Khalil Drira, Flavio Oquendo, Axel Legay, Thais Batista

To cite this version:

HAL Id: hal-01666389
https://laas.hal.science/hal-01666389
Submitted on 18 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Editorial Message

Track on Software-intensive Systems-of-Systems (SiSoS) of the 33rd ACM/SIGAPP Symposium On Applied Computing (SAC 2018)

Khalil Drira, LAAS-CNRS – Univ. Toulouse, France
Flavio Oquendo, UMR CNRS IRISA – Univ. Bretagne Sud, France
Axel Legay, INRIA, France
Thais Vasconcelos Batista, DIMAp – UFRN, Brazil

Scope

Pervasiveness of networks has made possible to interconnect systems that were independently developed, operated, managed, and evolved, yielding a new kind of complex system, i.e. a system that is itself composed of systems, the so-called System-of-Systems (SoS). Software-intensive SoS (SiSoS) has become a hotspot in the last years, from both the research and industry viewpoints. Indeed, various aspects of our lives and livelihoods have progressively become dependent on some sort of Software-intensive SoS. This is the case of SiSoS found in different areas as diverse as energy, healthcare, manufacturing, and transportation; and applications that address societal needs, e.g. environmental monitoring, distributed energy grids, emergency coordination, global traffic control, and smart cities. Moreover, ubiquitous platforms such as the Internet of Things and nascent kinds of SoS such as Cyber-Physical SoSs are accelerating the deployment of Software-intensive SoS in the near future. Definitely, the unique characteristics of Software-intensive SoS raise a grand research challenge for the future of software-reliant systems in our industry and society due to its intrinsic features, among which evolutionary development and emergent behavior.

Statistics

The SiSoS Track received 22 regular paper submissions and 3 SRC submissions. Each submission was reviewed by three members of the Track Program Committee. The Track Program Committee selected 5 full papers out of the 22, giving an acceptance rate of 23%. These papers were selected based on originality, quality, soundness, and relevance to this conference track. Moreover, 2 poster papers have been accepted for publications in the proceedings of the conference.

Key Topics

This track fosters (but is not limited to) submissions in the following topics:

- **SiSoS Mission**
 - Specification and analysis
 - Formal contracts, contract-based approaches
 - Goal-orientation, task orientation
 - Ontologies, reasoning
 - Relationships with emergent behaviors
- **SiSoS Modeling**
 - Model-driven engineering
 - Models-at-runtime
• Model-based approaches
 • Formal modeling foundations

• **SiSoS Design**
 • Architectural and detailed design
 • Design evaluation
 • Correction by design
 • Design for evolution, scalability or
 • Design for emergent behavior

• **SiSoS Verification and Validation**
 • Testing
 • Compositional/statistical model checking
 • Simulation, co-simulation
 • Simulation of emergent behaviors

• **SiSoS Construction and Evolution**
 • Evolutionary development
 • Correction by construction
 • Techniques & technologies for SoS engineering
 • Service-orientation
 • Component and middleware frameworks

• **SiSoS Security and Privacy**
 • SoS cybersecurity
 • SoS privacy and trust
 • Security against emergent behaviors in SoS

• **SiSoS Experience**
 • Reports from real projects
 • Case studies in real-scale projects
 • Controlled experiments
 • Experience from SoS stakeholders

• **SiSoS General issues**
 • Taxonomies, ontologies
 • Software processes
 • Project management
 • Acquisition in the development of SoS

• **SiSoS Applications**
 • Energy
 • Transportation
 • Global traffic control
 • Emergency coordination
 • Environmental monitoring
 • Smart grids
 • Healthcare
 • Manufacturing
 • Smart cities
 • Any other application domain

• **Future perspectives, challenges, and directions**

Acknowledgment

We would like to thank the members of the Track Program Committee for providing thoughtful and knowledgeable reviews and for their substantial effort in making SiSoS a successful conference track.

Track Program Committee