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Executive Summary

This is the accompanying report of the demonstrator of Work Package 3
for month 36, where the deployment of the prototype of the ENDEAVOUR
monitoring platform will be demonstrated. In this report, we briefly discuss
the prototype and its scalability.
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1 Introduction

In this report, we document the deployment of the prototype of the EN-
DEAVOUR monitoring platform. Further details of its architecture were
presented in the previous deliverable [3], while the evaluation in a emulated
environment in [2].

2 Description of the monitoring platform proto-
type

2.1 Hardware involved

In this demonstrator we use three test-beds: one located in DE-CIX, one
set-up in Cambridge where OSNT middlebox has been also deployed, and
another one at the IBM Research - Zurich premises where additional exper-
iments were conducted.

2.1.1 The DE-CIX Testbed

Figure 1 presents the logical topology at the DE-CIX site as used in the
first two demonstrators of the ENDEAVOUR Monitoring Platform (see Sec-
tions 3.1 and 3.2). In the topology presented in Figure 1, the ENDEAVOUR
platform connects 7 routers from 6 participants. Note that member B owns
2 routers. Further details of the testbed at DE-CIX can be found at [4]

2.1.2 The Cambridge testbed

As access to the DE-CIX datacenter is not immediate due to the permis-
sion clearance there required, a separate testbed that includes the OSNT
component was deployed at the University of Cambridge. Note that the
experimental nature of the OSNT hardware alongside the rescritions related
to the physical access at the DE-CIX testbed have played a key role in such
a decision. Accordingly, it was agreed with the Project Officer to have a
separate testbed. Figure 2 depicts the logical view of this testbed, which
is physically located at the premises of the Computer Laboratory of the
University of Cambridge.

As the purpose of this testbed is exclusively demonstrating the inte-
gration of the OSNT and the anomaly detection system, the testbed only
includes the components required for this purpose. Figure 2 presents the
logical view of this testbed along with its main functions.

H2020-ICT-2014-1 Project No. 644960 5
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Figure 1: Testbed at the DE-CIX site.

Preliminary tests showed limited scalability: the combination of OSNT
hardware and anomaly detection software were not able to cope with de-
manding input traffic rates. As a result, to improve the capabilities of the
system we went through some modifications of the components:

• Hardware improvement (header extraction): the hardware pre-
parses the packet and only sends the information needed by the anomaly
detection software alongside with the hardware timestamp. This fea-
ture allows us to squeeze even more the bytes for a single packet,
reducing it to 24 bytes instead of the previous 64 bytes.

• Hardware improvement (packet batching): the OSNT imple-
mentation has been modified to batch multiple packets in single big
chunk of data. This feature allows us to send multiple packets to the
software chain in a single transaction when the packet rate is high.
This has been done to cope with the limited memory access rate from

H2020-ICT-2014-1 Project No. 644960 6



WP3 / D3.4 ENDEAVOUR Version 0.8

the OSNT card to the machine userspace.

• Software improvement (feature extraction process): the pro-
cessing of the packets to extract the flow statistics is now separated
from the anomaly detection process. This allows us to optimize the
feature extraction and provide more flexibility.

SRC DST

Node-A Node-B

OSNT

Anomaly 
DetectionOF

Controller

Rule Update
Mirroring Traffic

Message

OVS

Figure 2: Testbed at the University of Cambridge.

Figure 3 presents the configuration of the OSNT with the Open vSwitch
(OVS) switch at the testbed.

2.1.3 The testbed at IBM

Alternatively to the main implementations from the two previous testbeds,
IBM used a testbed similar to the Cambridge testbed, but relying on an
Intel FM10480 switch instead of the OVS switch and the C-GEP Field Pro-
grammable Gate Array (FPGA)-based accelerator [6] instead of the OSNT
unit. Two different solutions where explored at this testbed, namely:

1. zMon Heatmaps: This solution monitors the switch queues to build
a global topology-dependent view of the switch fabric utilization and
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Figure 3: Configuration of OSNT hardware with the OVS switch.

sends congestion notifications to the traffic sources to adapt the input
flows to the available capacity of the fabric.

2. zMon Traffic Matrix: This solution uses the switch capability of
port mirroring to monitor the Layer 3 Internet Protocol (IP) source
and destination address pairs and, thus, to identify topology-independent
flow communication patterns.

Additionally, a special use case of the IBM testbed demonstrating ex-
tremely fast Distributed Denial of Service (DDoS) mitigation has been pub-
lished recently [5].

As this solutions result from a later exploration to the main solutions
reported here, we now briefly describe them before discussing its theoretical
scalability in Section 3.4.

zMon Heatmaps. The size of the switch fabric of an Internet eXchange
Point (IXP) depends on the number of routers from different Internet Service
Provider (ISP) it connects to. The fabric may be built just of a single switch
or of multiple complex switches. The goal of the zMon Heatmap solution
was to build space- and time-coherent snapshots of the fabric by visualizing
the occupancy of all the switch queues of the fabric. More precisely, this
means that zMon Heatmap generates global network images from sparsely
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sampled queues. Sequences of such images build so-called “movies” that
allow to visualize the evolution of the network state in time. Details of the
heatmap principle were already described in [3].

The limitations of this method are enumerated in Section 3.4. In order to
address such limitations, we have changed our method to use port mirroring
instead of the Quantized Congestion Notification (QCN) sampler and to cal-
culate throughput per IP source and destination pair. This implementation
is described in the next section.

zMon Traffic Matrix. Port mirroring is supported on all modern switches.
We make use of the simplicity of building a mirroring system for traffic
monitoring. There are different ways of measuring the network activity or
utilization at a switch level:

1. per switch port (link utilization);

2. per Layer 4 flow;

3. per IP source and destination pair.

The link utilization per switch port is quantified by measuring the traffic
rate from every input port to every output port. The monitoring software
then must determine the output port to which the switch input port sends
the packet, thereby repeating the same switching, routing, and load balanc-
ing decisions as the switch has previously done. The results are then visu-
alized in a topology-dependent heatmap. Measuring utilization per Layer-4
flow is difficult since the number of Layer-4 flows changes dynamically and
can be very large for Tbps switches. On the other hand, the IP source-
destination flows are topology-independent and easier to generate (traffic
matrices). Therefore, we chose to proceed with option 3 due to its relative
simplicity.

For an IXP fabric all the IP addresses are external. Therefore, instead
of monitoring all the individual IP addresses, we monitor only IP subnets
as source and destination addresses. In an IXP, these subnet addresses
correspond to the ISP using the IXP for direct packet forwarding from one
ISP to a neighbouring ISP. Subnet addresses that do not belong to an
ISP directly connected to the IXP are treated as unknown addresses for
the traffic matrix and shown in a last row/column added for traffic with
unknown IP subnet addresses.

In the collected traffic matrix, every ’pixel’ accumulates the number of
bytes seen since the last snapshot. A collector corrects the pixel values. An

H2020-ICT-2014-1 Project No. 644960 9
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Figure 4: zMon Traffic Matrix Architecture Overview.

overview of the architecture of the zMon traffic Matrix solution is shown in
Figure 4. A traffic matrix row or column monitored by a single throughput
sensor (TM Sensor) is called a “stripe”.

The TM Sensor of the traffic matrix implements four processing stages
as follows:

• T1: Packet Capture

1. Receive a burst of packets.

2. Transfer the packets to the parser T2.

3. Repeat from step T1.1.

• T2: Packet Parser

1. Get the packets from the capture processing stage.

2. Parse the packets and extract the headers.

3. Transfer the extracted headers with the corresponding metadata
to T3.

4. Repeat from step T2.1.

• T3: Throughput Sensor

H2020-ICT-2014-1 Project No. 644960 10
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1. Get headers and metadata from the parser T2.

2. Map addresses to traffic matrix coordinates.

3. Filter out unneeded traffic which is captured by another sensor.

4. Accumulate the traffic to the active stripe.

5. Repeat from step T3.1.

• T4: Trigger and Communicate

1. Wait and receive command from the collector.

2. If a trigger is received, then continue from step T4.3. Else if a
request for data is received, continue from step T4.5.

3. Swap the active and passive stripe(s) of the throughput sensor.

4. Repeat from step T4.1.

5. Send the passive stripe(s) to the collector.

6. Clear the passive stripe(s).

7. Repeat from step T4.1.

Furthermore, we list below the internal operations of the collector:

1. Wait for the next sampling time.

2. Send trigger to all sensors (broadcast or multicast).

3. Read the data from all sensors (one by one).

4. Amplify the values (multiply by the frame rate—picture, not Ethernet—
to convert to bytes/second).

5. Transfer the complete matrix to the visualizer.

6. Repeat from step 1.

The internal operations of the visualizer are the following ones:

1. Receive a complete matrix from the collector.

2. Convert the values of the matrix to log-scale.

3. Display the result as a traffic matrix (heatmap).

4. Repeat from step 1.

Figure 5 shows an example of a traffic matrix for the specific communi-
cation pattern.

In addition to these two solutions, we studied a specific use case for very
fast DDoS mitigation within the IBM testbed [5].

H2020-ICT-2014-1 Project No. 644960 11
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Figure 5: An example of a traffic matrix for the case when every ISP sends
packets to the next 4 ISPs.

2.2 Access to the testbeds

Contrary to the case of the platform simulator (see [2]), access to the testbeds
mentioned above is not public, being instead restricted to the members of
the consortium.

3 Scalability of the monitoring platform prototype

3.1 Polling-request scalability

In this demonstrator, we use the testbed in DE-CIX to show that for a
constant increase in the number of flows in the dataplane, the performance
of the controller in terms of CPU and memory remains stable and does not
disrupt the traffic exchanged by the members in the dataplane.

In this experiment, 1000 flows per second are installed by the ENDEAV-
OUR controller and the Monitoring Controller requests statistics from the
switch in almost real time, every second. While this is likely to be an ex-

H2020-ICT-2014-1 Project No. 644960 12
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Figure 6: Memory and CPU of the Monitoring Database (1 polling request
per sec.).

cessive amount of requests, we can show how the testbed can support it.
Note that if the memory occupied by the database or the CPU consumption
resulting from the frequent polling requests would grow exponentially, the
monitoring architecture would be deem as non-scalable.

Figure 6, presents a caption of the Grafana visualizer used in the demon-
strator, which shows a clear and stable pattern of the memory occupied by
the Monitoring Database. The CPU presents spikes because the database
requires more processing when writing data. Overall, CPU is stable for the
most time of the demonstration.

We experimented with lower frequencies of polling requests, which nat-
urally resulted in less demanding consumption of memory and CPU. If near
real time statistics is not crucial for the IXP activities, a lower polling in-
terval is recommended. As the results for the experiment with 1 request per
second encompass the others, we do not describe them in any further detail.

The video demonstrating the scalability of the Monitoring Database re-
garding the polling-requests is available at: https://www.youtube.com/

watch?v=3SNgBLLITtE&feature=youtu.be

H2020-ICT-2014-1 Project No. 644960 13
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3.2 Monitoring Policies scalability

In this experiment, we use the testbed in DE-CIX to demonstrate that
ENDEAVOUR monitoring platform can support the installation of a large
number of policies.

The demonstrator starts with each participant having 100 outbound poli-
cies. From there on, 10 new policies per member are added every 30 seconds.
As more policies are installed, the traffic for each participant increases ac-
cordingly.

Similarly to the previous case, the CPU usage spikes as the database
writes the data collected by the monitoring platform collects statistics. De-
spite this overheads, the demonstrator shows that there is no impact on the
dataplane.

Note that, in this experiment, we keep the near-real time monitoring ap-
proach, i.e., polling every second. Lower polling-frequency would naturally
result in a lower CPU impact.

The video demonstrating the scalability of the Monitoring Database re-
garding the number of installed policies is available at: https://youtu.be/
jH1Mv6QAB7A

3.3 Integration of OSNT in the monitoring platform: scala-
bility

In this demonstrator, we discuss the scalability of the monitoring platform
when the OSNT middleboxes are required. We rely on the Cambridge
testbed. Note that, while we illustrate it in the context of the anomaly
detection, the findings would be valid for any other use case depending on
the OSNT middleboxes.

The main scalability aspect that we explore here relates to the ability of
the OSNT probes to process the required information in a timely fashion.
The main dimensions of scalability that we explore are packet rate and
number of flows. More precisely, we look at the impact that more demanding
conditions, i.e., higher packet rate or number of flows, have on the ability of
the monitoring platform to provide the adequate information. In this case,
we look at how the number of errors in the detection of traffic anomalies
varies along the aforementioned dimensions.

In order to perform such evaluation, we use network traffic from an
ISP entry point and insert attacks in the traffic traces, which we then run
through our testbed. The trace is 16GB long and represent 300 seconds of
real traffic. We repeat the test at a varying packet rate to understand the

H2020-ICT-2014-1 Project No. 644960 14
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impact of an increasing input rate on the detection capabilities.

Figure 7: False positives/negatives and packet rate.

Figure 7 shows how regardless of the input packet rate, the testbed does
not incur in a significant difference in the detection properties. Note that the
anomaly detection system performs its computation in a statistical manner.
This means that false positive or negative ones can still appear. However,
increasing the generation rate of the trace, does not change significantly
with respect the baseline, i.e., the x1.0 case.

Finally, we add more artificial legitimate flows into the actual traces
through the same interface.

Figure 8 shows that, also in this case, there is not a significant increased
number of false negative or negative when we add more flows into the traffic.
This demonstrate the scalability of the system with respect to the input flow
volume.

The video https://www.youtube.com/watch?v=qSVF58htEIg demon-
strates the anomaly detection monitoring capabilities in action. Note that
this was already demonstrated in the previous deliverable (see [2]). This is
because we directly implement such a system using real working hardware
without the need to go through the intermediate step of simulation.

3.4 Scalability of additional solutions at the IBM testbed

Note that as the zMon Heatmap and Matrix solutions result from a later
exploration to the main ones already here reported, they were only eval-

H2020-ICT-2014-1 Project No. 644960 15
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Figure 8: False positives/negatives and number of flows.

uated in the IBM testbed and the scalability of these implementations is
theoretically analyzed.

zMon Heatmap The scalability of this solution mainly depends on the
number of queues whose occupancies must be monitored and the time co-
herence between the different switches in the fabric necessary to provide a
global time-coherent view of all the fabric queues.

Number of Queues: The number of queues to be controlled in a leaf-
spine-core architecture is equal to the number of links from the leaf-ports
to the uplinks of the leaf switches, plus the number of links from the spine-
switchers to the core-switches, and doubling these numbers for counting all
the queues from the core switches down to the leaf-ports. Only if each leaf-
port sends packets to all other leaf-ports in the system will all queues be
active. In normal IXP operation, only a small amount of the queues will be
active at a specific point in time. Since the number of leaf-switches, spine-
switches, and core-switches grow linearly with the number of total leaf-ports
in a leaf-spine-core architecture, the number of links and correspondingly
queues to monitor grows linearly with the total number of leaf-ports N .

Time coherence: If theIXP fabric consists of multiple switches, time
coherence between these switches is an important aspect for our snapshots
in time. However, by using the hardware Precision Time Protocol (PTP) [1],
we can achieve nanosecond granularity. So, time coherence is not limiting

H2020-ICT-2014-1 Project No. 644960 16
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scalability.
This implementation of the monitoring platform was built using the

IEEE 802.QCN standard.
A demo video of the application is available at https://youtu.be/

jxfpVYzbGI8 and https://youtu.be/PAGyW9sJkvg.
We observed three main limitations with this method:

• for bursty traffic the queue occupancy can be high both at low and
high throughput;

• if the queue occupancy changes fast, we must sample at Tbps rates;

• 802.Qau QCN functionality support is not as common as port mirror-
ing.

zMon Traffic Matrix In order to asses the scalability of this solution,

1. we mirror N ports to 1 monitoring (mirroring) port (N : 1). Modern
switches have between 32 and 128 ports of 40/100 Gbps. We truncate
each switch packet to 64 or 96 bytes to prohibit over-subscription of the
monitoring port. Nevertheless, for high packet rates, at a sufficiently
large number of input ports, mirroring the entire traffic from N input
ports to a single mirror port is impossible. Statistical sampling of the
input ports with a rate adapted to the utilization of the mirroring
port is unavoidable. If the limitation from the mirroring port leads to
a sampling rate too low for detecting traffic patterns, it is necessary
to increase the number of mirroring ports. This finally leads to an
increase of switches within the switch fabric. However, considering
the number of ISPs usually connected to the same IXP, we do not
expect to reach this point.

2. the traffic matrix grows quadratically with the network size and is
usually sparse. Matrix compression can be used to reduce the matrix
size, but, in the worst case, with an all-to-all traffic pattern, the matrix
is dense and grows with a complexity of O((M + 1)x(M + 1)) when
M is the number of connected ISPs.

3. time coherence: as in the previous case, PTP allows for nanosecond
granulatrity and therfore, tie coherence poses no constraints upon the
scalability of this solution.

H2020-ICT-2014-1 Project No. 644960 17
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4 Summary

This report documented the demonstrator of Work Package 3 for month
36, where the deployment of the prototype of the ENDEAVOUR monitor-
ing platform has been evaluated. In this report, we briefly discussed the
prototype and its scalability together with some additional solutions.
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5 Acronyms

ISP Internet Service Provider

IXP Internet eXchange Point

IP Internet Protocol

DE-CIX German Commercial Internet Exchange

DDoS Distributed Denial of Service

OVS Open vSwitch

QCN Quantized Congestion Notification

OSNT Open Source Network Tester

FPGA Field Programmable Gate Array

PTP Precision Time Protocol
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