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Smooth Cubic Polynomial Trajectories for
Human-Robot Interactions

Daniel Sidobre, and Kevin Desormeaux

Abstract—With the growing importance of Human-Robot
Interaction (HRI), the movement of the robots requires more
and more attention to address the issues related to safety,
efficiency and ergonomics. Trajectories are excellent candidates
in the making of desirable motions designed for collaborative
robots, because they allow to simply and precisely describe the
motions. Despite the large number of works available for Online
Trajectory Generation (OTG), there was, to our knowledge,
no complete solution capable to simultaneously meet all the
requirements of these new applications.

In this paper we present the first complete trajectory gen-
eration algorithm that build trajectories from arbitrary initial
and final conditions, subject to general asymmetric bounds on
jerk, acceleration and velocity. A review of the state of the art
exposes the limits of the previous OTG works and reveals the
difficult problem of non-linearity related with short motions. We
explain how these non-linearities introduce discontinuities and
we propose a solution based on sequences of segment of third
degree polynomial functions.

Index Terms—Online trajectory generation, trajectory plan-
ning, motion control, physical human robot interaction, non-
linearity, third degree polynomial trajectories, security, er-
gonomics

I. INTRODUCTION

TRAJECTORY generation then Online Trajectory Genera-
tion (OTG) has generated a lot of work and results from

the beginning of robotic and until now. A good trajectory
allows improving, not only, the performances of the robots
in terms of speed, accuracy or reliability, but also, the safety
and comfort of humans working with them. By giving a
better description of the robot motion, this model improves the
design of planners and controllers as well as the communica-
tion between them, thus leading to better architectures. As a
trajectory describes both the path and the time evolution along
it, the associated mathematical function is complex. Even in
the case of a straight-line point-to-point motion, a double-
S time trajectory is necessary to describe a smooth motion.
Smoothness is associated to the number of derivative of the
function, generally to the functions that are at least two times
derivable.

With the new robotic application domains, beside the
traditional constraints of collisions, accuracy, kinematic or
dynamic, trajectories must comply with a growing number of
requirements relative to safety, comfort, ergonomics, energy
consumption, or flexibility. A large variety of mathematical
functions have been proposed to address the multiple con-
straints that a motion has to satisfy. In this paper we thoroughly
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examine the sequences of third order polynomial functions,
one of the simpler models to build smooth trajectories.

However, despite the many works in the field, trajectory
generation still encounters serious difficulties especially for
short and asymmetric moves. These harsh points have been
encountered in several previous papers, we attempt to address
them in this work. The time-optimal curve regarding the length
of the motion might be non linear and present discontinuities,
particularly for short motions or velocity shift.

We propose the first algorithm to generate smooth trajec-
tories defined by a chain of cubic polynomial functions that
joins two arbitrary conditions defined by position, velocity and
acceleration in minimum time under asymmetric bounds on
velocity, acceleration and jerk.

Although only the one-dimensional problem of time-optimal
motion is considered in this paper, these results have direct
consequences for control as well as for multi-axis synchro-
nization. Solving this fundamental problem is necessary to
solve more general problems in N-dimension and with several
via-points.

The paper is organized as follows. In Section II, a state
of the art is presented. The time-optimal cubic polynomials
trajectories are introduced in Section III. The duration of the
trajectories according to the length is presented in Section
IV. The time-optimal trajectories are developed in Section V.
Sections VI and VII gives some details in the solving of the
related equations. Discussions are presented in Section VIII
and Section IX concludes this paper.

II. RELATED WORKS

A. Path planning vs Trajectory planning

Paths, which are pure geometric representation, have been
the most widely used approach to describe movements. Among
the numerous works that have covered this subject, [27, 38,
39] offer a good synthesis. However, trajectories are necessary
to take into account the time. Trajectories are continuous
and derivable functions of time, defining the evolution of the
position of the robot. They can be defined in task space or
joint space. A trajectory can also be seen as the combination
of a path with a law of temporal evolution. A summary of
trajectory generation in an industrial context can be found in
[4], while [12, 28] offer the same for robotic manipulators.

Using trajectories instead of paths provides significant ad-
vantages [52]:
• Not only the position can be planned and controlled, but

also the velocity, the acceleration, the jerk and eventu-
ally higher derivative, allowing to define the smoothness
properties.
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Fig. 1. A possible architecture of a robot that uses trajectories for the control
and the communication between the different modules.

• The travel time can be optimized taking into account
kinematic constraints.

• The movement is more precisely described allowing a
better control.

Moreover, the use of trajectories as the main support of
information between a slow task planner and the fast robot
controllers leads to a more refined architecture that simplifies
the communications (See Fig. 1). A higher granularity in the
architecture is desirable as it simplifies the input for each node
that can run at different frequencies according to the nature of
the task. The overall communication is improved, and in case
of unforeseen event, a part of the task can be replanned at a
lower level, thus faster. A similar architecture is proposed in
[41].

B. Trajectory planning in HRI context

With the emergence of new generations of robots that
are always more sophisticated, one of the most challenging
features of today’s robotic, and even more in the future, is
Physical Human-Robot Interaction (PHRI). These new robots
will have to coexist and cooperate with humans in a variety
of applications such as collaborative assembly, rehabilita-
tion, domestic assistance, and many others. A survey on
human–machine cooperation in assembly is proposed in [32].
Krüger et al. study the forms of cooperation between a Human
and a Robot that can be used in assembly processes as well
as the organizational and economic aspects. They describe the
advantages of combining the respective strength of a Human
and a Robot, and advocate in favor of these new kinds of
cooperation, even compared to fully automated systems. These
robots will have to be adaptable, flexible, and reusable.

To be able to work in proximity of humans, collaborative
robots must meet a number of requirements that often differ
from those required in a classic industrial environment, where

robots are confined in cages with prohibited access for hu-
mans. While safety remains the main criterion, others emerge
such as the level of stress and discomfort the human can feel
in the vicinity of the robot. In this context, a robot should
not cause excessive stress and discomfort to the human for
extended periods of time [2, 9, 19, 35–37]. To fulfill these
requirements, some works focus on the behavioral and societal
aspects [44, 53]. They attempt to understand the implicit rules
and codes that define Humans interactions. Such an approach
can be used for the robot to anticipate Humans actions as
a Human will be more efficient and more satisfied of the
interaction if the robot can anticipate his actions [24]. It can
also be used for a robot to communicate its intents. A user
will feel more comfortable knowing the goal of the robot early
in its movements [13, 14]. Most of these works are integrated
at the highest layers of planning, but they make sense only if
the movement has been designed beforehand at a lower level.
Motions have to be built from a model satisfying strict criteria.
This model have to be simple enough for real-time constraints
that are linked to security. It should also be capable to generate
human-friendly movements to satisfy ergonomics constraints
for a large variety of applications. Smooth trajectories appear
as excellent candidates since they possesses the advantages
necessary to ensure safety, ergonomics, efficiency and adapt-
ability required in the making of collaborative motions.

C. Smooth trajectories

Smooth trajectories were first introduced by Hogan in
[26]. The first objective was to reduce wear on systems and
improve path tracking [11, 33]. These qualities make smooth
trajectories particularly interesting for machining. For instance
the study [50] shows that tool-life can be improved up to
60%. One can resume the advantages of working with smooth
trajectories as follow:
• Improve accuracy, thus moves can be executed more

rapidly and accurately.
• Extend the life span of the manipulators as vibrations are

reduced thereby preventing actuators to be damaged and
reducing wear of the robot joints.

• Reduce stress and discomfort of human co-worker.
Because of their qualities, smooth trajectories can be used

in many contexts and can be employed in the making of more
efficient and flexible robots. The smoothness of a trajectory
can be defined by the number of derivative of the position and
the extreme values of these derivatives. It is generally accepted
that a smooth trajectory has at least continuous speed and
acceleration, hence a bounded jerk. Considering a constant jerk
during a period of time and its triple integral with respect to
time, the obtained trajectory is defined by a cubic polynomial
function of time. As these cubic functions are simple and their
properties well known, they are easy to manipulate, and thus
are widely used.

However higher order polynomials, especially quintics, are
often used in the literature to obtain smooth trajectories. The
main reason being the need to compute trajectories with the
possibility to specify position, velocity and acceleration at both
ends, so that the robot is able to react quickly to unforeseen
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events, an imperative in HRI context to ensure safety [29].
One quintic is enough to compute a trajectory that meet
these criteria, hence justifying their use [11]. Unfortunately,
quintics generate more computational burden than cubics and
their behavior between the way-points is more unpredictable
and less faithful to the expected trajectory. This is explained
by the tendency to oscillate of the quintics and generally
higher order trajectories [41]. A solution is to use more than
one quintic, but doing so they loose all interest, as simpler
solutions exist. More recently, sequences of cubic polynomial
functions have been used to define a smooth trajectory joining
arbitrary positions, velocities and accelerations [8, 57]. In the
following paragraphs, we present the major results on smooth
trajectories categorized in two main approaches.

1) Minimum-jerk model: In order to generate suitable
movements for a Human-Robot interaction, human motion ap-
pears naturally as a source of inspiration. Among the numerous
works that have covered this field, the model described by
Hogan is very a popular. This mathematical model describes
the organization of a class of voluntary arm movements. A
major incertitude of this model is that it lays on a subjective
criterion: since movements tends to be smoother and more
graceful with skill and practice, they suppose the ideal motion
should be the smoothest [17]. Since maximizing the smooth-
ness implies minimizing the jerk, dynamic optimization is
used with an objective function that minimizes the square of
the jerk over the duration of the movement. This model was
first verified on monkeys [6, 25] and later on humans [17].
This model was built to reproduce the bell-shaped tangential
velocity profiles observed for human motions. However this
was not experimented on a large variety of movements and was
mainly verified for intermediate velocity profiles. Different
works confirmed the fact that velocity and acceleration curves
are asymmetric for a large variety of motions [3, 45, 47],
especially for skilled motions. Thus a complete trajectory
planner should be able to handle asymmetric kinematics. This
approach was built around the hypothesis that the human
behavior could be derived from a single organizing principle,
wich provides a simple model, but also leads to a lack of
flexibility and adaptability.

Since then, minimum-jerk model has been popular and used
in order to obtain coordinated and natural human-like motion.
In [33], Kyriakopoulos et al. used a minimax approach to
minimize the maximum jerk. This work was later extended
by Piazzi et al. in [48, 49] where interval analysis is used
to globally minimizes the absolute maximum value of the
jerk along a trajectory. This global minimization avoids a
flaw present in minimum-jerk works, generally subjects to
get stuck in local minima. In [1] fifth order polynomials for
minimum-jerk control are used with symmetric or asymmetric
jerk bounds.

In the different approaches listed above kinematic con-
straints are not considered and the time has to be set a priori.
Some studies have considered minimizing a mixed criterion
such as [20, 56]. In [20], Gasparetto et al. adopt a trade-off
between a short execution time and smoothness of the motion
by using a mixed criterion minimizing both the jerk and time.
Kinematic constraints are taken as inputs, avoiding setting the

time a priori. These works constitute a good attempt against
the lack of flexibility of the model. However there is another
model that is not affected by this drawback.

2) Constrained-jerk model: In this second approach, a
suitable application dependent maximum jerk Jmax is es-
tablished through experiments or information provided by
the manufacturer. This threshold is determined according to
certain criteria related to the nature of the task. Once the
maximum jerk is defined the problem left is that of a classic
time’s optimization. This is done by maximizing the jerk under
the constraint J < Jmax. It provides time-optimal trajectories
under task dependent constraints defined by the user. This
approach can also be extended to acceleration, velocity and
other derivatives. The major disadvantage of this model is that
kinematic constraints must be specified by the user. However,
unlike the previous approach, it provides qualities that are
essential to build the future generations of collaborative robots
that we expect to be efficient, adaptable and reusable [32].

In [40], Liu proposes a real-time algorithm to generate
smooth trajectories from current velocity under constraints on
jerk, acceleration and velocity. Optimal in most cases, this
paper points the difficulty of managing non-null initials and
finals conditions. In the calculation steps for the maximum
reachable speed, if the motion is too short to reach the
maximum speed or acceleration, it becomes very difficult to
compute an analytical solution online. A suboptimal strategy
is then adopted by keeping the initial speed for a certain
period. A similar approach is presented in [22] to generate
third order time-optimal trajectories. The main contribution
concerns the ability to handle arbitrary initial conditions,
while end conditions must stay at rest. Nonetheless this work
encounters numerical problems and produces infinite jerk for
short displacements. In that case, second order trajectories are
employed as a fallback solution. Similar results can be found
in [31], except it is for quadratic trajectories and hence not
smooth, since the jerk is not bounded. In [29], Kroger et al.
introduced a general Online Trajectory Generation algorithm
and an instance of it using third order polynomials. It brings a
manipulator from an arbitrary initial state to an arbitrary final
state except for the final acceleration which is always null.
This work as been extended in [30] such that time-variant
kinematic motion constraints are considered.

Third order polynomial trajectories offer a simple solution
to generate jerk bounded trajectories as they are easy to ma-
nipulate, keep the jerk bounded and can be generated online.
They also avoid some major drawbacks of higher degree
polynomials such as the tendency to oscillate, and are better for
approximation [41]. Moreover it has been demonstrated that
a concatenation of at most seven cubic is enough to represent
any time-optimal trajectory [7]. In [23] Herrera-Aguilar et al.
propose seven cubic equations to obtain Soft Motions for robot
service applications. It was extended later in [7] by Broquere
et al. to compute online time-optimal trajectories given any
initial and final conditions, under bounded jerk, acceleration
and velocity, for any number of independently acting axis.
A solution for time-imposed trajectories is presented in [8]
which leads to a simpler axis-synchronization for multi-axis
systems. Yet, this solution had drawbacks, since it was not
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TABLE I
CLASSIFICATION OF MAIN TRAJECTORY PLANNING ALGORITHMS IN HRI

CONTEXT

Reference [40] [41] [34] [31] [46] [7] [22] [29] [15] Ours

Jmax ∈ R + + + + + – + + +
VI ∈ R + + + + + + + +
AI ∈ R + + + + + +
VF ∈ R + + + + + +
AF ∈ R + + + +

Asymmetric
bounds

+ +

Online + + + + + + + +
Optimal – + + + + +

"–": the criterion is not satisfied for every scenario.

possible to both impose the time and keep the jerk bounded.
An improvement was proposed by Zhao et al. in [57], which
allows to have an imposed time and bounded jerk for sufficient
large motions. For a point to point movement in an N-
dimensional space, the time optimum straight-line motion is
obtained by projecting the constraints on the line [52].

Polynomial and trigonometric models have also been com-
bined in order to design smooth trajectories [41, 46]. In [41],
Macfarlane et al. introduce an online method to compute
smooth trajectories for industrial robots. Concatenations of
fifth order polynomials are employed to join the waypoints
approximating the desired trajectories. Oscillations due to the
use of quintics are here corrected by sine-wave template for
accelerations. The solution presented is not optimal, and the
jerk continuity is not guaranteed either, despite the use of fifth
order polynomials. Trigonometric and polynomial models are
also combined to design s-curve motions of any order from
rest to rest in [46].

In more recent works [15, 16], Ezair et al. display a new
algorithm to generate smooth trajectories of any order under
kinematic constraints and for multi-axis systems. A key point
is its ability to deal with any general initial and final state.
The algorithm builds trajectories from an input speed, which
is updated iteratively by binary search until a near-optimal
cruise speed is found (or peak when the motion is too short).
A recursive approach is used to build higher order trajectories
from lower ones. An interesting addition of this paper is the in-
troduction of asymmetric constraints. Unfortunately this work
presents some limits other than its non-optimality regarding a
time criterion. Binary search in non-linear systems can lead to
difficulties, such as being trapped in local minima. Moreover,
it does not guarantee a solution can be found.

To our knowledge (See Table. I), there is no work proposing
a complete answer to trajectory generation satisfying simul-
taneously all the following criteria to build safe, efficient,
adaptable and human-friendly robots:

• Real-time capable.
• General initial and end conditions for both velocity and

acceleration.

• General bounded jerk, acceleration and velocity.
• Asymmetric bounds.
• Time optimal.
The algorithm we present here is the first, to our knowledge,

to fulfill simultaneously all those criteria. We also attempt to
understand the harsh points associated to non-linear systems
that only few papers address [5, 10, 21].

III. TIME-OPTIMAL CUBIC POLYNOMIAL TRAJECTORIES

One key lesson to be drawn from this bibliography is that
solutions are well known for large movements, but smaller
movements exhibit more complex behavior. This problem has
been approached in some works [22, 40, 41], but avoided
by the majority. To better understand these small moves, we
first develop a graphical approach based on the phase diagram
and then plot the time-optimal solution as a function of the
move length xf . From these results we then introduce the first
complete algorithm to compute the time-optimal motion.

A. Problem definition

The initial condition ci = (xi, vi, ai) is defined by the
position xi, the velocity vi and the acceleration ai. The final
condition is similarly defined by cf = (xf , vf , af ). Without
loss of generality, we choose xi = 0, i.e. we define xi as
the origin. The trajectory must comply with the asymmetric
bounds (Jmin, Jmax, Amin, Amax, Vmin, Vmax) for jerk, ac-
celeration and velocity.

From these conditions, our objective is to find the time-
optimal trajectory T (t), which is known to be a series of at
most seven trajectory segments that each saturates one of the
bounds [7, 40]. Each of these trajectory segments Sn is a
polynomial cubic function of time t and it is characterized by
a constant jerk Jn ∈ {Jmin, Jmax, 0}, an initial instant τn, a
duration Tn and its initial condition Cn = (xn, vn, an). For
all t such that τn 6 t 6 (τn + Tn):

Sn(t) =
1

6
Jn(t− τn)3 +

1

2
an(t− τn)2 + vn(t− τn) + xn

Ṡn(t) =
1

2
Jn(t− τn)2 + an(t− τn) + vn (1)

S̈n(t) = Jn(t− τn) + an

B. The phase diagram

These trajectories are well described with a phase diagram
(Fig. 2) where abscissa is velocity and ordinate is acceleration.
In this diagram, constant jerk trajectories associated to third
degree polynomial functions define horizontal parabolas, con-
stant acceleration motions associated to second degree poly-
nomial functions are horizontal lines and constant velocities
motions are associated to points of the null acceleration axis.
The equations of the parabolas are obtained by eliminating the
time in the two last equation of (1):

Ṡn =
S̈n

2

2Jn
+ vn −

an
2

2Jn
(2)

The area where acceleration and speed constraints are veri-
fied is plotted in green in the figures. The acceleration bounds
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Fig. 2. Phase diagram of a classical seven segments trajectory for a large
negative motion. The green area of admissible conditions is limited by the
acceleration bounds (Amin, Amax) and the parabolas associated to velocity
bounds (Vmin, Vmax). The jerks Jmin and Jmax define four condition
parabolas passing throw the initial conditions Ci and the final condition
Cf . The red curve joins Cf from Ci with the following 7 segments:
Jmin → Amin → Jmax → Vmin → Jmax → Amax → Jmin. The
segment with saturated speed Vmin holds on point C.

Amin and Amax define two horizontal boundary lines while
the left and right boundaries are parabolas respectively defined
by (Vmin, Jmax) and (Vmax, Jmin). By continuously varying
the length xf from a large negative value to a large positive
one, the trajectory in the phase diagram reaches successively
different limit shapes. These shapes are defined by a sequence
of trajectory segments. For example, the large negative values
are associated to the classical seven segments trajectory plotted
in red in Fig. 2 and the limit case of this trajectory sequence is
reached when the minimum velocity Vmin segment lasts zero
seconds. Just after this limit, five segments only define the
trajectories. We associate the type (JAJVJAJ) to these sequence
of trajectories and the type (JAJAJ) to the one without the
Vmin/Vmax segment where J stands for jerk segment and A
for acceleration segment.

Introducing the notion of type allows decomposing the
problem in three sub-problems, the last one being trivial:

1) Find the possible types of the solution.
2) For each possible type, compute the associated trajec-

tory.
3) Select the faster trajectory.
In the following, we firstly develop a general method to

compute the border trajectories between two types.

C. Local parabolas

From the initial condition Ci defined by vi and ai, the
two jerk bounds allows only two possible optimal motions,
which define two condition parabolas in the phase diagram
(See Fig. 2). Similarly, only two motions i.e. two condition
parabolas are possible to reach the final condition Cf defined
by vf and af . As these four condition parabolas are symmetric
with respect to the horizontal axis of zero acceleration, they
only define two relative configurations depending on whether
only two parabolas intersect (Fig. 2) or the two interior
parabolas also intersect (Fig. 4). A trajectory joining Ci to Cf

and composed by two jerk bounds segments is called a direct
trajectory. In the phase diagram, these direct trajectories are

(a) The direct trajectory xf = xd. (b) Trajectories with xf < xd in red
and xf > xd in blue.

Fig. 3. Evolution of the phase of the trajectory with the length xf around
the direct trajectory.

associated to arcs of condition parabolas. When Ci and Cf

are on the same parabola, the direct trajectory is reduced to
one arc. If a part of these two arcs of parabolas is outside
the admissible area, it is replaced by an horizontal segment
associated to the acceleration Amin or Amax.

Each pair of initial and final conditions defines at least
one direct trajectory, for example the orange trajectory of the
Fig. 3a. When the internal parabolas also intersect defining
shortcut trajectories, up to three direct trajectories can exists
(See Fig. 4).

D. Varying the trajectory length

Now, we propose to explore the possibility of varying the
trajectory length xf in the neighborhood of a direct trajectory
of length xd by adding an optimum motion, i.e. a Jmin or
Jmax parabolic arc Ap. For example, the red trajectory of
the Fig. 3b is the result of adding a small arc, associated to
a negative jerk segment, at the beginning of the motion that
translate the negative parabola toward the left. The length of
the red trajectory is xf < xd. Similarly, adding a small positive
motion at the end of the trajectory increases the length of the
motion, see for example the blue trajectory in Fig. 3b.

The modification of the length is less intuitive in the case of
the Fig. 5a where direct trajectory doesn’t reach the zero accel-
eration line. In this case, adding a short Jmin jerk trajectory at
the beginning of the motion, translates the parabola with Jmax

jerk to the right. The extension of this added segment brings
the end of the first segment to progressively reach the zero
acceleration axis until a cusp appears (Fig. 5b). Continuing to
extend this added segment create a loop (Fig. 5c) that can be
extended to the Vmin limit. From the cusp, the second segment
translates back to the left. Generally, during this extension
the length xf is not monotonically decreasing as we will see
bellow.

This complex behavior appears each time one parabola of
the direct trajectory doesn’t cross the zero acceleration line
to reach the condition Ci or Cf . In the particular case of the
Fig. 5, it appears on both sides.

E. Internal parabolas also intersect

In the case of the Fig. 4 where the internal parabolas also
intersect, three direct trajectories are possible: (Ci, D3, Cf ),
(Ci, D2, Cf ) and (Ci, D1, Cf ). The last trajectory provides an
evolution similar to the case of the Fig. 3 and can be extended
to both Vmin and Vmax. The two first trajectories introduce
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Fig. 4. Limits trajectories in the case where the two parabolas defined
by Ci intersect the two parabolas defined by Cf . The main direct tra-
jectory is in orange. The red and green trajectories are two shortcuts
trajectories. (Jmin=− 30, Jmax=30, Amin=− 20, Amax=20, Vmin=−
20, Vmax=20, ai=10, vi=4, af=10, vf=6).

alternative trajectories for a range of values for the length
xf . Two samples, (Ci, Cip, Cfp, Cf ) and (Ci, Cin, Cfn, Cf ),
illustrate these shortcut trajectories in the Fig. 4.

The trajectory (Ci, D1, Cf ) is endlessly expandable, but
(Ci, Cip, Cfp, Cf ) and (Ci, Cin, Cfn, Cf ) have shorter curves
in the phase diagram where they generally define faster
trajectories for a small interval of values.

To summarize, in all cases the direct trajectory (Fig. 5a) can
be respectively extended to long negative motions and to long
positive motions. The behavior of these trajectories is more
complex for short motions, i.e. around the direct trajectories,
where shortcut trajectories can exist (Fig. 4). This point is
developed further and constitutes a major contribution of our
work.

IV. DURATION OF THE TRAJECTORIES ACCORDING TO THE
LENGTH

As expected, trajectories show a more complex behavior
around the direct trajectory. We are going to plot the optimal
time of these trajectories versus their length xf to obtain the
curve Copt. In a first stage, we propose to plot the duration of
the trajectory according to its length as a parametrized curve
C(xf , tf ). We choose the time length of the added arc Ap (see
III-D) as parameter, thereby defining a parameter tn for left
negative side and a parameter tp for right positive.

A. A simple case

In order to simplify the presentation, we firstly plot the
curves C(tn) and C(tf ) (see Fig. 6) for the particular case
of the Fig. 5 where internal parabolas doesn’t intersect and
without considering the bounds. Using the conditions of the
Fig. 5, we compute the times of the trajectory segments
and then apply the equations (1). The times tn and tp are
null for the direct trajectory (Fig. 3a). A time tn > 0
defines a parabolic arc Ap between the initial acceleration
a0 and the acceleration an = a0 + Jmintn. Respectively,
ap = a0 + Jmaxtp for a positive parabolic arc. For example,
in the case of the Fig. 5c, the first purple negative arc starts
from Ci with acceleration ai and ends at −ai. Its duration is
tn = −2ai/Jmin.

(a) Direct trajectory (b) Negative and positive Cusps

(c) Negative loop expansion

Fig. 5. The direct trajectory displayed in (a) can be extended by adding a
positive or a negative arc of parabola. In (b) two limit cases are displayed,
which separate the trajectories with a cusp from the trajectories with a
loop. Different trajectories with a loop are plotted in (c): a small loop
in blue, the loop reaching the symmetric condition of Ci and a larger
loop in red. (Jmin=− 50, Jmax=50, Amin=− 30, Amax=30, Vmin=−
30, Vmax=30, ai=8; vi=− 5; af=8; vf=5).

Fig. 6. The optimal (tf ) time solutions versus the trajectory length (xf ). A
trajectory length of zero means the start and end positions are the same. For
example the minimum here is associated to the direct trajectory of Fig. 5a,
and the null length is explained by the presence of symmetries.

Using (1), we obtain the condition at the end of the first
segment associated to the arc Ap. This condition defines
the second parabolic arc, enabling the computation of the
intersection of the two last parabolic arcs. From this inter-
section we determine the durations t2 and t3 of the two last
segments and then the length xf using (1). More details are
given in appendix A. It is worth noting that these geometric
constructions are simple but depend on the relative position
of Ci and Cf , in particular, the arc Ap of parabola can be the
first or the last segment.

This procedure defines the duration tf (tn) = tn + t2 + t3
and the length xf (tn) of the trajectory, namely a point of the
parametric curve C(tn). The repetition of this procedure allows
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Fig. 7. Effect of velocity shift on the shape of the curve Copt.

to plot the curve C(tn) defining the duration of the trajectory
versus its length (Fig. 6). A similar procedure is used to plot
C(tp).

B. Effects of the bounds

The acceleration bounds Amin and Amax limit the increase
of the time parameters tn and tp and the arc Ap to some
time tj defining the intersecting point of the jerk parabolic
trajectory with the boundary line. From this point, we follow
the same process but by defining the intermediate parabola
from the end of the acceleration segment of time ts. To keep
the same parameter tn (resp. tp) we define ts by ts + tj = tn
(resp. ts + tj = tp).

Similarly, when the intermediate parabola reaches the veloc-
ity bound Vmin or Vmax, we define the duration of the constant
velocity segment tv by tv+ ta+ tj = tn (resp. tp) where ta is
the duration of the constant acceleration segment reaching the
limit velocity parabola. In some cases, the parabola defined
by tj can reach the minimal or maximal velocity parabolas
before the acceleration bounds: the geometric constructions
are similar, but ta is null.

These bounds introduce changes in the nature of the portions
of the curves C(tn) and C(tp) (Fig. 6), in particular the large
values of tn (resp. tp) correspond to straight line segments as-
sociated to constant (minimum or maximum) velocity motions.
The second parabola can also reach the second acceleration
bound, resulting in a change in the trajectory sequence without
affecting the parametrization of the curve.

V. THE TIME-OPTIMAL TRAJECTORIES

In the previous case (Fig. 6), the parametric curves C(tn)
and C(tp) give directly the time-optimal function Copt(xf ) that
associates the optimal time to the length xf . In general, the
non-linearities in the definition of these functions generate far
more complex curves. We will now consider two types of non-
linearities: the influence of the velocity that distorts the curve
and the presence of shortcuts that split the curve in two.

A. Influence of the velocity

Having now defined a tool to plot the time-optimal function
versus the length of the motion, we can study the influence
of the different parameters. Considering the case of the figure

(a) Solution in 5 segments for xf = 9.44920 < λ

(b) Direct trajectory for xf = λ =
9.4492105

(c) Solution in 3 segments xf � λ

Fig. 8. Major effects of discontinuities on the time representation of the
optimal trajectory and its derivative.

5, we shift the initial and final velocities by 15 (from (-5, 5)
to (10, 20)). This shift just translate the phase diagram to the
right, but the parametric curves C(tn) and C(tp) plotted in
the Fig. 7 have now more complex shapes and, for a range
of values of xf , there are multiple associated trajectories with
different time tf . Therefore the time-optimal function Copt(xf )
is no more directly defined by the union of the two curves, but
by the minimum time for each value of xf . The resulting curve
might exhibit discontinuities, which impact the definition of
the trajectory.

For example such discontinuity is present in the case of
Fig. 7 at xf = λ. For xf < λ the optimal solution begin with a
jerk negative segment, but for xf >= λ the optimum trajectory
begins with a positive jerk. The corresponding trajectories and
their derivatives are plotted in the Fig. 8.

B. Duration in the presence of shortcut

The shortcut solutions associated with intersecting parabolas
also introduce discontinuities in the optimal function Copt(xf ).
The curve of the Fig. 9, plotted from a similar case of the
Fig. 4, shows a small lens shaped curve just below the cusp
point of the parametric curves. Beside the main curve (C(tn)
and C(tp)) obtained by the previous procedure, the two parts
(C(tln) and C(tlp)) of the lens shaped curve are similarly
plotted from the two shortcut trajectories (Ci, Cip, Cfp, Cf )
and (Ci, Cin, Cfn, Cf ), where the parameters tln and tlp
define the duration of the first of the two segments (Ci, Cin)
and (Ci, Cip).

In the neighborhood of the singular case where the interior
parabolas become tangential, the lens shaped curve joins the
main curve and disappears to extend the main curve on both
sides (Fig. 10). It can be noted that for some values of xf , the
curve exhibit up to five solutions (Fig. 10).
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Fig. 9. Shortcut trajectories introduces discontinuities in the time-optimal
curve Copt. (Jmin=− 40, Jmax=40, Amin=− 30, Amax=30, Vmin=−
30, Vmax=30, ai=20; vi=− 4.99; af=20; vf=4.99).

Fig. 10. Curve exhibiting up to 5 solutions when initial and final velocities
are shifted. (Jmin=− 40, Jmax=50, Amin=− 55, Amax=50, Vmin=−
40, Vmax=70, ai=− 39.0; vi=17.205; af=− 39.0; vf=− 17.105).

We have seen the influence of the initial and final velocity
and acceleration on the optimal curve Copt(xf ). The jerks
Jmin and Jmax deform also the curve but do not introduce
new particular case. The values of the bounds influence the
shape of the area of the admissible conditions, which change
the nature of the function defining the curve Copt(xf ) but do
not introduces new types of discontinuities.

Considering only the jerk bounds, it is possible to compute
analytically the parametric curve C(xf (tn), tf (tn)) (See Ap-
pendix A). The expression obtained is large and complicated
and generates an even more complicated derivative. Unfortu-
nately, we could not manage to analytically compute the zero
of the derivative of Copt(xf ) with respect to xf associated to
its points of discontinuity.

In the algorithm presented below, we chose to compute all
the solutions (up to 5) and then select the optimal one. An
alternative approach would be to numerically compute the zero
of the derivative of C(tn) and C(tp) relatively to xf and then
compute directly the optimum.

C. The time-optimal algorithm

From the previous elements, several strategies are possible
to compute the time optimum trajectory Topt(xf ). However,

as our main motivation is real-time control, we propose now
a fast algorithm:

1) Compute the local parabolas.
2) Compute the singular limit trajectories.
3) From xf , determine what are the possible sequences of

trajectories.
4) For each possible sequence compute the time optimum

trajectory.
5) Select the faster trajectory.
The first three stages of this algorithm were previously

detailed and the last one is trivial, therefore the following
sections will detail how to compute a sequence of trajectory
segments from the length xf . We begin by showing how to
transform the associated systems of equations in a quartic
polynomial equation and then we will detail how to solve these
quartic equations.

The seven segment trajectory labelled as (JAJVJAJ) doesn’t
generally include all the seven segments. When the V segment
exists, it is the only one for which the duration is varying
accordingly with xf . If the V segment is not reached, the
sequence comprises at most five elements (JAJAJ). This prob-
lem can always be reduced further to a sequence of three
segments: Each time an acceleration segment is reached, the
first or the last jerk segment duration is fixed and defined
by tj = (Ab − ai)/J where Ab ∈ {Amin, Amax} and
J ∈ {Jmin, Jmax}. Therefore after simplification, the four
problems left to solve are: (JJJ) when no acceleration bounds
are reached, (AJJ) or (JJA) when only one acceleration bound
is reached and (AJA) when both the acceleration bounds are
reached.

The next paragraph details the (JJJ) case, the three others
being similar and introduced in appendix B and the (V) case
is trivial because only one segment is varying.

VI. SOLVING THE (JJJ) PROBLEM

After reducing the problem, the three jerk trajectories prob-
lem (JJJ) is defined by seven parameters: the initial condition
(ai, vi), the final condition (af , vf , xf ) and two jerks Ja
and Jb. The unknowns are the durations of the three segments
(t1, t2, t3). Two conditions (a1, v1, x1) and (a2, v2, x2) are
associated to the transitions between the segments and defined
by:

a1 = Ja ∗ t1 +ai

v1 = Ja ∗ t12/2 +ai ∗ t1 +vi (3)

x1 = Ja ∗ t13/6 +ai ∗ t12/2 +vi ∗ t1

a2 = Jb ∗ t2 +a1

v2 = Jb ∗ t22/2 +a1 ∗ t2 +v1 (4)

x2 = Jb ∗ t23/6 +a1 ∗ t22/2 +v1 ∗ t2 +x1

Then the system of polynomial equations to solve can be
written as:

af = Ja ∗ t3 +a2

vf = Ja ∗ t32/2 +a2 ∗ t3 +v2 (5)

xf = Ja ∗ t33/6 +a2 ∗ t32/2 +v2 ∗ t3 +x2
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Using algebra systems like Maple [42] and Maxima [43],
the solution of this system of equation can be expressed from
the roots of a quartic equation. Firstly we define a set of
intermediate variables (k1 to k4) and the coefficients of the
polynomial:

k1 = 2 ∗ Jb − Ja
k2 = Jb

2 + Ja ∗ (Ja − 2 ∗ Jb)
k3 = Ja − Jb
k4 = 2 ∗ Ja ∗ vf
c4 = −Jb ∗ (Jb3 + Ja ∗ (Ja ∗ (5 ∗ Jb − 2 ∗ Ja)− 4 ∗ Jb2))
c3 = 0

c2 = −6 ∗ (2 ∗ Ja ∗ k2 ∗ vi − Jb2 ∗ ai2

+ Ja ∗ (k1 ∗ ai2 + 2 ∗ k2 ∗ vf ) + af
2 ∗ (Ja ∗ k1 − Jb2))

c1 = −8 ∗ (ai ∗ (3 ∗ Ja ∗ Jb ∗ vi − (3 ∗ Ja2 ∗ vi + Jb ∗ ai2))
+ Ja ∗ ai3 − 3 ∗ Ja ∗ k3 ∗ xf )
+ af ∗ (3 ∗ Ja ∗ k3 ∗ vf − af 2 ∗ k3))

c0 = 3 ∗ (4 ∗ Ja ∗ vi ∗ (Ja ∗ vi − (ai
2 + k4 − af 2)) + ai

4

+ 2 ∗ ((k4 − af 2) ∗ ai2 + 2 ∗ Ja2 ∗ vf ∗ vf )
+ af

2 ∗ (af 2 − 4 ∗ Ja ∗ vf ))

The quartic polynomial equation is then defined by: c4 ∗
x4 + c2 ∗ x2 + c1 ∗ x + c0 = 0. If ri is one of its roots, the
solution can be written as:

t1 = −(k6 ∗ (k5 − ai2 + 2 ∗ (Ja ∗ (ri ∗ ai − vf )
− Jb ∗ ri ∗ ai) + k3 ∗ Jb ∗ ri2 + af

2)) ∗ 0.5
t2 = ri

t3 = (k6 ∗ (k5 − (ai
2 + k4)− Jb ∗ k3 ∗ ri2

+ af ∗ (2 ∗ k3 ∗ ri + af ))) ∗ 0.5
with:
k5 = 2 ∗ Ja ∗ vi
k6 = 1/(Ja ∗ k3 ∗ ri)

As the times t1, t2 and t3 must be positive, only the positive
solutions define a valid trajectory. This system can have up
to four solutions, but we never find a particular case with
more than three admissible triplets. It must be noted that the
trajectories can begin with one of the two jerk bounds, defining
two different problems, which defines up to three solutions
each. So, in some cases like the one of the Fig. 10, five
different trajectories composed of a sequence of potentially
optimum segments can be computed.

The last step is to compute the time-optimal solution, which
is the one that minimize t1 + t2 + t3.

The approach to compute the polynomial equation in the
case of the sequences (AJJ), (JJA) or (AJA) is really similar
and presented in appendix B.

VII. SOLVING THE QUARTIC POLYNOMIAL EQUATION

It is well known that solving a quartic polynomial equation
is difficult. The analytical solutions have been known since

TABLE II
COMPARISON OF COMPUTATION TIMES FOR DIFFERENT TRAJECTORY

LENGTHS. RESULTS FOR 5× 105 RUNS.

Case General Near the direct
trajectory

With cruising
velocity phase

Times
(µs)

1.04 2.45 0.854

the 16th century, but this approach is time consuming and
can fail for some particular equations. Numerical algorithms
like Newton-Raphson based algorithms are efficient but require
initial information about the root, precisely the information
we do not have in our case. Recent works have proposed to
associate the two approaches: the analytical results are used as
inputs for a numerical solver [54]. This has generated a new
class of faster and more accurate algorithms [18, 55].

We used a solver derived from the one of Schwarze [51]
to compute a first approximation of the solution. To improve
the accuracy, we directly applied a three dimensional Newton
method to the durations of the three segments. The analytical
expression of the derivative of the polynomial functions (1) is
given in appendix C.

VIII. DISCUSSION

The characteristics of our method are summarized in the
classification table I, which compare the possibilities of the
online trajectory generators. The implementation1 of this al-
gorithm on a system equipped with a Intel Core i7 processor
running at 2.2 GHz gives a mean time of 1.02 µs with a
standard deviation of 0.81 µs observed for 108 random tests,
allowing to use it in real time and for planning (See table II).
These performances are comparable or better than the previous
algorithms that do not always give the optimal solution.

The longest times are relative to particular case where
the Newton-Raphson method have difficulty to improve the
accuracy of the solution. The figure 11 gives an example
of such a configuration where the analytical solution is not
precise enough and the numerical one struggle to converge.
Fortunately these cases are hardly relevant and the system
always return a solution for such configurations, eventually
a sub-optimal solution.

Solving the optimal trajectory problem in the vicinity of the
direct trajectory opens the way to an intensive use of these
simple trajectories for control and planning. Concerning the
trajectory control, where the objective is to compute in real
time a trajectory to bring back smoothly the mobile to the
target trajectory from the current state, we can notice that
the connection trajectories are short and consequently close
to the direct trajectories. In this case, the proposed trajectory
generator provides a good solution.

Similarly for multi-axes trajectory generation, one classical
solution is to compute the time optimal trajectory for each
axes, select the slowest one and synchronise the other axis
with the selected one. The proposed trajectory generator can
improve the calculation of the time optimal trajectories.

1The documentation, the softMotion library and examples are available at
https://git.openrobots.org/projects/softmotion/wiki.

https://git.openrobots.org/projects/softmotion/wiki
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(a) In this case parabolas are almost identical.

(b) The zoomed area where the positive cusp that produces a very short jerk
segment.

Fig. 11. Illustration of a problematic case where newton doesn’t converge.
(Jmin=− 2.02754, Jmax=29.7968, ai=20.9815; vi=− 83.4179; af=−
20.6076; vf=− 79.5853).

Sampling-based motion planners are really efficient to find
a polygonal path, even in the case of cluttered and high-
dimensional space, but planning efficient and smooth tra-
jectories is more difficult. Here also the proposed trajectory
generator could improve the smoothing of an initial trajectory
built from the polygonal path.

The generator can be used in joint or operational spaces.
In the first case kinematic bounds can be directly deduced
from joint characteristics, whereas Cartesian space is suitable
to incorporate the constraints related to safety and ergonomics.
The non-symmetrical bounds can be employed to enhance the
ergonomics properties of our model as they allow to design
more natural human-like motions. They can also be very useful
in the making of vertical motions under gravity, or motions in
the presence of a human, for which an approaching move is
more scaring than a withdrawal move.

As this work explains the discontinuities of the time-optimal
curve Copt and solves the optimum time problem, it will
contribute to the development of trajectory based robotic archi-
tectures. In these architectures trajectories will be used as the
main support of communication and facilitate the link between
planning and control, leading towards an improvement of
robots motions.

By explaining the complex behavior of the jerk bounded
trajectories, this work defines also a step in the solving of the
snap bounded optimal trajectory problems, where the snap is
the derivative of the jerk.

IX. CONCLUSION

With the emergence of HRI, the problem of the generation
of safe, efficient and human-friendly movements has to be
addressed. From the review of the state of the art it appears
that no complete solution for the making of collaborative
motions exists yet. To the best of our knowledge, the algorithm
presented herein that uses trajectory of class C2 defined by a
chain of cubic polynomial functions is the first one that:
• joins two arbitrary conditions defined by position, veloc-

ity and acceleration,
• in minimum time under general and asymmetric bounds

on velocity, acceleration and jerk.
By explaining graphically the behavior of the optimal trajecto-
ries, this work allows to explain and solve the difficulties high-
lighted by the previous works. The proposed trajectory gener-
ator completes the existing tools for planning and controlling
multi-axes cubic polynomial trajectories, which open the way
for more flexible and friendly robots. This applies particularly
to the HRI domain where the underlying constrained jerk
model approach makes easier the consideration of the different
types of constraints related to safety and ergonomics. More
specifically, close cooperation between humans and industrial
robots needs more flexibility, adaptability and reusability that
can be improved by the models and tools developed in this
work.

Even if the model of the chain of cubic polynomial tra-
jectories is efficient, the questions relative to higher degrees
polynomial still remains. These models are necessary to solve
specific problems. The underactuated vehicles, for example,
need one more derivative to control the motion obtained by
integration. It is the case, for example, to obtain a jerk bounded
horizontal move with a quadrotor. The same problem appears
also for double and, more generally, multiple pendulum. Given
the difficulties encountered to solve the cubic trajectories, the
higher degree appears as really challenging.

APPENDIX A
ANALYTIC EXPRESSION OF THE PARAMETRIC CURVE

C(xf (tn), tf (tn))
We consider here only a particular case defined by:
• Three non null jerk segments associated to parabolas in

the phase diagram.
• The first and last segment are associated to Jmin < 0..
• The third segment begin with a positive acceleration a2.

The first trajectory segment is entirely defined by the initial
conditions ai and vi and the duration t1 using the equations
(3). The parabola associated to the second segment cross the
abscissa axis at v′1 and the one associated to the third segment
at v′f with:

v′1 = v1 −
a1

2

2Jmax
v′f = vf −

af
2

2Jmin

And the acceleration at the intersection point of the two
parabolas is a2 defined by:

a2 =

√
2(v′1 − v′f )× Jmax × Jmin

Jmax − Jmin
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We choose the positive solution as defined in the hypothesis
and compute the durations t2 and t3 of the two last segments.

t2 =
(a2 − a1)
Jmax

t3 =
(af − a2)
Jmin

From the equations (4) and (5) and using an algebraic
calculator, the values of xf and tf = t1+t2+t3 can be easily
computed. Then the zeros of the derivative of the xf function
with respect to t1 would define the points of discontinuity of
the optimal curve Copt. Unfortunately, we cannot manage to
obtain this points in an usable form.

APPENDIX B
SOLVING (AJA), (JJA) AND (AJJ)

Solving the (AJA) problem

In this case the jerk Ja of the first and last segments is null
in the equations (3) and (5) that respectively become (6) and
(7):

a1 = ai

v1 = ai×t1 +vi (6)

x1 = ai×t12/2 +vi×t1

af = a2

vf = a2×t3 +v2 (7)

xf = a2×t32/2 +v2×t3 +x2

Using an algebra system, we obtain the results:

k1 = ai−af
k2 = k1

−1

k3 = ai×((−Ja×vi)+af 2/2+ai×(−af+ai/2))
k4 = af×Ja×vi
k5 = 12×Ja2×vi2

k6 = af−ai
k7 = (3×(12×ai×Ja2×(2×af×k6×xf+k1×vf 2)
+af×(ai×(ai×(4×af 3+ai×(ai×(4×af−ai)
−6×af 2))−(k5+a4f ))+12×af×Ja2×vi2)))0.5

k8 = k6×Ja−1

k9 = k1×af
k10 = 2×Ja×vf
k11 = 1/

√
3

k12 = (k6×(12×ai×Ja2×(2×af×xf−vf 2)
+af×(k5+ai×(ai×(3×af 2+ai×(ai−3×af ))
−af 3))))0.5

And finally the system has two solutions (t1, t2, t3) and (t′1,
t2, t′3) with:

t1 = ai
−1×k2×Ja−1×((−k7/6)+k4+k3)

t2 = k8

t3 = (af
−1×Ja−1×(k11×k2×k12+k10+k9))/2

t′1 = ai
−1×k2×Ja−1×(k7/6+k4+k3)

t′3 = af
−1 × Ja−1 × ((k10+k9)/2−(k11 × k2 × k12)/2)

Solving the (JJA) problem

The system of polynomial equations to solve is defined
by (6), (4) and (5). Using an algebra system, we obtain
the following result where ri is one solution of the quartic
equation defined by the coefficients ci with 0 ≤ i ≤ 4:

k1 = 1−2×af
k2 = 2×af
k3 = af

2×Jb+k1×Ja
c4 = 3×af 4×Jb4

+Ja×(2×k1×af 2×Jb+(4×(af−1)×af+1)×Ja))
c3 = 4×af×Jb×(af 3×Jb2

+Ja×((3×af−1)×Ja−3×af 2×Jb))
c2 = 6×Jb×(2×Ja×k3×vi+((k2−1)×Ja−af 2×Jb)×ai2)
c1 = 12×af×(2×Ja×(af×Jb−Ja)×vi+(Ja−af×Jb)×ai2)
c0 = 3×(4×Ja2×vi2+ai×(4×Ja×(k2−ai)×vi+ai3))
+4×(3×Ja2×(2×af×xf−vf 2)−2×af×ai3)

t1 = −Ja−1×(ai+af×Jb×ri)
t2 = ri

t3 = −Ja
−1×(2×Ja×vi−(ai2+2×Ja×vf )+Jb×k3×ri2)

2×af

Solving the (AJJ) problem

An (AJJ) system can be solved similarly as a (JJA) one or
using a symmetry with respect to the acceleration axis to build
an equivalent (JJA) system.

APPENDIX C
DERIVATIVE OF THE CUBIC POLYNOMIAL FUNCTIONS

The derivatives of the functions xf , vf and af relatively to
the three times t1, t2 and t3 can be grouped in a matrix. The
newton method uses the inverse of this matrix to compute the
times increments that, at the first oder, compensate the errors
of the functions.

∂xf
∂t1

∂xf
∂t2

∂xf
∂t3

∂vf
∂t1

∂vf
∂t2

∂vf
∂t3

∂af
∂t1

∂af
∂t2

∂af
∂t3

 =

 lx1 lv1 la1
lx2 lv2 la2
lx3 lv3 la3

−1

In the (JJJ) case defined by the equations (3), (4) (5), using
an algebraic calculator we obtain:

k1 = Ja×t1
k2 = Jb×t2
k3 = Ja×t3
k4 = ai+k3+k2+k1

k5 = ai+Jb×(t3+t2)+k1
k6 = Ja×k5−Jb×k4
k7 = t1

2

k8 = t2
2
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k9 = t3
2

k10 = (Ja×(k9+k8+k7))/2
k11 = t1×ai
k12 = t2×(ai+k1)
k13 = t3×(ai+Ja×(t2+t1))
k14 = vi+k13+k12+k11+k10

k15 = ai+Ja×(t3+t2+t1)
k16 = Jb×k15−Ja×k5
k17 = Ja×k7
k18 = Ja×k9+Jb×k8+k17
k19 = t3×(ai+k2+k1)
k20 = vi+k19+k12+k11+k18/2

k21 = (−k15)+ai+k3+k2+k1
k22 = vi+k19+k12+k11+(Jb×(k9+k8)+k17)/2
k23 = 1/(Ja×k21×k22+k16×k20+k6×k14)
lx1 = k6×k23
lv1 = (Jb×k20−Ja×k22)×k23
la1 = (k4×k22−k5×k20)×k23]
lx2 = Ja×k21×k23
lv2 = Ja×(−(k19+k12+k11−(−k18/2))

+k13+k12+k11+k10)×k23
la2 = (k15×k20−k4×k14)×k23]
lx3 = k16×k23
lv3 = (Ja×k22−Jb×k14)×k23
la3 = (k5×k14−k15×k22)×k23]))

The computation is done similarly in the case of (AJA), (AJJ)
and (JJA) sequences.
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