114508 (2006).
- <sup>21</sup>G. Ortiz, V. Mortet, C. Strenger, V. Uhnevionak, J. F. Bobo, A. Burenkov, A. J. Bauer, F. Cristiano, and E. Bedel-Pereira, Mater. Sci. Forum 806, 127 (2015).

- <sup>22</sup>S. M. Sze, *Physics of Semiconductor Devices*, 2nd ed. (John Wiley and sons, New York, 1981).
- <sup>23</sup>C. Strenger, V. Uhnevionak, V. Mortet, G. Ortiz, T. Erlbacher, A. Burenkov, A. J. Bauer, F. Cristiano, E. Bedel-Pereira, P. Pichler, H. Ryssel,

and L. Frey, in Proceedings of ICSCRM2013, Miyazaki, Japan, 29 September–04 October 2013, Mater. Sci. Forum (to be published).

<sup>24</sup>M. K. Das, G. Y. Chung, J. R. Williams, N. S. Saks, L. A. Lipkin, and J. W. Palmour, Mater. Sci. Forum **389–393**, 981 (2002).