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Abstract. The weighted degree heuristic is among the state of the art
generic variable ordering strategies in constraint programming. However,
it was often observed that when using large arity constraints, its efficiency
deteriorates significantly since it loses its ability to discriminate variables.
A possible answer to this drawback is to weight a conflict set rather than
the entire scope of a failed constraint.
We implemented this method for three common global constraints (AllD-
ifferent, Linear Inequality and Element) and evaluate it on instances from
the MiniZinc Challenge. We observe that even with simple explanations,
this method outperforms the standard Weighted Degree heuristic.

1 Introduction

When solving a constraint satisfaction problem with a backtracking algorithm,
the choice of the next variable to branch on is fundamental. Several heuristics
have been designed to make this choice, often relying on the concept of fail
firstness: “To succeed, try first where you are most likely to fail ” [4].

The Weighted Degree heuristic (wdeg) [1] is still among the state of the art
for general variable ordering search heuristics in constraint programming. Its
principle is to keep track of how many times each constraint has failed in the
past, with the assumption that constraints that were often responsible for a fail
will most likely continue this trend. It is very simple and remarkably robust,
which often makes it the heuristic of choice when no dedicated heuristic exists.
Depending on the application domain, other generic heuristics may be more
efficient, and it would be difficult to make a strong claim that one dominates
the other outside of a restricted data set. Empirical evidence from the MiniZinc
Challenge and from the CSP Solver Competition,3 however, show that wdeg
is among the best generic heuristics for classical CSP solvers (see [16] for an
analysis of the reasons of its efficiency). It is also interesting to observe that SAT
and clause-learning solvers often use Variable State Independent Decaying Sum
(V SIDS) [10], which has many similarities with wdeg, whilst taking advantage
of the conflicts computed by these algorithms.
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One drawback of Weighted Degree, however, is that the weight attributed to
constraints of large arity has a weak informative value. In the extreme case, a
failure on a constraint involving all variables of the problem does not give any
useful information to guide search.

We empirically evaluated a relatively straightforward solution to this issue.
We propose to weight the variables involved in a minimal conflict set rather than
distributing it equally among all constrained variables. Such conflict sets can be
computed in the same way as explanations within a clause learning CSP solver.

2 Background

A constraint network is a triplet 〈X ,D, C〉 where X is a n-tuple of variables
〈x1, . . . , xn〉, D is a mapping from variables to finite sets of integers, and C is a
set of constraints. A constraint C is a pair (X (C),R(C)), where X (C) is tuple of
variables andR(C) ∈ Zk. The assignment of the k-tuple of values σ to the k-tuple
of variables X satisfies the constraint C iff ∃τ ∈ R(C) such that ∀i, j X[i] =
X (C)[j] =⇒ σ[i] = τ [j]. A solution of a constraint network 〈X ,D, C〉 is an
assignment of a n-tuple σ to X satisfying all constraints in C with σ[i] ∈ D(xi)
for all 1 ≤ i ≤ n. The constraint satisfaction problem (CSP) consists in deciding
whether a constraint network has a solution.

Algorithm 1: Solve(P = 〈X ,D, C〉)
1 if not consistent(P ) then return False;
2 if ∀x ∈ X , |D(x)| = 1 then return True;
3 select x ∈ {xi ∈ X , |D(xi)| > 1} and v ∈ D(x);
4 return Solve(P |x=v) or Solve(P |x 6=v);

We consider the class of backtracking algorithms, which can be defined re-
cursively as shown in Algorithm 1. In Line 1, a certain property of consistency
of the network is checked, through constraint propagation. This process yields
either some domain reductions or, crucially, a failure. In the latter case, the last
constraint that was processed before a failure is called the culprit. Line 2 detects
that a solution was found. In Line 3, a heuristic choice of variable and value is
made to branch on in Line 4, where P |x=v (resp. P |x 6=v) denotes the constraint
network equal to the current P except for D(x) = {v} (resp. D(x) = D(x)\{v}).

3 General Purpose Heuristics

We first briefly survey the existing general-purpose variable ordering heuristics
against which we compare the proposed improvement of Weighted Degree.

Impact-Based Search (IBS) [11] selects the variable with highest expected
impact. The impact I(x = a) of a decision x = a corresponds to the reduction in



potential search space resulting from this decision. It is defined as 1−SP /SP |x=a

where SP is the size of the Cartesian product of the domains of P after constraint
propagation, and P |x=a denotes the problem P with D(x) restricted to {a}. This
value is updated on subsequent visits of the same decision. Moreover, in order
to favor recent probes, the update is biased by a parameter α: Ia(x = a) ←
((α − 1)Ib(x = a) + Ip(x = a))/α, where Ip, Ib and Ia refer to, respectively,
the last recorded impact, the impact stored before, and after the decision. The
preferred variable minimizes

∑
a∈D(x)(1−I(x = a)), the sum of the complement-

to-one of each value’s impact, i.e., the variable with fewest options, and of highest
impact. This idea also defines a branching strategy since the value with lowest
impact can be seen as more likely to lead to a solution. Therefore, once a variable
x has been chosen, the value a with the lowest I(x = a) is tried first.

Activity-Based Search (ABS) [9] selects the variable whose domain was most
often reduced during propagation. It maintains a mapping A from variables
to reals. After Line 1 in Algorithm 1, for every variable x whose domain has
been somehow reduced during the process, the value of A(x) is incremented. In
order to favor recent activity, for every variable x, A(x) is multiplied by factor
0 ≤ γ ≤ 1 before4. The variable x with lowest ratio |D(x)|/A(x) is selected first.
Similarly to IBS, one can use the activity to select the value to branch on. The
activity of a decision is defined as the number of variables whose domain was
reduced as its consequence. It is updated as in IBS, using the same bias α.

The Last Conflict heuristic (LC) [7] relies on a completely different concept.
Once both branches (P |x=a and P |x 6=a) have failed, the variable x of this choice
point is always preferred, until it is successfully assigned, that is, a branch P |x=b

(with possibly b = a) is tried and the following propagation step succeeds. In-
deed, a non-trivial subset of decisions forming a nogood must necessarily contain
x. Moreover, if there is a nogood that does not contain the previous decision (or
the next, etc.) then this procedure will automatically “backjump” over it. Often,
no such variable exists, for instance when the search procedure dives through
left branches and therefore a default selection heuristic is required.

Conflict Ordering Search (COS) [2] also tries to focus on variables that failed
recently. Here, for every failure (Line 1, Algorithm 1 returning False), the vari-
able selected in the parent recursion is stamped by the total number of failures
encountered so far. The variable with the highest stamp is selected first. If there
are several variables with equal stamp (this can only be 0, i.e., variables which
never caused a failure), then a default heuristic is used instead.

Last, Weighted Degree (wdeg) [1] maintains a mapping w from constraints
to reals. For every failure with culprit constraint C, a decay factor γ is applied
exactly as in ABS and w(C) is incremented. The weight wdeg(xi) of a variable
xi is the sum of the weight of its active neighboring constraints, i.e., those con-
straining at least another distinct unassigned variable: wdeg(xi) =

∑
C∈Ci w(C)

where Ci = {C | C ∈ C ∧ xi ∈ X (C) ∧ ∃xj 6= xi ∈ X (C) s.t. |D(xj)| > 1}. The
variable x with lowest ratio |D(x)|/wdeg(x) is selected first.

4 In practice, the increment value is divided by γ, and A is scaled down when needed.



4 Explanation-Based Weight

We propose to adapt the weighting function of wdeg to take into account the
fact that not every variables in the scope a constraint triggering a failure may
be involved in the conflict.

Consider for instance the constraint
∑n

i=1 xi ≤ k where the initial domains
are all in {0, 1}. When a failure is triggered, the weight of every variable is in-
cremented. However, variables whose domain is equal to {1} are sole responsible
for this failure. It would be more accurate to increment only their weight.

When a failure occurs for a constraint C with scope 〈x1, . . . , xk〉, it means
that under the current domain D, there is no tuple satisfying C in the cartesian
product D(x1)×, . . . ,×D(xk). It follows that there is no solution for the CSP
under the current domain. Any subset E = {i1, . . . , im} of {1, . . . , k} such that
no tuple in D(xi1)×, . . . ,×D(xim) satisfies C is an explanation of the failure of
C under the domain D. The set {1, . . . , k} is the trivial explanation, however
explanations that are strict subsets represent a valuable information and have
been used to develop highly successful search algorithms. The goal in these
algorithms (e.g., Nogood Recording [12] and CDCL [13, 14, 6]) is to use such
explanations to derive a nogood, which also entails the failure under the current
domain when added to the CSP, however without falsifying individually any
constraint. Another goal is to make this nogood as weak as possible since we
can add the negation of the nogood as an implied constraint. For this reason, as
well as other practical reasons, a more restrictive language of literals is used to
represent explanations and nogoods (typically x = a, x 6= a, x ≤ a and x > a).

Our purpose is simpler and more modest: we simply aim at computing an
explanation E as small as possible, and do not care about the unary domain
constraints. Indeed we use this explanation only to weight the variables whose
indices are in E. We keep a weight function for variables instead of constraints.
When a constraint C triggers a failure, we apply a decay factor γ and by default
we increment the weight w(x) of every variable x ∈ X (C). However, for a small
set of constraints (AllDifferent, Element, and Linear Inequality) for
which we have implemented an algorithm for computing an explanation, we
update the weight only of the variables involved in the explanation.

There is one difference with wdeg concerning inactive constraints, i.e., with
at most one variable currently unassigned. The weight of an inactive constraint
does not contribute to the selection of its last variable. We decided to ignore
this, and we count the weight of active and inactive constraint alike as it did
not appear to be critical. However, one can implement this easily by keeping, for
each constraint C and each variable x ∈ X (C), the quantity of weight w(C, x)
due to C. When a constraint becomes inactive and its last unassigned variable
is x, then w(C, x) is subtracted from w(x), and added back upon backtrack.

Notice that since we use these conflicts for informing the heuristic only, they
do not actually need to be minimal if, for instance, extracting a minimal conflict
is computationally hard for the constraint. Similarly, the explanation does not
even need to be correct. The three very straightforward procedures that we
implemented and described below produce explanations that are correct but not



necessarily minimal. We chose to use fast and easy to implement explanations
and found that it was sufficient to improve the behavior of wdeg:

AllDifferent(〈x1, . . . , xk〉)⇔ ∀1 ≤ i < j ≤ k, xi 6= xj , where 〈x1, . . . , xk〉
is a tuple of integer variables.

We used in our experiment two propagators for that constraint. First, with
highest priority, arc consistency is achieved on binary inequalities. If a failure is
obtained when processing the inequality xi 6= xj , it means that both variables
are ground and equal, hence we use the conflict set {xi, xj}.

Then, with lower priority, we use the bounds consistency propagation algo-
rithm described in [8]. This algorithm fails if it finds a Hall interval, i.e., a set
of at least b − a + 2 variables whose domains are included in {a, . . . , b}. When
this happens we simply use this set of variables as conflict.

Linear Inequality(〈x1, . . . , xk〉, 〈a1, . . . , ak〉, b) ⇔
∑k

i=1 aixi ≤ b, where b
is an integer, 〈x1, . . . , xk〉 a tuple of integer variables and 〈a1, . . . , ak〉 of integers.

The constraint fails if and only if the lower bound of the sum is strictly larger
than b. When this is true, a possible conflict is the set containing every variable
xi such that either ai is positive and min(D(xi)) is strictly larger than its initial
value, or ai is negative and max(D(xi)) is strictly lower than its initial value.

Element(〈x1, . . . , xk〉, n, v)⇔ xn = v, where 〈x1, . . . , xk〉 is a tuple of inte-
ger variables, n, v two integer variables.

We use the conflict set {n, v} ∪ {xi | i ∈ D(n)}, that is, we put weight only
on the “index” and “value” variables n and v, as well as every variable of the
array pointed to by the index variable n.

5 Experimental Evaluation

Figure 1a illustrates the difference that explanation can make. The data comes
from instance 3-10-20.dzn of the ghoulomb.mzn model. We plot, for each vari-
able x, the number of failures of a constraints involving x (blue crosses) and
the number of explanations of failures involving x (red dot). We observe a much
wider distribution of the weight when using explanations. As a result, the opti-
mal solution could be proven with e-wdeg in 15s whereas the best upper bound
found with wdeg after 1200s was 1.83 times larger than the optimal.

Next, we experimentally evaluated the proposed variant of wdeg, denoted
e-wdeg, against the state-of-the-art general-purpose branching heuristics wdeg,
ABS, IBS, COS and LC with wdeg and e-wdeg as default heuristic for the two
latter. We used lexicographic value ordering for every heuristic, except IBS and
ABS since their default branching strategies were slightly better.5 The decay
factor γ was set to 0.95 for ABS, wdeg and e-wdeg, and the bias α was set
to 8 for ABS and IBS. No probes were used to initialize weights. In all cases
the initial values were set up to emulate the “minimum domain over degree”

5 The extra space requirement was an issue for 5 optimization instances. However the
impact on the overall results is quasi null.



Fig. 1: Weight distribution & Search efficiency on satisfaction instances
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strategy. All the methods were implemented in Mistral-2.0 [5] and the same
geometric restarts policy was used in all cases.

We used all the instances of the Minizinc challenge from 2012 to 2015 [15].
This data set contains 399 instances, 323 are optimization problems and 76 are
satisfaction problems. In this set, 72 instances have at least one AllDifferent,
147 have at least one Element and all have at least one Linear Inequality.
However, Element is often posted on arrays of constants and LinearInequal-
ity may be used to model clauses, which is not favorable to e-wdeg since the
explanations are trivial. All the tests ran on Intel Xeon E5430 processors with
Linux. The time cutoff was 1500s for each instance excluding the parsing time.
Heuristics were randomized by choosing uniformly between the two best choices,
except COS and LC for which only the default heuristics were randomized in
the same way. Each configuration was given 5 randomized runs.

5.1 Satisfaction problems

We first report the results on satisfaction instances, where we plot, for every
heuristic, the ratio of runs (among 76 × 5) in which the instance was solved
(x-axis) over time (y-axis) in Figure 1b. The results are clear. Among previous
heuristics, wdeg is very efficient, only outperformed by LC (using wdeg as default
heuristic when the testing set is empty). Conflict Ordering Search comes next,
followed by IBS and ABS. Notice that IBS and ABS are often initialised using
probing. However, this method could be used for other heuristics (see [3]), and
is unlikely to be sufficient to close this gap. Whether used as default for COS
or LC, or as stand alone, e-wdeg always solves more instances than wdeg. The
difference is not significant below a 500 seconds time limit, but patent above
this mark. Overall, e-wdeg solves 4.5%, 3.7% and 2.9% more instances than
wdeg when used as default for LC, COS or as stand alone, respectively.



5.2 Optimization problems

Second, we report the results for the 323 optimization instances (1615 runs). We
first plot, for every heuristic, the ratio of instances proven optimal (x-axis) over
time (y-axis) in Figure 2a. Here the gain of explanation-based weights is less
clear. e-wdeg can prove 2.3% more instances, however LC (e-wdeg) finds only
0.6% more proofs than LC and COS (e-wdeg) 1.6% more than COS.

Fig. 2: Search efficiency, optimization instances
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(b) Objective value
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In Figure 2b we plot the normalized objective value of the best solution found
by heuristic h (x-axis) after a given time (y-axis). Let h(I) be the objective
value of the best solution found using heuristic h on instance I and lb(I) (resp.
ub(I)) the lowest (resp. highest) objective value found by any heuristic on I.
The formula below gives a normalized score in the interval [0, 1]:

score(h, I) =


h(I)−lb(I)+1
ub(I)−lb(I)+1 , if I is a maximization instance

ub(I)−h(I)+1
ub(I)−lb(I)+1 , otherwise

Notice that we add 1 to the actual and maximum gap. Moreover, if an heuris-
tic h does not find any feasible solution for instance I, we arbitrarily set h(I) to
lb(I)−1 for a maximization problem, and ub(I) + 1 for a minimization problem.
It follows that score(h, I) is equal to 1 if h has found the best solution for this
instance among all heuristics, decreases as h(I) gets further from the optimal
objective value, and is equal to 0 if and only if h did not find any solution for I.

We observe that using e-wdeg, the solver finds significantly better solutions
faster than using wdeg. The same observation can be made for Last Conflict
and Conflict Ordering Search using e-wdeg outperforming their counterparts
relying on wdeg, although the gap is slightly less important in these cases. The



Fig. 3: Search efficiency, branching on auxiliary variables
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overall improvement (respectively 3.2%, 1.6% and 0.8%) is modest, however, the
number of data points makes it statistically significant.

Overall, the wdeg heuristic is clearly very competitive when considering a
large sample of instances, and indeed it dominates IBS and ABS on the MiniZ-
inc instances. Last Conflict and Conflict Ordering Search seem even more effi-
cient, however, they rely on wdeg as default heuristic. These experiments show
that computing specific conflict sets for constraints significantly boosts wdeg.
Although the gain is less straightforward in the case of LC and COS (especially
for the latter which relies less heavily on the default heuristic), this approach
can be useful in those cases too, and in any case never hinders search efficiency.

Notice that we restricted the heuristic selection to the decision variables
specified in the MiniZinc model. We also tried to let the heuristic branch on
auxiliary variables, created internally to model expressions. The results, shown
in Figure 3 are not exactly as cleanly cut in this case, and actually difficult to
understand. The only two heuristics to actually benefit from this are wdeg and
e-wdeg, by 6.7% and 8.3%, respectively for the objective value criteria. Two
heuristics perform much worse, again for the objective value: ABS loses 15.2%
and COS (e-wdeg) 4.7%. Other heuristics are all marginally worse in this setting.
On other criteria, such as the number of optimality proofs, there is a similar,
but not identical trend, with LC gaining the most from the extra freedom.

6 Conclusion

We showed that the wdeg heuristic can be made more robust to instances with
large arity constraints through a relatively simple method. Whereas wdeg dis-
tributes weights equally among all variables of the constraint that triggered a
failure, we propose to weight only the variables of that constraint participating
in an explanation of the failure. Our empirical analysis shows that this technique
improves the performance of wdeg. In particular, the Last Conflict heuristic [7]
using the improved version of Weighted Degree, e-wdeg, is the most efficient
overall on the benchmarks from the previous MiniZinc challenges.
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