
HAL Id: hal-01672043
https://laas.hal.science/hal-01672043v3

Submitted on 25 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Smooth Cubic Polynomial Trajectories for
Human-Robot Interactions
Daniel Sidobre, Kevin Desormeaux

To cite this version:
Daniel Sidobre, Kevin Desormeaux. Smooth Cubic Polynomial Trajectories for Human-Robot Inter-
actions. Journal of Intelligent and Robotic Systems, 2019, 95 (3-4), pp.851-869. �10.1007/s10846-018-
0936-z�. �hal-01672043v3�

https://laas.hal.science/hal-01672043v3
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


Smooth Cubic Polynomial Trajectories for
Human-Robot Interactions

Daniel Sidobre Kevin Desormeaux
LAAS-CNRS, Université de Toulouse, CNRS, UPS

Toulouse, France
email {daniel.sidobre, kevin.desormeaux}@laas.fr

September 2018

Abstract

With the growing importance of Human-Robot Interaction (HRI), the movement of the robots requires
more and more attention to address the issues related to safety, efficiency and ergonomics. Trajectories are
excellent candidates in the making of desirable motions designed for collaborative robots, because they allow to
simply and precisely describe the motions. Despite the large number of works available for Online Trajectory
Generation (OTG), there was, to our knowledge, no complete solution capable to simultaneously meet all the
requirements of these new applications. In this paper we present a complete trajectory generation algorithm
that build trajectories from arbitrary initial and final conditions, subject to general asymmetric bounds on jerk,
acceleration and velocity. A review of the state of the art exposes the limits of the previous OTG works and
reveals the difficult problem of non-linearity related with short motions. We explain how these non-linearities
introduce discontinuities and we propose a solution based on sequences of segment of third degree polynomial
functions.

Keywords Online trajectory generation time-optimal trajectories human-robot interaction motion control
and planning third degree polynomial trajectories

1 Introduction

Trajectory generation then Online Trajectory Gener-
ation (OTG) has generated a lot of work and re-
sults from the beginning of robotic and until now. A
good trajectory allows improving, not only, the perfor-
mances of the robots in terms of speed, accuracy or
reliability, but also, the safety and comfort of humans
working with them. By giving a better description of
the robot motion, this model improves the design of
planners and controllers as well as the communication
between them, thus leading to better architectures. As
a trajectory describes both the path and the time evo-
lution along it, the associated mathematical function
is complex. Even in the case of a straight-line point-to-
point motion, a double-S time trajectory is necessary
to describe a smooth motion. Smoothness is associated
to the number of derivative of the function, generally to

the functions that are at least two times differentiable.

With the new robotic application domains, beside
the traditional constraints of collisions, accuracy, kine-
matic or dynamic, trajectories must comply with a
growing number of requirements relative to safety, com-
fort, ergonomics, energy consumption, or flexibility. A
large variety of mathematical functions have been pro-
posed to address the multiple constraints that a motion
has to satisfy. In this paper we thoroughly examine the
sequences of third order polynomial functions, one of
the simpler models to build smooth trajectories.

However, despite the many works in the field, trajec-
tory generation still encounters serious difficulties es-
pecially for short and asymmetric moves. These harsh
points have been encountered in several previous pa-
pers; we attempt to address them in this work. The
time-optimal curve regarding the length of the motion

1

mailto:daniel.sidobre@laas.fr, kevin.desormeaux@laas.fr


might be non-linear and present discontinuities, partic-
ularly for short motions or velocity shift.

We propose the first algorithm to generate smooth
trajectories defined by a chain of cubic polynomial
functions that joins two arbitrary conditions defined
by position, velocity and acceleration in minimum time
under asymmetric bounds on velocity, acceleration and
jerk. In particular, this algorithm solves efficiently the
complex and highly non-linear cases where the distance
to travel is short and the initial and final velocities
are non-null. These cases appear in particular for tra-
jectory control and multi-axis synchronization. Also,
although only the one-dimensional problem of time-
optimal motion is considered in this paper, these re-
sults have direct consequences for control as well as for
multi-axis synchronization. Solving this fundamental
problem is necessary to solve more general problems in
N-dimension and with several via-points.

The paper is organized as follows. In Section 1.1, a
state of the art is presented. The time-optimal cubic
polynomials trajectories are introduced in Section 2.
The duration of the trajectories according to the length
is presented in Section 3. The time-optimal trajecto-
ries are developed in Section 4. Sections 5 and 6 gives
some details in the solving of the related equations.
Discussions are presented in Section 7 and Section 8
concludes this paper.

1.1 From path planning to trajectory
planning

Paths, which are pure geometric representation, have
been the most widely used approach to describe move-
ments. Among the numerous works that have covered
this subject, the works of Latombe [38], LaValle [39]
and Kavraki et al. [27] offer a good synthesis. How-
ever the time is not taken into account by these path-
based approaches, which suggests considering trajec-
tories. Trajectories are continuous and differentiable
functions of time, defining the evolution of the posi-
tion of the robot. They can be defined using either
Cartesian or joint coordinates. A trajectory can also
be seen as the combination of a path with a law of tem-
poral evolution. A summary of trajectory generation
in an industrial context is proposed by Biagiotti [4],
while Khalil [28] and Dombre [12] offer the same for
robotic manipulators.

Using trajectories instead of paths provides signifi-
cant advantages [52]:

Task Planner

SoftMotion 
Library

Sensors

Trajectory 
Controller

Trajectory 
Planner

Axis
Controllers

Figure 1: A possible architecture of a robot that uses
trajectories for the control and the communication be-
tween the different modules.

• Not only the position can be planned and con-
trolled, but also the velocity, the acceleration, the
jerk and eventually higher derivative, allowing to
define the smoothness properties.

• The travel time can be optimized taking into ac-
count kinematic constraints.

• The movement is more precisely described allow-
ing a better control.

Moreover, the use of trajectories as the main support
of information between a slow task planner and the
fast robot controllers leads to a more refined architec-
ture that simplifies the communications (See Fig. 1).
A higher granularity in the architecture is desirable as
it simplifies the input for each node that can run at dif-
ferent frequencies according to the nature of the task.
The overall communication is improved, and in case of
unforeseen event, a part of the task can be replanned
at a lower level, thus faster. A similar architecture is
proposed by Macfarlane et al. [41].

1.2 Trajectory planning in HRI context
With the emergence of new generations of robots that
are always more sophisticated, one of the most chal-

2



lenging features of today’s robotic, and even more
in the future, is Physical Human-Robot Interaction
(PHRI). These new robots will have to coexist and
cooperate with humans in a variety of applications
such as collaborative assembly, rehabilitation, do-
mestic assistance, and many others. A survey on
human-machine cooperation in assembly is proposed
by Krüger et al. [32]. They study the forms of co-
operation between a Human and a Robot that can be
used in assembly processes as well as the organizational
and economic aspects. They describe the advantages
of combining the respective strength of a Human and a
Robot, and advocate in favor of these new kinds of co-
operation, even compared to fully automated systems.
These robots will have to be adaptable, flexible, and
reusable.

To be able to work in proximity of humans, collabo-
rative robots must meet a number of requirements that
often differ from those required in a classic industrial
environment, where robots are confined in cages with
prohibited access for humans. While safety remains
the main criterion, others emerge such as the level of
stress and discomfort the human can feel in the vicinity
of the robot. In this context, a robot should not cause
excessive stress and discomfort to the human for ex-
tended periods of time [2, 9, 19, 35–37]. To fulfill these
requirements, some works focus on the behavioral and
societal aspects [44, 53]. They attempt to understand
the implicit rules and codes that define Humans inter-
actions. Such an approach can be used for the robot to
anticipate Humans actions as a Human will be more ef-
ficient and more satisfied of the interaction if the robot
can anticipate his actions [24]. It can also be used for a
robot to communicate its intents. A user will feel more
comfortable knowing the goal of the robot early in its
movements [13, 14]. Most of these works are integrated
at the highest layers of planning, but they make sense
only if the movement has been designed beforehand at
a lower level. Motions have to be built from a model
satisfying strict criteria. This model has to be sim-
ple enough for real-time constraints that are linked to
security. It should also be capable to generate human-
friendly movements to satisfy ergonomics constraints
for a large variety of applications. Considering the pre-
vious bibliographic study, smooth trajectories appear
as excellent candidates since they possesses the advan-
tages necessary to ensure safety, ergonomics, efficiency
and adaptability required in the making of collabora-
tive motions.

1.3 Smooth trajectories

Smooth trajectories were first introduced by Hogan
[26]. The first objective was to reduce wear on sys-
tems and improve path tracking [11, 33]. These qual-
ities make smooth trajectories particularly interesting
for machining. For instance a study realized by Rivera-
Guillen et al. [50] shows that tool-life can be improved
up to 60%. One can resume the advantages of working
with smooth trajectories as follow:

• Improve accuracy, thus moves can be executed
more rapidly and accurately.

• Extend the life span of the manipulators as vibra-
tions are reduced thereby preventing actuators to
be damaged and reducing wear of the robot joints.

• Reduce stress and discomfort of human co-worker.

Because of their qualities, smooth trajectories can
be used in many contexts and can be employed in
the making of more efficient and flexible robots. The
smoothness of a trajectory can be defined by the num-
ber of derivative of the position and the extreme val-
ues of these derivatives. It is generally accepted that
a smooth trajectory has at least continuous speed and
acceleration, hence a bounded jerk. Considering a con-
stant jerk during a period of time and its triple integral
with respect to time, the obtained trajectory is defined
by a cubic polynomial function of time. As these cubic
functions are simple and their properties well known,
they are easy to manipulate, and thus are widely used.

However higher order polynomials, especially quin-
tics, are often used in the literature to obtain smooth
trajectories. The main reason being the need to com-
pute trajectories with the possibility to specify posi-
tion, velocity and acceleration at both ends, so that the
robot is able to react quickly to unforeseen events, an
imperative in HRI context to ensure safety [29]. One
quintic is enough to compute a trajectory that meet
these criteria, hence justifying their use [11]. Unfortu-
nately, quintics generate more computational burden
than cubics and their behavior between the waypoints
is more unpredictable and less faithful to the expected
trajectory. This is explained by the tendency to oscil-
late of the quintics and generally higher order trajec-
tories [41]. A solution is to use more than one quintic,
but doing so they loose all interest, as simpler solutions
exist. More recently, sequences of cubic polynomial
functions have been used to define a smooth trajectory

3



joining arbitrary positions, velocities and accelerations
[8, 57]. In the following paragraphs, we present the
major results on smooth trajectories categorized in two
main approaches.

1.3.1 Minimum-jerk model

In order to generate suitable movements for a Human-
Robot interaction, human motion appears naturally as
a source of inspiration. Among the numerous works
that have covered this field, the minimum jerk model
described by Hogan is very popular. This mathemati-
cal model describes the organization of a class of vol-
untary arm movements. A major uncertainty of this
model is that it lays on a subjective criterion: since
movements tends to be smoother and more graceful
with skill and practice, they suppose the ideal mo-
tion should be the smoothest [17]. Maximizing the
smoothness is here obtained by a dynamic optimiza-
tion of an objective function that integrates the square
of the jerk over the duration of the movement. This
model was first verified on monkeys [6, 25] and later
on humans [17]. This model was built to reproduce the
bell-shaped tangential velocity profiles observed for hu-
man motions. However this was not experimented on
a large variety of movements and was mainly verified
for intermediate velocity profiles. Different works con-
firmed the fact that velocity and acceleration curves
are asymmetric for a large variety of motions [3, 45,
47], especially for skilled motions. Thus a complete
trajectory planner should be able to handle asymmet-
ric kinematics. This approach was built around the
hypothesis that the human behavior could be derived
from a single organizing principle [26], which provides
a simple model, but also, as we will see, leads to a lack
of flexibility and adaptability.

Since then, minimum-jerk model has been popular
and used in order to obtain coordinated and natural
human-like motion. Kyriakopoulos et al. use a min-
imax approach to minimize the maximum jerk [33].
This work is later extended by Piazzi et al. [48, 49]
where interval analysis is used to globally minimize
the absolute maximum value of the jerk along a tra-
jectory. This global minimization avoids a flaw present
in minimum-jerk works, generally subjects to get stuck
in local minima. Amirabdollahian et al. use fifth order
polynomials for minimum-jerk control under symmet-
ric or asymmetric jerk bounds [1].

In the different approaches listed above kinematic

constraints are not considered and the time has to be
set a priori. Some studies have considered minimiz-
ing a mixed criterion [20, 56]. Using this approach,
Gasparetto et al. minimize both the jerk and time to
obtain a trade-off between a short execution time and
smoothness of the motion [20]. Kinematic constraints
are taken as inputs, avoiding setting the time a priori.
These works constitute a good attempt against the lack
of flexibility of the model. However, in the next para-
graph, we consider the constrained-jerk model that is
not affected by this drawback.

1.3.2 Constrained-jerk model

In this second approach, a suitable application depen-
dent maximum jerk Jmax is established through exper-
iments or information provided by the manufacturer.
This threshold is determined according to certain cri-
teria related to the nature of the task. Once the maxi-
mum jerk is defined the problem left is that of a classic
time’s optimization. This is done by maximizing the
jerk under the constraint J < Jmax. It provides time-
optimal trajectories under task dependent constraints
defined by the user. This approach can also be ex-
tended to acceleration, velocity and other derivatives.
The main limitation of this model is that kinematic
constraints must be specified by the user. However,
unlike the previous approach, it provides qualities that
are essential to build the future generations of collabo-
rative robots that we expect to be efficient, adaptable
and reusable [32].

Liu proposes a real-time algorithm [40] to generate
smooth trajectories from current velocity under con-
straints on jerk, acceleration and velocity. Optimal in
most cases, this paper points the difficulty of manag-
ing non-null initials and finals conditions. In the cal-
culation steps for the maximum reachable speed, if the
motion is too short to reach the maximum speed or
acceleration, it becomes very difficult to compute an
analytical solution online. A suboptimal strategy is
then adopted by keeping the initial speed for a certain
period. Haschke et al. present a similar approach [22]
to generate third order time-optimal trajectories. The
main contribution concerns the ability to handle arbi-
trary initial conditions, while end conditions must stay
at rest. Nonetheless this work encounters numerical
problems and produces infinite jerk for short displace-
ments. In that case, second order trajectories, hence
not smooth since the jerk is not bounded, are employed

4



as a fallback solution. Quadratic trajectories are also
present in the work of Kroger et al. [31]. A general On-
line Trajectory Generation algorithm and an instance
of it using third order polynomials is introduced by
Kroger et al. [29]. It brings a manipulator from an ar-
bitrary initial state to an arbitrary final state except for
the final acceleration, which is always null. This work
as been extended such that time-variant kinematic mo-
tion constraints are considered [30].

Third order polynomial trajectories offer a simple so-
lution to generate jerk bounded trajectories as they are
easy to manipulate, keep the jerk bounded and can be
generated online. They also avoid some major draw-
backs of higher degree polynomials such as the ten-
dency to oscillate, and are better for approximation
[41]. Moreover it has been demonstrated that a con-
catenation of at most seven cubic is enough to repre-
sent any time-optimal trajectory [7]. Herrera-Aguilar
et al. propose seven cubic equations to obtain "soft
motions" for robot service applications [23]. This work
is later extended by Broquere et al. [7] to compute
online time-optimal trajectories given any initial and
final conditions, under bounded jerk, acceleration and
velocity, for any number of independently acting axis.
A solution for time-imposed trajectories is presented
by Broquere et al. [8], which leads to a simpler axis-
synchronization for multi-axis systems. Yet, this so-
lution has drawbacks, since it is not possible to both
impose the time and keep the jerk bounded. An im-
provement is proposed by Zhao et al. [57], which allows
to have an imposed time and bounded jerk for suffi-
cient large motions. For a point to point movement
in an N-dimensional space, the time optimum straight-
line motion is obtained by projecting the constraints
on the line [52].

Polynomial and trigonometric models have also been
combined in order to design smooth trajectories [41,
46]. Macfarlane et al. introduce an online method to
compute smooth trajectories for industrial robots [41].
Concatenations of fifth order polynomials are employed
to join the waypoints approximating the desired tra-
jectories. Oscillations due to the use of quintics are
here corrected by sine-wave template for accelerations.
The solution presented is not optimal, and the jerk
continuity is not guaranteed either, despite the use of
fifth order polynomials. Trigonometric and polynomial
models are also combined to design s-curve motions of
any order from rest to rest [46].

In more recent works [15, 16], Ezair et al. display a

new algorithm to generate smooth trajectories of any
order under kinematic constraints and for multi-axis
systems. A key point is its ability to deal with any gen-
eral initial and final state. The algorithm builds trajec-
tories from an input speed, which is updated iteratively
by binary search until a near-optimal cruise speed is
found (or peak when the motion is too short). A recur-
sive approach is used to build higher order trajectories
from lower ones. An interesting addition of this pa-
per is the introduction of asymmetric constraints. Un-
fortunately this work presents some limits other than
its non-optimality regarding a time criterion. Binary
search in non-linear systems can lead to difficulties,
such as being trapped in local minima. Moreover, it
does not guarantee a solution can be found.

To our knowledge (See Table. 1), there is no work
proposing a complete answer to trajectory genera-
tion satisfying simultaneously all the following criteria
to build safe, efficient, adaptable and human-friendly
robots:

• Real-time capable.

• General initial and end conditions for both veloc-
ity and acceleration.

• General bounded jerk, acceleration and velocity.

• Asymmetric bounds.

• Time optimal.

The algorithm we present here is the first, to our
knowledge, to fulfill simultaneously all those criteria.
We also attempt to understand the harsh points as-
sociated to non-linear systems that only few papers
address [5, 10, 21].

2 Time-optimal cubic polyno-
mial trajectories

One key lesson to be drawn from this bibliography
is that solutions are well known for large movements,
but shorter movements exhibit more complex behavior.
This problem has been approached in some works [22,
40, 41], but avoided by the majority. To better under-
stand these short moves, we first develop a graphical
approach based on the phase diagram and then plot the
time-optimal solution as a function of the move length
xf . The phase diagram not only provides a good de-
scription of the sequence of trajectory segments and,

5



Table 1: Classification of main trajectory planning algorithms in HRI context

Reference [40] [41] [34] [31] [46] [7] [22] [29] [15] Ours

Jmax ∈ R + + + + + – + + +
VI ∈ R + + + + + + + +
AI ∈ R + + + + + +
VF ∈ R + + + + + +
AF ∈ R + + + +

Asymmetric bounds + +
Online + + + + + + + +
Optimal – + + + + +

"–": the criterion is not satisfied for every scenario.

in particular, of the complex behavior of the optimal
trajectory, but it supports also the computation of the
characteristic points of the trajectories. From these
results we then introduce the complete algorithm to
compute the time-optimal motion.

2.1 Problem definition

The initial condition Ci = (xi, vi, ai) is defined by the
position xi, the velocity vi and the acceleration ai. The
final condition is similarly defined by Cf = (xf , vf , af ).
Without loss of generality, we choose xi = 0, i.e. we
define xi as the origin. The trajectory must comply
with the asymmetric bounds (Jmin, Jmax, Amin, Amax,
Vmin, Vmax) for jerk, acceleration and velocity.

From these conditions, our objective is to find the
time-optimal trajectory T (t), which is known to be a
series of at most seven trajectory segments that each
saturates one of the bounds [7, 40]. Each of these
trajectory segments Sn is a polynomial cubic function
of time t and it is characterized by a constant jerk
Jn ∈ {Jmin, Jmax, 0}, an initial instant τn, a duration
Tn and its initial condition Cn = (xn, vn, an). For all t
such that τn 6 t 6 (τn + Tn):

Sn(t) =
1

6
Jn(t− τn)3 +

1

2
an(t− τn)2 + vn(t− τn) + xn

Ṡn(t) =
1

2
Jn(t− τn)2 + an(t− τn) + vn (1)

S̈n(t) = Jn(t− τn) + an

2.2 The phase diagram
These trajectories are well described with a phase di-
agram (Fig. 2) where abscissa is velocity and ordinate
is acceleration. In this diagram, constant jerk trajec-
tories associated to third degree polynomial functions
define horizontal parabolas, constant acceleration mo-
tions associated to second degree polynomial functions
are horizontal lines and constant velocities motions are
associated to points of the null acceleration axis. The
equations of the parabolas are obtained by eliminating
the time in the two last equation of (1):

Ṡn =
S̈n

2

2Jn
+ vn −

an
2

2Jn
(2)

The area where acceleration and speed constraints
are verified is plotted in green in the figures. The ac-
celeration bounds Amin and Amax define two horizon-
tal boundary lines while the left and right boundaries
are parabolas respectively defined by (Vmin, Jmax) and
(Vmax, Jmin). By continuously varying the length xf
from a large negative value to a large positive one,
the trajectory in the phase diagram reaches succes-
sively different limit shapes. These shapes are defined
by a sequence of trajectory segments. For example,
the large negative values are associated to the classical
seven segments trajectory plotted in red in Fig. 2 and
the limit case of this trajectory sequence is reached
when the minimum velocity Vmin segment lasts zero
seconds. Just after this limit, five segments only de-
fine the trajectories. We associate the type jajvjaj to
these sequence of trajectories and the type jajaj to the

6



Figure 2: Phase diagram of a classical seven segments trajectory for a large negative motion. The green area
of admissible conditions is limited by the acceleration bounds (Amin, Amax) and the parabolas associated to
velocity bounds (Vmin, Vmax). The jerks Jmin and Jmax define four condition parabolas passing throw the
initial condition Ci and the final condition Cf . The red curve joins Cf from Ci with the following 7 segments:
Jmin → Amin → Jmax → Vmin → Jmax → Amax → Jmin. The segment with saturated speed Vmin holds on
point C.

one without the Vmin/Vmax segment where j stands for
jerk segment and a for acceleration segment.

Introducing the notion of type allows decomposing
the problem in three sub-problems, the last one being
trivial:

1. Find the possible types of the solution.

2. For each possible type, compute the associated
trajectory.

3. Select the faster trajectory.

In the following, we firstly develop a general method
to compute the border trajectories between two types.

2.3 Local parabolas
From the initial condition Ci defined by (0, vi, ai),
the two jerk bounds allows only two possible optimal

motions, which define two condition parabolas in the
phase diagram (See Fig. 2). Similarly, only two mo-
tions i.e. two condition parabolas are possible to reach
the final condition Cf defined by vf and af . As these
four condition parabolas are symmetric with respect to
the horizontal axis of zero acceleration, they only de-
fine two relative configurations depending on whether
only two parabolas intersect (Fig. 2) or the two interior
parabolas also intersect (Fig. 4). A trajectory joining
Ci to Cf and composed by two jerk bounds segments is
called a direct trajectory. In the phase diagram, these
direct trajectories are associated to arcs of condition
parabolas. When Ci and Cf are on the same parabola,
the direct trajectory is reduced to one arc. If a part
of these two arcs of parabolas is outside the admissible
area, it is replaced by an horizontal segment associated
to the acceleration Amin or Amax.

Each pair of initial and final conditions defines at

7



least one direct trajectory, for example the orange tra-
jectory of the Fig. 3a. When the internal parabolas also
intersect defining shortcut trajectories, up to three di-
rect trajectories can exists (See Fig. 4).

2.4 Varying the trajectory length

Now, we propose to explore the possibility of varying
the trajectory length xf in the neighborhood of a direct
trajectory of length xd by adding an optimum motion,
i.e. a Jmin or Jmax parabolic arc Ap. For example,
the red trajectory of the Fig. 3b is the result of adding
a small arc, associated to a negative jerk segment, at
the beginning of the motion that translate the nega-
tive parabola toward the left. The length of the red
trajectory is xf < xd. Similarly, adding a small posi-
tive motion at the end of the trajectory increases the
length of the motion, see for example the blue trajec-
tory in Fig. 3b.

The modification of the length is less intuitive in the
case of the Fig. 5a where direct trajectory doesn’t reach
the zero acceleration line. In this case, adding a short
Jmin jerk trajectory at the beginning of the motion,
translates the parabola with Jmax jerk to the right.
The extension of this added segment brings the end of
the first segment to progressively reach the zero accel-
eration axis until a cusp appears (Fig. 5b). Continuing
to extend this added segment create a loop (Fig. 5c)
that can be extended to the Vmin limit. From the cusp,
the second segment translates back to the left. Gener-
ally, during this extension the length xf is not mono-
tonically decreasing as we will see bellow.

This complex behavior appears each time one
parabola of the direct trajectory doesn’t cross the zero
acceleration line to reach the condition Ci or Cf . In
the particular case of the Fig. 5, it appears on both
sides.

2.5 Internal parabolas also intersect

In the case of the Fig. 4 where the internal parabo-
las also intersect, three direct trajectories are possible:
(Ci, D3, Cf ), (Ci, D2, Cf ) and (Ci, D1, Cf ). The last
trajectory provides an evolution similar to the case of
the Fig. 3 and can be extended to both Vmin and Vmax.
The two first trajectories introduce alternative trajec-
tories for a range of values for the length xf . Two
samples, (Ci, Cip, Cfp, Cf ) and (Ci, Cin, Cfn, Cf ), il-
lustrate these shortcut trajectories in the Fig. 4.

The trajectory (Ci, D1, Cf ) is endlessly expand-
able, but (Ci, Cip, Cfp, Cf ) and (Ci, Cin, Cfn, Cf ) have
shorter curves in the phase diagram where they gen-
erally define faster trajectories for a small interval of
values.

To summarize, in all cases the direct trajectory
(Fig. 5a) can be respectively extended to long negative
motions and to long positive motions. The behavior of
these trajectories is more complex for short motions,
i.e. around the direct trajectories, where shortcut tra-
jectories can exist (Fig. 4). This point is developed fur-
ther and constitutes a major contribution of our work.

3 Duration of the trajectories
according to the length

As expected, trajectories show a more complex be-
havior around the direct trajectory. We are going to
plot the optimal time of these trajectories versus their
length xf to obtain the curve Copt. In a first stage, we
propose to plot the duration of the trajectory accord-
ing to its length as a parameterized curve C(xf , tf ). We
choose the time length of the added arc Ap (see 2.4)
as parameter, thereby defining a parameter tn for left
negative side and a parameter tp for right positive.

3.1 A simple case

In order to simplify the presentation, we firstly plot the
curves C(tn) and C(tf ) (see Fig. 6) for the particular
case of the Fig. 5 where internal parabolas doesn’t in-
tersect and without considering the bounds. Using the
conditions of the Fig. 5, we compute the times of the
trajectory segments and then apply the equations (1).
The times tn and tp are null for the direct trajectory
(Fig. 3a). A time tn > 0 defines a parabolic arc Ap be-
tween the initial acceleration a0 and the acceleration
an = a0 + Jmintn. Respectively, ap = a0 + Jmaxtp for
a positive parabolic arc. For example, in the case of
the Fig. 5c, the first purple negative arc starts from Ci

with acceleration ai and ends at −ai. Its duration is
tn = −2ai/Jmin.

Using (1), we obtain the condition at the end of the
first segment associated to the arc Ap. This condition
defines the second parabolic arc, enabling the compu-
tation of the intersection of the two last parabolic arcs.
From this intersection we determine the durations t2
and t3 of the two last segments and then the length

8



(a) The direct trajectory xf = xd. (b) Trajectories with xf < xd in red and xf > xd in blue.

Figure 3: Evolution of the phase of the trajectory with the length xf around the direct trajectory.

Figure 4: Limits trajectories in the case where
the two parabolas defined by Ci intersect the two
parabolas defined by Cf . The main direct tra-
jectory (Ci, D1, Cf ) is in orange, the two other
are (Ci, D3, Cf ) and (Ci, D2, Cf ). The red and
green trajectories are two shortcuts trajectories.
(Jmin=−30, Jmax=30, Amin=−20, Amax=20, Vmin=−
20, Vmax=20, ai=10, vi=4, af=10, vf=6).

xf using (1). More details are given in appendix A. It
is worth noting that these geometric constructions are
simple, but depend on the relative position of Ci and
Cf , in particular, the arc Ap of parabola can be the
first or the last segment.

This procedure defines the duration tf (tn) = tn +
t2 + t3 and the length xf (tn) of the trajectory, namely
a point of the parametric curve C(tn). The repetition
of this procedure allows to plot the curve C(tn) defining
the duration of the trajectory versus its length (Fig. 6).
A similar procedure is used to plot C(tp).

3.2 Effects of the bounds

The acceleration bounds Amin and Amax limit the in-
crease of the time parameters tn and tp and the arc
Ap to some time tj defining the intersecting point of
the jerk parabolic trajectory with the boundary line.
From this point, we follow the same process, but by
defining the intermediate parabola from the end of the
acceleration segment of time ts. To keep the same pa-
rameter tn (resp. tp) we define ts by ts+ tj = tn (resp.
ts + tj = tp).

Similarly, when the intermediate parabola reaches
the velocity bound Vmin or Vmax, we define the dura-
tion of the constant velocity segment tv by tv+ta+tj =
tn (resp. tp) where ta is the duration of the constant ac-
celeration segment reaching the limit velocity parabola.
In some cases, the parabola defined by tj can reach
the minimal or maximal velocity parabolas before the
acceleration bounds: the geometric constructions are
similar, but ta is null.

These bounds introduce changes in the nature of the
portions of the curves C(tn) and C(tp) (See Fig. 6),
in particular the large values of tn (resp. tp) corre-
spond to straight line segments associated to constant
(minimum or maximum) velocity motions. The second
parabola can also reach the second acceleration bound,
resulting in a change in the trajectory sequence with-
out affecting the parameterization of the curve.

4 The time-optimal trajectories

In the previous case (Fig. 6), the parametric curves
C(tn) and C(tp) give directly the time-optimal function

9



(a) Direct trajectory (b) Negative and positive Cusps

(c) Negative loop expansion

Figure 5: The direct trajectory displayed in (a) can be extended by adding a positive or a negative arc of
parabola. In (b) two limit cases are displayed, which separate the trajectories with a cusp from the trajectories
with a loop. Different trajectories with a loop are plotted in (c): a small loop in blue, the loop reaching the
symmetric condition of Ci and a larger loop in red. (Jmin=−50, Jmax=50, Amin=−30, Amax=30, Vmin=−30,
Vmax=30, ai=8, vi=− 5, af=8, vf=5).

Copt(xf ) that associates the optimal time to the length
xf . In general, the non-linearities in the definition of
these functions generate far more complex curves. We
will now consider two types of non-linearities: the in-
fluence of the velocity that distorts the curve and the
presence of shortcuts that split the curve in two.

4.1 Influence of the velocity

Having now defined a tool to plot the time-optimal
function versus the length of the motion, we can study
the influence of the different parameters. Considering
the case of the Fig. 5, we shift the initial and final ve-
locities by 15 (from (-5, 5) to (10, 20)). This shift just
translate the phase diagram to the right, but the para-

10



Figure 6: The optimal time solutions (tf ) versus the
trajectory length (xf ). A trajectory length of zero
means the start and end positions are the same. For
example, the trajectory with xf = 0 length is here as-
sociated to the direct trajectory of Fig. 5a, and the
null length is explained by the presence of symme-
tries. (Jmin=− 50, Jmax=50, Amin=− 30, Amax=30,
Vmin=− 30, Vmax=30, ai=8, vi=− 5, af=8, vf=5).

Figure 7: A shift of the initial and final velocities
distort the curves C(tn) and C(tp). It can be noted
that the curve Copt(xf ) has a discontinuity for xf =
λ. (Jmin= − 50, Jmax=50, Amin= − 30, Amax=30,
Vmin=− 30, Vmax=30, ai=8, vi=10, af=8, vf=20).

metric curves C(tn) and C(tp) plotted in the Fig. 7 have
now a more complex shapes and, for a range of values
of xf , there are multiple associated trajectories with
different time tf . Therefore the time-optimal function
Copt(xf ) is no more directly defined by the union of the
two curves, but by the minimum time for each value
of xf . The resulting curve may exhibit discontinuities,
which can impact the computation of the optimal tra-
jectory.

For example such discontinuity is present in the case

of Fig. 7 at xf = λ. For xf < λ the optimal solution
begin with a jerk negative segment, but for xf >= λ
the optimum trajectory begins with a positive jerk.
The corresponding trajectories and their derivatives
are plotted in the Fig. 8.

4.2 Duration in the presence of short-
cut

The shortcut solutions associated with intersecting
parabolas (See 2.5) also introduce discontinuities in the
optimal function Copt(xf ). The curve of the Fig. 9,
plotted from a similar case of the Fig. 4, shows a
small lens shaped curve just below the cusp point of
the parametric curves. Beside the main curve (C(tn)
and C(tp)) obtained by the previous procedure, the
two parts (C(tln) and C(tlp)) of the lens shaped curve
are similarly plotted from the two shortcut trajectories
(Ci, Cin, Cfn, Cf ) and (Ci, Cip, Cfp, Cf ), where the pa-
rameters tln and tlp define respectively the duration of
the first segments (Ci, Cin) and (Ci, Cip).

In the neighborhood of the singular case where the
interior parabolas become tangential, the lens shaped
curve joins the main curve and disappears to extend
the main curve on both sides (Fig. 10). It can be noted
that for some values of xf , the curve exhibit up to five
solutions (Fig. 10).

We have seen the influence of the initial and final
velocity and acceleration on the optimal curve Copt(xf ).
The jerks Jmin and Jmax deform also the curve, but do
not introduce new particular case. The values of the
bounds influence the shape of the area of the admissible
conditions, which change the nature of the function
defining the curve Copt(xf ), but do not introduces new
types of discontinuities.

Considering only the jerk bounds, it is possi-
ble to compute analytically the parametric curve
C(xf (tn), tf (tn)) (See Appendix A). The expression ob-
tained is large and complicated and generates an even
more complicated derivative. Unfortunately, we could
not manage to analytically compute the zero of the
derivative of Copt(xf ) with respect to xf associated to
its points of discontinuity.

Therefore, the direct calculation of the optimum
time from the zero of the derivative of C(tn) and C(tp)
relatively to xf appears incompatible with real-time
constraints. Also, in the following we propose to com-
pute all the solutions (up to 5) and then select the
optimal one.

11



(a) Solution in 5 segments for xf = 9.44920 < λ

(b) Direct trajectory for xf = λ = 9.4492105 (c) Solution in 3 segments xf � λ

Figure 8: Major effects of discontinuities on the time representation of the optimal trajectory and its derivative.

4.3 The time-optimal algorithm

From the previous elements, several strategies are pos-
sible to compute the time optimum trajectory Topt(xf ).
However, as our main motivation is real-time control,
we propose now the fast algorithm 1.

The first three stages of this algorithm were pre-
viously detailed and the last one is trivial, therefore
the following sections will detail how to compute a se-
quence of trajectory segments from the length xf . We
begin by showing how to transform the associated sys-
tems of equations in a quartic polynomial equation and
then we will detail how to solve these quartic equations.

The seven segment trajectory labelled as jajvjaj
doesn’t generally include all the seven segments. When
the v segment exists, it is the only one for which the
duration is varying accordingly with xf . If the v seg-
ment is not reached, the sequence comprises at most
five elements jajaj. This problem can always be re-
duced further to a sequence of three segments: Each
time an acceleration segment is reached, the first or
the last jerk segment duration is fixed and defined
by tj = (Ab − ai)/J where Ab ∈ {Amin, Amax} and
J ∈ {Jmin, Jmax}. Therefore after simplification, the
four problems left to solve are: jjj when no acceler-

12



xf

t f

Figure 9: Shortcut trajectories introduces discontinu-
ities in the time-optimal curve Copt. (Jmin=−40,
Jmax=40, Amin=−30, Amax=30, Vmin=−30,
Vmax=30, ai=20, vi=−4.99, af=20, vf=4.99).

Figure 10: Curve exhibiting up to 5 solutions when
initial and final velocities are shifted. (Jmin=−40,
Jmax=50, Amin=−55, Amax=50, Vmin=−40,
Vmax=70, ai=−39.0, vi=17.205, af=−39.0,
vf=−17.105).

ation bounds are reached, ajj or jja when only one
acceleration bound is reached and aja when both the
acceleration bounds are reached.

The next paragraph details the jjj case, the three
others being similar and introduced in appendix B and
the v case is trivial because only one segment is vary-
ing.

1 Compute the local parabolas;
2 Compute the singular limit trajectories;
3 From xf , determine what are the possible

sequences of trajectories;
4 For each possible sequence compute the time

optimum trajectory;
5 Select the faster trajectory.

Algorithm 1: Time optimum trajectory

5 Solving the jjj problem

After reducing the problem, the three jerk trajectories
problem jjj is defined by seven parameters: the initial
condition (0, vi, ai), the final condition (xf , vf , af ) and
two jerks Ja and Jb. The unknowns are the durations
of the three segments (t1, t2, t3). Two conditions (a1,
v1, x1) and (a2, v2, x2) are associated to the transitions
between the segments and defined by:

a1 = Ja ∗ t1 +ai

v1 = Ja ∗ t12/2 +ai ∗ t1 +vi (3)

x1 = Ja ∗ t13/6 +ai ∗ t12/2 +vi ∗ t1

a2 = Jb ∗ t2 +a1

v2 = Jb ∗ t22/2 +a1 ∗ t2 +v1 (4)

x2 = Jb ∗ t23/6 +a1 ∗ t22/2 +v1 ∗ t2 +x1

Then the system of polynomial equations to solve can
be written as:

af = Ja ∗ t3 +a2

vf = Ja ∗ t32/2 +a2 ∗ t3 +v2 (5)

xf = Ja ∗ t33/6 +a2 ∗ t32/2 +v2 ∗ t3 +x2

The solution of this system of equation can be ex-
pressed from the roots of a quartic equation. Maple
[42] and Maxima [43] softwares were used to perform
the manipulations of the algebraic equations. Firstly
we define a set of intermediate variables (k1 to k4) and
the coefficients of the polynomial equation:

13



k1 = 2 ∗ Jb − Ja
k2 = Jb

2 + Ja ∗ (Ja − 2 ∗ Jb)
k3 = Ja − Jb
k4 = 2 ∗ Ja ∗ vf
c4 = −Jb ∗ (Jb3 + Ja ∗ (Ja ∗ (5 ∗ Jb − 2 ∗ Ja)− 4 ∗ Jb2))
c3 = 0

c2 = −6 ∗ (2 ∗ Ja ∗ k2 ∗ vi − Jb2 ∗ ai2

+ Ja ∗ (k1 ∗ ai2 + 2 ∗ k2 ∗ vf ) + af
2 ∗ (Ja ∗ k1 − Jb2))

c1 = −8 ∗ (ai ∗ (3 ∗ Ja ∗ Jb ∗ vi − (3 ∗ Ja2 ∗ vi + Jb ∗ ai2))
+ Ja ∗ ai3 − 3 ∗ Ja ∗ k3 ∗ xf )
+ af ∗ (3 ∗ Ja ∗ k3 ∗ vf − af 2 ∗ k3))

c0 = 3 ∗ (4 ∗ Ja ∗ vi ∗ (Ja ∗ vi − (ai
2 + k4 − af 2)) + ai

4

+ 2 ∗ ((k4 − af 2) ∗ ai2 + 2 ∗ Ja2 ∗ vf ∗ vf )
+ af

2 ∗ (af 2 − 4 ∗ Ja ∗ vf ))

The quartic polynomial equation is then defined by:
c4 ∗ x4 + c2 ∗ x2 + c1 ∗ x + c0 = 0. If ri is one of its
roots, the solution can be written as:

t1 = −(k6 ∗ (k5 − ai2 + 2 ∗ (Ja ∗ (ri ∗ ai − vf )
− Jb ∗ ri ∗ ai) + k3 ∗ Jb ∗ ri2 + af

2)) ∗ 0.5
t2 = ri

t3 = (k6 ∗ (k5 − (ai
2 + k4)− Jb ∗ k3 ∗ ri2

+ af ∗ (2 ∗ k3 ∗ ri + af ))) ∗ 0.5
with:
k5 = 2 ∗ Ja ∗ vi
k6 = 1/(Ja ∗ k3 ∗ ri)

As the times t1, t2 and t3 must be positive, only
the positive solutions define a valid trajectory. This
system can have up to four solutions, but we never
find a particular case with more than three admissible
triplets. It must be noted that the trajectories can
begin with one of the two jerk bounds, defining two
different problems, which defines up to three solutions
each. So, in some cases like the one of the Fig. 10,
five different trajectories composed of a sequence of
potentially optimum segments can be computed.

The last step is to compute the time-optimal solu-
tion, which is the one that minimize t1 + t2 + t3.

The approach to compute the polynomial equation
in the case of the sequences ajj, jja or aja is really

Table 2: Comparison of the mean computation times
for different trajectory lengths. Results obtained for
108 runs.

Case General
Near the
direct

trajectory

With
cruising
velocity
phase

Times
(µs)

1.049 2.535 0.845

similar and presented in appendix B.

6 Solving the quartic polyno-
mial equation

It is well known that solving a quartic polynomial equa-
tion is difficult. The analytical solutions have been
known since the 16th century, but this approach is time
consuming and can fail for some particular equations.
Numerical algorithms like Newton-Raphson based al-
gorithms are efficient, but require initial information
about the root, precisely the information we do not
have in our case. Recent works have proposed to as-
sociate the two approaches: the analytical results are
used as inputs for a numerical solver [54]. This has
generated a new class of faster and more accurate al-
gorithms [18, 55].

We used a solver derived from the one of Schwarze
[51] to compute a first approximation of the solution.
To improve the accuracy, we directly applied a three di-
mensional Newton method to the durations of the three
segments. The analytical expression of the derivative
of the polynomial functions (1) is given in appendix C.

7 Discussion
The characteristics of our method are summarized in
the classification table 1, which compare the possibili-
ties of the online trajectory generators. The implemen-
tation1 of this algorithm on a system equipped with an

1The documentation, the softMotion library and examples
including scripts for plotting figures are available at https://
git.openrobots.org/projects/softmotion/wiki. The library
is wroten in C++. A python (https://www.python.org/) in-
terface that uses swig (http://www.swig.org/) allows to use the
graphic libraries jupyter (http://jupyter.org/) and matplotlib

14

https://git.openrobots.org/projects/softmotion/wiki
https://git.openrobots.org/projects/softmotion/wiki
https://www.python.org/
http://www.swig.org/
http://jupyter.org/


Intel Core i7 processor running at 2.2 GHz gives a mean
time of 1.049 µs with a standard deviation of 0.857 µs
observed for 108 random tests, allowing to use it in
real time and for planning (See table 2). These per-
formances are comparable or better than the previous
algorithms that do not always give the optimal solu-
tion. More precisely, the comparison with the more
general algorithm of Ezair et al. [15], which obtain a
time of 375 µs for 3 axes that is 75 µs for one axis using
their formula, must take into account their objective of
a method capable to solve for series of polynomial func-
tion of any order. Similarly the method of Kroger et
al. [29] that consider only null final acceleration, has
an average execution time of 135 µs for six axes and
540 µs in the worst-case. As these times include the
synchronization time, a precise comparison cannot be
done.

The longest times we get are relative to particular
case where the Newton-Raphson method have difficulty
to improve the accuracy of the solution. The figure 11
gives an example of such a configuration where the ana-
lytical solution is not precise enough and the numerical
one struggle to converge. In this case, one duration is
considerably smaller than the other two, which disturbs
the calculation algorithm. Fortunately these cases are
hardly relevant and the system always returns a solu-
tion for such configurations, eventually a sub-optimal
solution.

Solving the optimal trajectory problem in the vicin-
ity of the direct trajectory opens the way to an in-
tensive use of these simple trajectories for control and
planning. Concerning the trajectory control, where the
objective is to compute in real time a trajectory to
bring back smoothly the mobile to the target trajectory
from the current state, we can notice that the connec-
tion trajectories are short and consequently close to the
direct trajectories. In this case, the proposed trajec-
tory generator provides a good solution.

Similarly for multi-axes trajectory generation, one
classical solution is to compute the time optimal tra-
jectory for each axis, select the slowest one and syn-
chronize the other axis with the selected one. The pro-
posed trajectory generator can improve the calculation
of the time optimal trajectories.

Sampling-based motion planners are really efficient
to find a polygonal path, even in the case of cluttered
and high-dimensional space, but planning efficient and
smooth trajectories is more difficult. Here also the pro-

(https://matplotlib.org/) for testing and plotting.

(a) In this case parabolas are almost identical. The green area of
admissible conditions is only limited by the two parabolas (Vmin,
Jmax) and (Vmax, Jmin).

(b) The zoomed area where the positive cusp produces a very
short positive jerk segment.

Figure 11: The phase diagram illustrating a general
and difficult case where the Newton algorithm has dif-
ficulty to converge. (Vmin=− 90.9696, Vmax=25.1527,
Jmin= − 2.02754, Jmax=29.7968, ai=20.9815, vi= −
83.4179, af=− 20.6076, vf=− 79.5853).

posed trajectory generator could improve the smooth-
ing of an initial trajectory built from the polygonal
path.

The generator can be used in joint or operational
spaces. In the first case kinematic bounds can be
directly deduced from joint characteristics, whereas
Cartesian space is suitable to incorporate the con-
straints related to safety and ergonomics. The non-
symmetrical bounds can be employed to enhance the
ergonomics properties of our model as they allow de-
signing more natural human-like motions. They can
also be very useful in the making of vertical motions
under gravity, or motions in the presence of a human,
for which an approaching move is more scaring than a
withdrawal move.

15

https://matplotlib.org/


As this work explains the discontinuities of the time-
optimal curve Copt and solves the optimum time prob-
lem, it will contribute to the development of trajectory
based robotic architectures. In these architectures, tra-
jectories will be used as the main support of commu-
nication and facilitate the link between planning and
control, leading towards an improvement of robots mo-
tions.

By explaining the complex behavior of the jerk
bounded trajectories, this work defines also a step in
the solving of the snap bounded optimal trajectory
problems, where the snap is the derivative of the jerk.

8 Conclusion
With the emergence of HRI, the problem of the gener-
ation of safe, efficient and human-friendly movements
has to be addressed. From the review of the state of the
art it appears that no complete solution for the mak-
ing of collaborative motions exists yet. To the best
of our knowledge, the algorithm presented herein that
uses trajectory of class C2 defined by a chain of cubic
polynomial functions is the first one that:

• joins two arbitrary conditions defined by position,
velocity and acceleration,

• in minimum time under general and asymmetric
bounds on velocity, acceleration and jerk.

By explaining graphically the behavior of the optimal
trajectories, this work allows to explain and solve the
difficulties highlighted by the previous works. The pro-
posed trajectory generator completes the existing tools
for planning and controlling multi-axes cubic polyno-
mial trajectories, which open the way for more flexi-
ble and friendly robots. This applies particularly to
the HRI domain where the underlying constrained jerk
model approach makes easier the consideration of the
different types of constraints related to safety and er-
gonomics. More specifically, close cooperation between
humans and industrial robots needs more flexibility,
adaptability and reusability, which can be improved
by the models and tools developed in this work.

Even if the model of the chain of cubic polynomial
trajectories is efficient, the questions relative to higher
degrees polynomial still remain. These models are nec-
essary to solve specific problems. The underactuated
vehicles, for example, need one more derivative to con-
trol the motion obtained by integration. It is the case,

for example, to obtain a jerk bounded horizontal move
with a quadrotor. The same problem appears also for
double and, more generally, multiple pendulum. Given
the difficulties encountered to solve the cubic trajecto-
ries, the higher degree appears as really challenging.

Appendices

A Analytic expression of the
parametric curve C

We consider here the particular case where the trajec-
tory C(xf (tn), tf (tn)) is defined by:

• Three non null jerk segments associated to parabo-
las in the phase diagram.

• The first and the last segments are associated to
Jmin < 0..

• The third segment begin with a positive accelera-
tion a2.

The first trajectory segment is entirely defined by the
initial conditions ai and vi and the duration t1 using
the equations (3). The parabola associated to the sec-
ond segment cross the abscissa axis at v′i and the one
associated to the third segment at v′f with:

v′i = vi −
ai

2

2Jmax
v′f = vf −

af
2

2Jmin

And the acceleration at the intersection point of the
two parabolas is a2 defined by:

a2 =

√
2(v′i − v′f )× Jmax × Jmin

Jmax − Jmin

We choose the positive solution as defined in the hy-
pothesis and compute the durations t2 and t3 of the
two last segments.

t2 =
(a2 − a1)
Jmax

t3 =
(af − a2)
Jmin

From the equations (4) and (5) and using an alge-
braic calculator, the values of xf and tf = t1+t2+t3
can be easily computed. Then the zeros of the deriva-
tive of the xf function with respect to t1 would de-
fine the points of discontinuity of the optimal curve
Copt. Unfortunately, we cannot manage to obtain these
points in a usable form.

16



B Solving the three segments
problems

Solving the aja problem
In this case the jerk Ja of the first and last segments
is null in the equations (3) and (5) that respectively
become (6) and (7):

a1 = ai

v1 = ai×t1 +vi (6)

x1 = ai×t12/2 +vi×t1

af = a2

vf = a2×t3 +v2 (7)

xf = a2×t32/2 +v2×t3 +x2

Using an algebra system, we obtain the results:

k1 = ai−af
k2 = k1

−1

k3 = ai×((−Ja×vi)+af 2/2+ai×(−af+ai/2))
k4 = af×Ja×vi
k5 = 12×Ja2×vi2

k6 = af−ai
k7 = (3×(12×ai×Ja2×(2×af×k6×xf+k1×vf 2)
+af×(ai×(ai×(4×af 3+ai×(ai×(4×af−ai)
−6×af 2))−(k5+a4f ))+12×af×Ja2×vi2)))0.5

k8 = k6×Ja−1

k9 = k1×af
k10 = 2×Ja×vf
k11 = 1/

√
3

k12 = (k6×(12×ai×Ja2×(2×af×xf−vf 2)
+af×(k5+ai×(ai×(3×af 2+ai×(ai−3×af ))
−af 3))))0.5

And finally the system has two solutions (t1, t2, t3)
and (t′1, t2, t′3) with:

t1 = ai
−1×k2×Ja−1×((−k7/6)+k4+k3)

t2 = k8

t3 = (af
−1×Ja−1×(k11×k2×k12+k10+k9))/2

t′1 = ai
−1×k2×Ja−1×(k7/6+k4+k3)

t′3 = af
−1 × Ja−1 × ((k10+k9)/2−(k11 × k2 × k12)/2)

Solving the jja problem

The system of polynomial equations to solve is defined
by (6), (4) and (5). Using an algebra system, we ob-
tain the following result where ri is one solution of
the quartic equation defined by the coefficients ci with
0 ≤ i ≤ 4:

k1 = 1−2×af
k2 = 2×af
k3 = af

2×Jb+k1×Ja
c4 = 3×af 4×Jb4

+Ja×(2×k1×af 2×Jb+(4×(af−1)×af+1)×Ja))
c3 = 4×af×Jb×(af 3×Jb2

+Ja×((3×af−1)×Ja−3×af 2×Jb))
c2 = 6×Jb×(2×Ja×k3×vi+((k2−1)×Ja−af 2×Jb)×ai2)
c1 = 12×af×(2×Ja×(af×Jb−Ja)×vi+(Ja−af×Jb)×ai2)
c0 = 3×(4×Ja2×vi2+ai×(4×Ja×(k2−ai)×vi+ai3))
+4×(3×Ja2×(2×af×xf−vf 2)−2×af×ai3)

t1 = −Ja−1×(ai+af×Jb×ri)
t2 = ri

t3 = −Ja
−1×(2×Ja×vi−(ai2+2×Ja×vf )+Jb×k3×ri2)

2×af

Solving the ajj problem

An ajj system can be solved similarly as a jja one or
using a symmetry with respect to the acceleration axis
to build an equivalent jja system.

C Derivative of the cubic poly-
nomial functions

The derivatives of the functions xf , vf and af relatively
to the three times t1, t2 and t3 can be grouped in a
matrix. The newton method uses the inverse of this
matrix to compute the times increments that, at the
first oder, compensate the errors of the functions.

∂xf
∂t1

∂xf
∂t2

∂xf
∂t3

∂vf
∂t1

∂vf
∂t2

∂vf
∂t3

∂af
∂t1

∂af
∂t2

∂af
∂t3

 =

 lx1 lv1 la1
lx2 lv2 la2
lx3 lv3 la3

−1

17



In the jjj case defined by the equations (3), (4) (5),
using an algebraic calculator we obtain:

k1 = Ja×t1
k2 = Jb×t2
k3 = Ja×t3
k4 = ai+k3+k2+k1

k5 = ai+Jb×(t3+t2)+k1
k6 = Ja×k5−Jb×k4
k7 = t1

2

k8 = t2
2

k9 = t3
2

k10 = (Ja×(k9+k8+k7))/2
k11 = t1×ai
k12 = t2×(ai+k1)
k13 = t3×(ai+Ja×(t2+t1))
k14 = vi+k13+k12+k11+k10

k15 = ai+Ja×(t3+t2+t1)
k16 = Jb×k15−Ja×k5
k17 = Ja×k7
k18 = Ja×k9+Jb×k8+k17
k19 = t3×(ai+k2+k1)
k20 = vi+k19+k12+k11+k18/2

k21 = (−k15)+ai+k3+k2+k1
k22 = vi+k19+k12+k11+(Jb×(k9+k8)+k17)/2
k23 = 1/(Ja×k21×k22+k16×k20+k6×k14)
lx1 = k6×k23
lv1 = (Jb×k20−Ja×k22)×k23
la1 = (k4×k22−k5×k20)×k23]
lx2 = Ja×k21×k23
lv2 = Ja×(−(k19+k12+k11−(−k18/2))

+k13+k12+k11+k10)×k23
la2 = (k15×k20−k4×k14)×k23]
lx3 = k16×k23
lv3 = (Ja×k22−Jb×k14)×k23
la3 = (k5×k14−k15×k22)×k23]))

The computation is done similarly in the case of aja,
ajj and jja sequences.

References
[1] F. Amirabdollahian, R. Loureiro, and W. Har-

win. “Minimum jerk trajectory control for re-
habilitation and haptic applications”. In: Pro-
ceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No.02CH37292).
Vol. 4. 2002, 3380–3385 vol.4.

[2] T. Arai, R. Kato, and M. Fujita. “Assessment
of operator stress induced by robot collaboration
in assembly”. In: CIRP Annals - Manufacturing
Technology 59.1 (2010), pp. 5–8.

[3] W. D. A. Beggs and C. I. Howarth. “The move-
ment of the hand towards a target”. In: The
Quarterly Journal of Experimental Psychology
24.4 (Nov. 1972), pp. 448–453.

[4] Luigi Biagiotti. Trajectory Planning for Auto-
matic Machines and Robots. Springer, 2008.

[5] C. Guarino Lo Bianco and O. Gerelli. “On-
line Trajectory Scaling for Manipulators Sub-
ject to High-Order Kinematic and Dynamic Con-
straints”. In: IEEE Transactions on Robotics 27.6
(Dec. 2011), pp. 1144–1152.

[6] E. Bizzi et al. “Posture control and trajectory for-
mation during arm movement”. In: The Journal
of Neuroscience: The Official Journal of the Soci-
ety for Neuroscience 4.11 (Nov. 1984), pp. 2738–
2744.

[7] Xavier Broquere, Daniel Sidobre, and Ignacio
Herrera-Aguilar. “Soft motion trajectory plan-
ner for service manipulator robot”. In: 2008
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE, 2008, pp. 2808–
2813.

[8] Xavier Broquere, Daniel Sidobre, and Khoi
Nguyen. “From motion planning to trajectory
control with bounded jerk for service manip-
ulator robots”. In: Robotics and Automation
(ICRA). IEEE, 2010, pp. 4505–4510.

[9] John Travis Butler and Arvin Agah. “Psycholog-
ical effects of behavior patterns of a mobile per-
sonal robot”. In: Autonomous Robots 10.2 (2001),
pp. 185–202.

[10] D. Costantinescu and E. A. Croft. “Smooth and
time-optimal trajectory planning for industrial
manipulators along specified paths”. In: Journal
of robotic systems 17.5 (2000), pp. 233–249.

18



[11] John J. Craig. Introduction to Robotics: Mechan-
ics and Control. Pearson/Prentice Hall, 1986.
416 pp.

[12] Etienne Dombre and Wisama Khalil. Robot ma-
nipulators: modeling, performance analysis and
control. John Wiley & Sons, 2013.

[13] Anca Dragan and Siddhartha Srinivasa. “Gener-
ating legible motion”. In: Robotics: Science and
Systems. Pittsburgh, PA, 2013.

[14] Anca D. Dragan, Kenton CT Lee, and Sid-
dhartha S. Srinivasa. “Legibility and predictabil-
ity of robot motion”. In: Human-Robot Interac-
tion (HRI), 2013 8th ACM/IEEE International
Conference on. IEEE, 2013, pp. 301–308.

[15] B. Ezair, T. Tassa, and Z. Shiller. “Planning
high order trajectories with general initial and fi-
nal conditions and asymmetric bounds”. In: The
International Journal of Robotics Research 33.6
(May 2014), pp. 898–916.

[16] Ben Ezair, Tamir Tassa, and Zvi Shiller. “Multi-
axis High-order Trajectory Planning”. In: Work-
shop on Robot Motion Planning: Online, Reac-
tive, and Real-time. 2012.

[17] T. Flash and N. Hogan. “The coordination of arm
movements: an experimentally confirmed mathe-
matical model”. In: The Journal of Neuroscience:
The Official Journal of the Society for Neuro-
science 5.7 (July 1985), pp. 1688–1703.

[18] N. Flocke. “Algorithm 954: An Accurate and Ef-
ficient Cubic and Quartic Equation Solver for
Physical Applications”. In: ACM Transactions
on Mathematical Software 41.4 (Oct. 12, 2015),
pp. 1–24.

[19] Marina Fujita, Ryu Kato, and Arai Tamio. “As-
sessment of operators’ mental strain induced by
hand-over motion of industrial robot manipula-
tor”. In: RO-MAN. IEEE, 2010, pp. 361–366.

[20] Alessandro Gasparetto and Vanni Zanotto. “A
technique for time-jerk optimal planning of
robot trajectories”. In: Robotics and Computer-
Integrated Manufacturing 24.3 (June 2008),
pp. 415–426.

[21] O. Gerelli and C. G. Lo Bianco. “Nonlinear Vari-
able Structure Filter for the Online Trajectory
Scaling”. In: IEEE Transactions on Industrial
Electronics 56.10 (Oct. 2009), pp. 3921–3930.

[22] Robert Haschke, Erik Weitnauer, and Helge Rit-
ter. “On-line planning of time-optimal, jerk-
limited trajectories”. In: 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems. IEEE, 2008, pp. 3248–3253.

[23] Ignacio Herrera-Aguilar and Daniel Sidobre.
“Soft motion trajectory planning and control
for service manipulator robot”. In: Workshop on
Physical Human-Robot Interaction in Anthropic
Domains at IROS. 2006, pp. 13–22.

[24] Guy Hoffman and Cynthia Breazeal. “Effects of
anticipatory action on human-robot teamwork
efficiency, fluency, and perception of team”. In:
Proceedings of the ACM/IEEE international con-
ference on Human-robot interaction. ACM, 2007,
pp. 1–8.

[25] N. Hogan. “Control and Coordination of Volun-
tary Arm Movements”. In: 1982 American Con-
trol Conference. June 1982, pp. 522–528.

[26] N. Hogan. “An organizing principle for a class of
voluntary movements”. In: The Journal of Neu-
roscience: The Official Journal of the Society for
Neuroscience 4.11 (Nov. 1984), pp. 2745–2754.

[27] Lydia E. Kavraki and Steven M. LaValle.
“Motion Planning”. In: Springer Handbook of
Robotics. Ed. by Bruno Siciliano Prof and Ous-
sama Khatib Prof. Springer Berlin Heidelberg,
2008, pp. 109–131.

[28] W. Khalil and E. Dombre. Modeling, Identi-
fication and Control of Robots. Butterworth-
Heinemann, July 1, 2004. 503 pp.

[29] T. Kroger and F.M. Wahl. “Online Trajec-
tory Generation: Basic Concepts for Instan-
taneous Reactions to Unforeseen Events”. In:
IEEE Transactions on Robotics 26.1 (Feb. 2010),
pp. 94–111.

[30] Torsten Kroger. “On-line trajectory generation:
Nonconstant motion constraints”. In: Robotics
and Automation (ICRA), 2012 IEEE Interna-
tional Conference on. IEEE, 2012, pp. 2048–
2054.

[31] Torsten Kroger, Adam Tomiczek, and Friedrich
M. Wahl. “Towards on-line trajectory computa-
tion”. In: 2006 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE,
2006, pp. 736–741.

19



[32] J. Krüger, T.K. Lien, and A. Verl. “Cooperation
of human and machines in assembly lines”. In:
CIRP Annals 58.2 (2009), pp. 628–646.

[33] K. J. Kyriakopoulos and G. N. Saridis. “Mini-
mum jerk path generation”. In: 1988 IEEE Inter-
national Conference on Robotics and Automa-
tion Proceedings. Apr. 1988, 364–369 vol.1.

[34] Paul Lambrechts, Matthijs Boerlage, and
Maarten Steinbuch. “Trajectory planning and
feedforward design for electromechanical motion
systems”. In: Control Engineering Practice 13.2
(Feb. 2005), pp. 145–157.

[35] P. A. Lasota, G. F. Rossano, and J. A. Shah.
“Toward safe close-proximity human-robot inter-
action with standard industrial robots”. In: 2014
IEEE International Conference on Automation
Science and Engineering (CASE). Aug. 2014,
pp. 339–344.

[36] Przemyslaw A. Lasota and Julie A. Shah. “Ana-
lyzing the Effects of Human-Aware Motion Plan-
ning on Close-Proximity Human–Robot Collab-
oration”. In: Human Factors: The Journal of
the Human Factors and Ergonomics Society 57.1
(Feb. 2015), pp. 21–33.

[37] Przemyslaw A. Lasota, Terrence Fong, and Julie
A. Shah. “A Survey of Methods for Safe Human-
Robot Interaction”. In: Foundations and Trends
in Robotics 5.3 (2017), pp. 261–349.

[38] Jean-Claude Latombe. Robot Motion Planning |
Jean-Claude Latombe | Springer. 1990.

[39] Steven M. LaValle. Planning Algorithms. New
York, NY, USA: Cambridge University Press,
2006.

[40] Steven Liu. “An on-line reference-trajectory gen-
erator for smooth motion of impulse-controlled
industrial manipulators”. In: Advanced Motion
Control, 2002. 7th International Workshop on.
IEEE, 2002, pp. 365–370.

[41] S. Macfarlane and E.A. Croft. “Jerk-bounded
manipulator trajectory planning: design for real-
time applications”. In: IEEE Transactions on
Robotics and Automation 19.1 (Feb. 2003),
pp. 42–52.

[42] Maple. Maplesoft, a division of Waterloo Maple
Inc., Waterloo, Ontario. 2016. url: http://www.
maplesoft.com/.

[43] Maxima. A Computer Algebra System. Ver-
sion 5.39.0. 2017. url: http : / / maxima .
sourceforge.net/.

[44] Eric Meisner, Volkan Isler, and Jeff Trinkle.
“Controller design for human-robot interac-
tion”. In: Autonomous Robots 24.2 (Feb. 2008),
pp. 123–134.

[45] H. Nagasaki. “Asymmetric velocity and acceler-
ation profiles of human arm movements”. In: Ex-
perimental brain research 74.2 (1989), pp. 319–
326.

[46] Kim Doang Nguyen, Teck-Chew Ng, and I.-Ming
Chen. “On algorithms for planning S-curve mo-
tion profiles”. In: International Journal of Ad-
vanced Robotic Systems 5.1 (2008), pp. 99–106.

[47] David J. Ostry, James D. Cooke, and Kevin G.
Munhall. “Velocity curves of human arm and
speech movements”. In: Experimental Brain Re-
search 68.1 (1987), pp. 37–46.

[48] A. Piazzi and A. Visioli. “An interval algorithm
for minimum-jerk trajectory planning of robot
manipulators”. In: Proceedings of the 36th IEEE
Conference on Decision and Control. Vol. 2. Dec.
1997, 1924–1927 vol.2.

[49] Aurelio Piazzi and Antonio Visioli. “Global
minimum-jerk trajectory planning of robot ma-
nipulators”. In: IEEE transactions on industrial
electronics 47.1 (2000), pp. 140–149.

[50] J. R. Rivera-Guillen et al. “Extending tool-life
through jerk-limited motion dynamics in machin-
ing processes: An experimental study”. In: JSIR
Vol.69(12) (Dec. 2010).

[51] Jochen Schwarze. “Graphics Gems”. In: ed. by
Andrew S. Glassner. San Diego, CA, USA: Aca-
demic Press Professional, Inc., 1990. Chap. Cubic
and Quartic Roots, pp. 404–407.

[52] Daniel Sidobre andWuwei He. “Online task space
trajectory generation”. In: Workshop on Robot
Motion Planning Online, Reactive, and in Real-
time. 2012.

[53] Emrah Akin Sisbot et al. “A Human Aware Mo-
bile Robot Motion Planner”. In: IEEE Transac-
tions on Robotics 23.5 (Oct. 2007), pp. 874–883.

[54] Peter Strobach. “The fast quartic solver”. In:
Journal of Computational and Applied Mathe-
matics 234.10 (Sept. 2010), pp. 3007–3024.

20

http://www.maplesoft.com/
http://www.maplesoft.com/
http://maxima.sourceforge.net/
http://maxima.sourceforge.net/


[55] PETER Strobach. “The Low-Rank LDLT Quar-
tic Solver”. In: AST-Consulting Technical Report
10.2 (2015), pp. 3955–7440.

[56] Vanni Zanotto et al. “Experimental Validation
of Minimum Time-jerk Algorithms for Industrial
Robots”. In: Journal of Intelligent & Robotic Sys-
tems 64.2 (Nov. 2011). 00033, pp. 197–219.

[57] Ran Zhao, Daniel Sidobre, and Wuwei He. “On-
line via-points trajectory generation for reac-
tive manipulations”. In: 2014 IEEE/ASME In-
ternational Conference on Advanced Intelligent
Mechatronics. IEEE, 2014, pp. 1243–1248.

Author biography

Kevin Desormeaux was born on
June 27th, 1990 in the south re-
gion of France. He received a Mas-
ter in Sciences and Technologies,
Specialty Computer Sciences, Track
in Artificial Intelligence and Pat-
tern Recognition from University of
Toulouse in 2014. On his last year

he spent six months at CNES to work on path planning
problematics as part of Exomars, the ESA mission. In
2016 he began a Ph.D. in robotics at LAAS-CNRS and
is still working on it. His interests are mainly focused
in A.I. and robotics.

Daniel Sidobre has a background
in mechanics from Pierre et Marie
Curie University and in control
from University of Toulouse. He ob-
tained a Ph.D. in robotics in 1990
and the HDR degree from Univer-
sity of Toulouse in 2009. He spent
one sabbatical year at Mc Gill Uni-

versity, Canada to work on contact friction and three
months at Università degli Studi di Napoli Federico
II, Italie, to work on manipulation. He is associate
professor at University of Toulouse where he teaches
mechanical and production engineering. He partici-
pated to numerous European and national ANR re-
search projects. He worked mainly on manipulation,
grasp planning, trajectory generation and control, and
human-robot interaction.

21


	Introduction
	From path planning to trajectory planning
	Trajectory planning in HRI context
	Smooth trajectories
	Minimum-jerk model
	Constrained-jerk model


	Time-optimal cubic polynomial trajectories
	Problem definition
	The phase diagram
	Local parabolas
	Varying the trajectory length
	Internal parabolas also intersect

	Duration of the trajectories according to the length
	A simple case
	Effects of the bounds

	The time-optimal trajectories
	Influence of the velocity
	Duration in the presence of shortcut
	The time-optimal algorithm

	Solving the JJJ problem
	Solving the quartic polynomial equation
	Discussion
	Conclusion
	Analytic expression of the parametric curve C
	Solving the three segments problems
	Derivative of the cubic polynomial functions

