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Motion planning for quadrupedal locomotion:
coupled planning, terrain mapping and whole-body

control
Carlos Mastalli1,2, Ioannis Havoutis3, Michele Focchi1, Darwin G. Caldwell1 and Claudio Semini1

Abstract—Legged robots promise an advantage over tradi-
tional wheeled systems, however, most legged robots are still
confined to structured and flat environments. One of the main
reasons for this is the difficulty in planning complex whole-body
motions while taking into account the terrain conditions. This
problem is very high-dimensional as it considers the robot’s
dynamics together with the terrain model in a suitable prob-
lem formulation. In this work, we propose a novel trajectory
and foothold optimization method that plans dynamically both
foothold locations and motions (coupled planning). It jointly
optimizes body motion, step duration and foothold selection,
considering the terrain topology. We show that it can be easily
generalized to various terrain conditions (i.e. through the terrain
costmap), thanks to a parametrized dynamic model, and an
online terrain mapping that is used in our real-time whole-
body controller. Our whole-body controller tracks compliantly
trunk motions while avoiding slippage, as well as kinematic
and torque limits. For the sake of analysis, we compare our
coupled planner with our previous decoupled planner. With this
novel locomotion framework we can cross a wider range of
terrain conditions. We report thorough experimental results and
comparative evaluations over a set of terrains of progressively
increasing difficulty.

Index Terms—trajectory optimization, legged robots, challeng-
ing locomotion, whole-body control and terrain mapping

I. INTRODUCTION

Agile locomotion is a key ability for navigating challeng-
ing environments. Wheeled or tracked vehicles are efficient
in structured environments, for example on flats, roads and
paths, but can suffer from limited mobility in many real-
world scenarios. Legged locomotion can deliver substantial
advantages in real-world environments as it can offer a degree
of mobility that is unmatched by the wheeled counterparts.
Legged platforms decouple the trajectory of the robot body
from its support area. This way, the support areas or points,
i.e. the footholds that the legged robot needs to achieve for
successfully navigating the terrain, are reduced dramatically
and are typically discontinuous.

Due to these characteristics, legged robots offer a clear
advantage in unstructured and challenging terrain. Such en-
vironments are common in disaster relief, search and rescue,
forestry and construction site scenarios. Nonetheless, most
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legged robots are still confined to structured and flat terrain
despite the significant efforts of the research community. The
main reason for this is due to the difficulty of generating
complex dynamic motions that allow them to cross a vast
majority of terrain conditions. Many legged locomotion ap-
proaches have focused on the study of reactive behaviors for
robot stability without considering the terrain conditions (i.e.
“blind” locomotion). A reactive behavior (or motion control)
is an instantaneous action that aims to immediately stabilize
the robot; it does not consider a horizon of future events.
These approaches can only tackle small changes in the terrain
topology, and furthermore, they cannot always guarantee the
successful accomplishment of the task. Such difficulties have
restricted the use of legged systems to controlled environments
and research platforms.

Recently, trajectory optimization with contacts gained much
attention in the legged robotics community. It aims to over-
come the previously mentioned drawbacks of reactive loco-
motion approaches by considering a horizon of future events
(e.g. body movements and foothold locations). For exam-
ple, it could potentially improve the robot stability along a
specific planning horizon given a certain terrain. In spite of
the promising benefits of trajectory optimization for rough
terrain locomotion, most of the works are focused either on
flat conditions or on simulation. Conversely, in rough terrain
locomotion, the foothold locations and motions have to be
carefully planned.

To ensure locomotion stability, the robot needs to “un-
derstand” the environment through a perception system. The
terrain modeling serves to quantify the terrain difficulty and
uncertainty, so that, the robot can plan foothold locations and
movements. The terrain model can be used in two ways:
for foothold selection and for foothold interaction1. Next,
the robot has to evaluate different possible body motions
and foothold locations. Robot modeling helps to capture the
fundamental dynamics, while reducing an unnecessary set of
robot behaviors (i.e. the search space). However, current liter-
ature is missing a rigorous study of different motion planning
methods for challenging locomotion. For that, we introduced
four benchmark terrains to compare various planning methods.

1With foothold interaction, we refer to dynamic feasibility, i.e. computation
of GRFs and friction cones.
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A. Contribution

The main contributions of this work are: first, an exhaustive
comparison between the coupled and decoupled planning
methods using our test-case planners; second, an extension of
our coupled planning framework by exploiting the terrain nor-
mals for real-time whole-body control; third, the experimental
trials on online terrain mapping and whole-body controller
which allows us to describe the friction cone orientations. Our
new whole-body controller avoids slippage through friction
cone constraints that are imposed in real-time using the
estimation of terrain normals (i.e. from the terrain mapping).
It is designed to track compliantly fast trunk-motions since
it incorporates the full dynamics, the kinematic and torque
limits of the robot. Furthermore, it combines feedback and
feedforward control of swing motions that improves the leg
motion tracking performances, important for climbing stairs.
On the other hand, for the comparison, we use a set of metrics:
the number of footholds, the averaged trunk velocity and
the Mechanical Cost of Transport (MCoT). We present an in
depth comparison against planners developed in previous work
[1, 2]. This article is an extension of our previous works [3]
presented at the IEEE International Conference on Robotics
and Automation (ICRA) 2017.

The rest of the paper is structured as follows: after dis-
cussing previous research in the field of dynamic quadrupedal
whole-body locomotion (Section II) we briefly describe our
decoupled planner method, which we use for comparison.
Later, we explain our terrain mapping algorithm used for
planning and control (Section III). Next, we describe our
coupled planning method (Section IV). Section V introduces
a new controller designed for dynamic motions that considers
the friction cone constraints, the robot’s full dynamics, kine-
matic and torque limits. This controller improves the tracking
performance and robustness of the locomotion by tracking
compliantly desired trunk motions. In Section VI,VII we eval-
uate the performance of our decoupled and coupled planners
on the Hydraulically actuated Quadruped (HyQ), in real-
world experimental trials and simulations. Last Section VIII
summarizes this work and presents ideas and directions for
future work.

II. RELATED WORK

One of the earlier approaches to legged locomotion behav-
iors is statically stable walking. During statically stable walk-
ing, locomotion is performed by keeping the robots’s Center
of Mass (CoM) inside the polygon formed by its supporting
feet. It was first identified by [4] and mathematically evaluated
by [5]. This work was later extended to facilitate walking over
irregular terrain [6].

In environments where smooth, continuous support is avail-
able (flats, fields, roads, etc.), exact foot placement is not
crucial for the success of the behavior, legged systems can
utilize a variety of dynamic gaits; some recent works are, e.g.
trotting, galloping [7] and bounding [8, 9]. The work of Marc
Raibert crystallized the principles of dynamic locomotion and
balancing with legged robots [10]. The BigDog and LS3
quadrupeds are a recent extension of this work. While BigDog

is able to traverse irregular terrain using a reactive controller,
the footholds are not planned in advance. Similar performance
can be seen on the HyQ robot, that is able to overcome
obstacles with reactive controllers [11, 12] or step reflexes
[13, 14].

In contrast, environments with complex geometry, e.g. with
obstacles like large gaps, stairs or rubble, such systems quickly
reach their limits (i.e. torque limits). Such terrains often
afford only a few possible discrete footholds, and there legged
robots can employ a range of typically non-gaited locomotion
strategies that rely more on accurate foothold planning, and
consequentially on features of the terrain. In this case, higher
level motion planning is required, that considers the environ-
ment geometry and carefully selects appropriate footholds.

The DARPA Learning Locomotion Challenge stimulated
the development of footstep planning over rough terrain.
It resulted in a number of successful control architectures
[15, 16, 17, 18, 19, 20] to plan and execute footsteps to
traverse challenging terrain. Rebula et al. [15] avoids global
footstep planning by simply choosing the next best reachable
foothold. This can cause the robot to locally navigate into
an insurmountable obstacle. To avoid this, some methods
[21, 19] globally plan the complete footsteps from start to goal,
though in this case, a time-consuming replanning is necessary
when slippage or deviation from the planned path occurs. The
approach in [18] stands between the two above mentioned
methods and plans a global rough body path to avoid local
minima, but the specific footholds are chosen only a few steps
in advance. This reduces the necessary time for replanning in
case of slippage, while still considering a locally optimal plan.
Pongas et al. [16] focused mainly on generating a smooth CoM
trajectory, independent of the foothold pattern. Recently, Deits
and Tedrake [22] introduced an efficient method, formulated
as Mixed-Integer Convex Programming (MICP), to plan a
sequence of footholds. This approach has been extended
to quadrupedal locomotion on challenging terrain [23, 24].
However, using integer variables requires a convex model
of the terrain, which lose validity for significant non-linear
curvature of the terrain.

Natural locomotion over challenging terrain requires simul-
taneous computation of footstep sequences, body movements
and gait transitions (coupled planning) [e.g. 25, 26, 27, 28].
One of the main problems with such approaches is that the
search space quickly grows and computation time becomes
impractical, especially for systems that need solutions in
real-time. In contrast, we can split the planning and control
problem into a set of sub-problems, following a decoupled
planning strategy. For example the body path planner and the
footstep planner can be separated, thus reducing the search
space for each component [e.g. 17, 21, 29, 2]. This can
reduce the computation time at the expense of limiting the
planning capabilities of the robot, sometimes required for
extreme challenging terrain. There are two main approaches
of decoupled planning: contact-before-motion [e.g. 30, 31, 21]
and motion-before-contact [e.g. 32, 17, 22]. These approaches
find a solution in motion space, which defines the possible
motion of the robot, the former first find the set of footholds
to be achieved and then generate the desired motion, while the
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Fig. 1: Overview of our decoupled motion and foothold
planning framework [2, 1]. The foothold planner first computes
a sequence of body action and then selects the foothold
locations F around an action-specific foothold region. The
foothold sequence is planned according the terrain information
(i.e. terrain costmap and heightmap). Then the motion planner
uses the planned footholds to generate dynamic whole-body
motions (xd, ẋd, ẍd). Finally, the desired motion is compli-
antly executed by using a combination of feed-forward and
feedback terms. (Figure modified from [33])

latter work the opposite way.

A. Decoupled planning

In our previous works [1, 2] we proposed a locomotion
framework based on a decoupled planning strategy. First, we
planned a sequence of footholds by planning an approximate
body path. The approximate body path was computed from
a sequence of planned body actions. Then, we chose locally
the locations of the footholds. Finally, we generated a body
trajectory that ensured dynamic stability and achieved the
planned foothold sequence. Fig. 1 shows an overview of
our decoupled motion and foothold planning framework for
dynamic legged locomotion over challenging terrain.

The overall task was to plan online an appropriate sequence
of footholds F that allows the robot to traverse a challenging
terrain toward a body goal state (x, y, θ). To accomplish this,
our foothold planner first computed a sequence of body action
and then selected the foothold locations around an action-
specific foothold region. This generated a bounded sub-optimal
body path, through a sequence of body actions, in a growing
body-state graph. The body-state graph used the explored
action to select an appropriate foothold region. We used this
region to compute the body cost, or transition cost between
two nodes in the graph.

Once a sequence of footsteps was computed, we planned
a CoM motion that ensured the dynamic stability for those
steps. We used two fifth-order polynomials to describe the
horizontal CoM motion. Furthermore we used a cart-table
model to estimate the Center of Pressure (CoP) position, and
keep it inside the support polygon. For more details the reader
can refer to [1, 2].

III. TERRAIN MAPPING

This section describes the pipeline of acquisition and eval-
uation of terrain information. We implemented an onboard
terrain information server that holds and continuously updates
the state of the environment. We show how this information is
processed and transformed to a qualitative metric of the terrain
topology.

An occupancy map holds the 3D geometric perception data
scanned from vision sensors mounted at the front of the robot
(see Fig. 2). For that, we use Octomap2 as this provides a
probabilistic representation that handles sensor noise. Octomap
represents both free and occupied spaces and satisfies the
required computation time for our application, which is at
least 2 Hz with onboard processing (see Section VI for details
about the onboard PCs). Octomap uses a hierarchical data
structure, for spatial subdivision in 3D, called octrees. This
octree-based representation is designed to efficiently update
and copy the map [for more details see 34]. Moreover, it
has a multi-resolution volumetric representation that we use
to speed up the computation time of the geometric features
such as slope and curvature.

A. Terrain costmap

The terrain costmap quantifies how desirable it is to place
a foot at a specific location. The cost value for each voxel
in the map is computed using geometric terrain features such
as height deviation, slope and curvature [similar to 35]. We
compute the slope and curvature through regression in a
6 cm×6 cm window around the cell in question; the features
are computed from a voxel model (2 cm voxel-size resolution)
of the terrain. For instance, the estimated surface normals and
curvatures are computed from a set of neighboring occupied
voxels. We estimate the surface normals through an analysis of

2The source code is available on https://github.com/OctoMap/octomap.

Fig. 2: The HyQ robot mapping the terrain using Octomap
[34]. The voxel map is generated from RGBD camera data
(Asus Xtion), using the estimated body position. The RGBD
sensor is mounted on a Pan and Tilt Unit (PTU) that scans
the terrain, with a left/right sweep and up/down frequency of
1 Hz. The occupancy map is built with a 2 cm resolution. To
watch the video, click the figure.

https://github.com/OctoMap/octomap
http://youtu.be/yrEOE0pZMlc
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the eigenvectors and eigenvalues, a procedure using Principal
Component Analysis (PCA), of the set of nearest neighbors
(for more information, including the mathematical equations
of the least-squares problem, see [36]). Each surface normal
is computed from the eigenvector that has the smallest eigen-
value, λ0 and the surface curvature σ as follows:

σ =
λ0

λ0 + λ1 + λ2
(1)

Fig. 3 shows a set of estimated surface normals from the
occupancy map of a cobblestone terrain. We compute the
normals, and other geometric features, with 2 cm of resolution
(i.e. costmap resolution). We build the terrain costmap on top
of the occupancy map; therefore, the terrain map has its own
voxel-size resolution. For all terrain costmaps in this article
we use a resolution of 2 cm.

The terrain costmap is incrementally built based on the
aforementioned features and updated locally whenever a
change in the map is detected. For computing the terrain
costmap, we define an area of interest around the robot of
2.5 m×5.5 m. For each pixel of the terrain map, the cost value
is computed as a weighted linear combination of the individual
features T (x, y) = wTT(x, y), where w and T(x, y) are
the weights and feature cost values, respectively. The total
cost value is normalized, where 0 and 1 are the minimum
and maximum cost values, respectively. The weight vector
describes the importance of the different features. We will now
give a brief overview of the different geometry features used
for computing the terrain cost values.

1) Height deviation
The height deviation cost penalizes footholds close to large

drop-offs; for instance, this cost is needed for crossing gaps or
stepping stones. In fact, staying far away from large drop-offs
is beneficial because inaccuracies in the execution of footsteps
can cause the robot to step into gaps or banned areas. For
example, the HyQ robot foothold inaccuracies are around 4 cm
(or 2 voxels) when slippage does not occur; note that slippage

Fig. 3: A set of surface normals are extracted from the RGBD
sensor. The surface normals are estimated from the eigenvalues
and eigenvectors computed from the nearest neighbors of a
query point. To watch the video, click the figure.

TABLE I: Parameter values of the height deviation and slope
cost functions. We use the same values for all the experiments
presented in this work.

fflat fmax Tmax

height deviation 0.01 0.06 1
slope π

180
70π
180

1

events can increase the execution inaccuracies3. In addition,
the height deviation cost also keeps the feet away from areas
in which the shin can collide with the environment, similar as
in [2]. This is useful in climbing up/down stairs. The height
deviation feature fh is computed using the standard deviation
around a defined neighborhood.

2) Slope
The slope reflects the local surface normal in a neighbor-

hood around the cell, the normals are computed using PCA on
the set of nearest neighbors. A high slope value will increase
the chance of slipping even in cases where the friction cone is
considered, e.g. due to inaccuracies in the friction coefficient
or estimated surface normal. Slope cost increases for larger
slope values, while small slopes have zero cost as they are
approximately flat. We consider the worst possible slope smax
occurs when the terrain is very steep (approximately 70◦)4.

We map the height deviation and slope features into cost
values through the following piecewise function:

Tf (x, y) =


0 f ≤ fflat
− ln

(
1− f(x,y)

fmax−fflat

)
fflat < f < fmax

Tmax f ≥ fmax
where fflat is a threshold that defines the flat conditions,
fmax the maximum allowed feature value, and Tmax is the
maximum cost value. In Table I we report the used values for
all the experiments.

3) Curvature
The curvature describes the stability of a given foothold

location. For instance, terrain with mild curvature (curvature
between c = 6 to c = 9) is preferable to flat terrain since
it reduces the possibility of slipping, as it has a bowl-like
structure. Thus, the cost is equal to zero in those conditions.
On the other hand, high and low curvature values represent
a narrow crack structure in which the foot can get stuck in
(c > 9) or edge structure in which the foot can slip (c < −6),
respectively; in those conditions, we have a higher cost value.
We use the following piecewise function to compute the cost
value from a curvature value c:

Tc(x, y) =


0 c+mild > c > c−mild
Tmax c ≤ ccrack

c ≥ c+mild
Tmax − ln

(
c(x,y)−clow
chigh−clow

)
ccrak < c < c−mild

where ccrack = −6, c−mild = 6, c+mild = 9 and cmax = 9.

3Slippages produce a drift in the estimated body position, for more details
see [37].

4We heuristically defined this value based on our experience with the HyQ
robot.

http://youtu.be/a_H7pwCpi0g
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Fig. 4: A costmap generated from RGBD data. The occupancy
map is built with a 2 cm resolution. Then the set of features is
computed and the total cost value per voxel is calculated. In
addition, a heightmap is created with a resolution of 2 cm in
z. The cost values are represented using a color scale, where
blue is the minimum cost and red is the maximum. (Figure
taken from [2])

Fig. 4 shows the computation of the terrain costmap, using
the above-mentioned mapping between geometry features to
cost values, from the onboard RGBD sensor. The cost values
are represented using a color scale, where blue is the minimum
cost and red is the maximum one.

B. Terrain heightmap

The terrain heightmap allows the robot to define the ver-
tical component (i.e. z-direction) of the footstep. Indeed the
trunk/swing trajectory can be approximately planned to place
the foot at the correct height. A higher resolution of the
heightmap helps the robot to accurately establish a footstep,
which improves the overall execution. The heightmap is com-
puted using the same resolution (2 cm) as the costmap in the
(x, y)-plane. Along the z-direction we desire higher accuracy
to step safely onto obstacles, so we use a resolution of 1 cm.
In essence, the heightmap is a 21/2-dimensional projection
of the costmap that can be more efficiently handled by the
subsequent steps of the motion and foothold planning. For
instance, the terrain costmap associates the cost value to the
highest occupied voxel.

IV. COUPLED MOTION AND FOOTHOLD PLANNING

In this section, we address the locomotion as a coupled
planning problem of CoM motions and footholds, where the
foothold locations are selected using a terrain costmap while
the trunk height and attitude are adapted for different terrain
elevations (see Fig. 5). First, we jointly generate the CoM
trajectory and the swing-leg trajectory using a sequence of
parametric preview models and the terrain elevation map
(Section IV-A). Then, we optimize a sequence of control
parameters (the CoP displacement, the phase duration and the
foothold locations) given the terrain costmap (Section IV-B).
Compared with our previous work [3], we have reformulated
the terrain model in our optimization problem as duality

Trajectory
 Optimization

Trajectory
 Generation

Whole-body
 Controller

Optimal
Control

Optimal
Plan

User
Goals

Terrain
Costmap

Terrain
Heightmap

State

Command

Fig. 5: Overview of our coupled motion and foothold planning
framework for locomotion on challenging terrain [3]. We
compute offline an optimal sequence of control parameters
U∗ given the user’s goals, the actual state s0 and the terrain
costmap. Given this optimal control sequence, we generate the
optimal plan S∗, that uses trunk attitude planning to adapt to
the changes in the terrain elevation. Lastly, the whole-body
controller calculates the joint torques τ ∗ that satisfy friction-
cone constraints. (Figure taken from [3])

cost-constraint. This terrain model allows us to navigate in
various terrain conditions without the needed of re-tuning.
Additionally, we have improved our whole-body controller
which is able to avoid slippage using an online terrain map
(for more details see Section V). Note that coupled planning
allows us also to optimize step timing and to use the dynamics
for foothold selection which is not possible for decoupled
planners, such as our above-mentioned planning method.

A. Trajectory generation
This section describes the low-dimensional trajectory gen-

eration for a sequence of control parameters and a given
terrain heightmap. We generate the horizontal CoM trajectory5

and the 2D foothold locations using a sequence of low-
dimensional preview models. In order to adapt to changing
terrain elevation, we modulate the trunk attitude and height
using an estimate of the support plane, and the maximum
allowed angular accelerations of the trunk (for more details
see Section IV-A1b). We describe the sequence of control
parameters w.r.t. the horizontal frame, which allows us to
decouple the CoM and trunk attitude planning.

1) Preview model
Preview models are low-dimensional representations that

describe and capture different locomotion behaviors, such as
walking and trotting, and provide an overview of the motion
[38]. With a reduced model we can still generate complex
locomotion behaviors and their transitions; furthermore, we
can integrate it with reactive control techniques. This is more
suitable for challenging terrain as it simplifies the optimization
problem landscape. In the literature, different models that
capture the legged locomotion dynamics such as point-mass,
inverted pendulum, cart-table, or contact wrench have been
studied by [39, 40].

5The horizontal frame has been using too for reactive motion generation
[see 11].
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Fig. 6: A trajectory obtained from a low-dimensional model
given a sequence of optimized control parameters and the
terrain heightmap. The colored spheres represent the CoM and
CoP positions of the terminal states of each motion phase.
The CoP spheres lie inside the support polygon (same color is
used). Note that color indicates the phase (from yellow to red).
The trunk adaptation is based on the estimated support planes
in each phase. Since the control parameters are expressed in
the horizontal frame, the horizontal CoM trajectories and the
trunk attitude are decoupled. (Figure taken from [3])

Our preview model decouples the CoM motion from the
trunk attitude6 (Fig. 6). For the CoM motion, we use the cart-
table template [41]. The cart-table model encompasses a point
mass assumption which has no angular momentum. However,
to control the attitude we need to apply moments to the robot’s
CoM. High centroidal moments (e.g. due to high trunk angular
acceleration) can hamper the postural stability condition (e.g.
causing shifts on the CoP that can move it out of the support
polygon [42], making the robot losing its capability to balance.
Consequently, for the attitude planning, we limit the maximum
moments applied to the CoM by limiting the maximum angular
acceleration and setting a corresponding margin for the CoP
on the support polygon.

a) CoM motion:
In our previous work [1], for fixed step durations, we

showed that the CoP movement is approximately linear, i.e.:

pH(t) = pH0 +
δpH

T
t. (2)

Note that pH = (xH , yH) ∈ R2 is the horizontal CoP position,
δpH ∈ R2 the horizontal CoP displacement and T is the phase
duration. The (·)H apex means that the vectors are expressed
in the horizontal frame.

Applying this linear control law in the cart-table model, we
derive an analytic solution for the horizontal dynamics [38]:

xH(t) = β1e
ωt + β2e

−ωt + pH0 +
δpH

T
t, (3)

where the model coefficients β1,2 ∈ R2 depend on the actual
state s0 (horizontal CoM position xH0 ∈ R2 and velocity ẋH0 ∈

6In this work, with trunk attitude we refer to roll and pitch only.

R2, and CoP position), the trunk height h, the phase duration,
and the horizontal CoP displacement:

β1 = (xH0 − pH0 )/2 + (ẋH0 T − δpH)/(2ωT ),

β2 = (xH0 − pH0 )/2− (ẋH0 T − δpH)/(2ωT ),

where ω =
√
g/h and g is the gravity acceleration.

b) Trunk attitude:
A trunk attitude modulation is required when the terrain

elevation varies. A simple approach consists of aligning the
trunk with respect to the estimated support plane, avoiding
that the robot reaches its kinematic limits. On the other hand,
adjusting the trunk attitude requires applying a moment at the
CoM, and as a consequence, the CoP p ∈ R3 will be shifted
by a proportional amount ∆p (for more details see [42]):

∆px = −τcomy/mg, (4)
∆py = τcomx/mg,

where τcomy
, τcomx

are the horizontal components of the
moment about the CoM. By exploiting a simplified flywheel
model for the inertia of the robot we can link these moments
to the CoP displacement ∆p (rewritten in vectorial form) and
to the angular acceleration ω̇:

τcom = Iω̇, (5)
∆p = τcom ×mg. (6)

where I ∈ R3×3 is the time-invariant inertial tensor approxi-
mation of the centroidal inertia matrix of the robot. Therefore,
we can guarantee the CoP condition by limiting the angular
accelerations ω̇max (i.e. the allowed applied moments) and
setting a corresponding safety margin r on the support polygon
in our optimization (Section IV-B3) as:

r = ‖(Iω̇max)×mg‖. (7)

Therefore, we adapt the trunk attitude in such a way that it
does not affect the CoP condition (i.e. by using the maximum
allowed angular acceleration ω̇max ∈ R2). We compute the
maximum angular acceleration in frontal and transverse plane
(i.e. ω̇x and ω̇y) give the stability vector r ∈ R2. Note that
we compute it from the stability margin r, i.e. the support
polygon margin.

We employ cubic polynomial splines to describe the trunk
attitude motion (frontal and transverse). The attitude adapta-
tion can be done in different phases. For instance, we can
compute the required angular displacement given the phase
duration and guarantee that it does not exceed the allowed
angular accelerations. The trunk height is computed given the
estimated support plane and we keep it constant along each
phase.

2) Preview schedule
Describing legged locomotion can be achieved through a

sequence of different preview models — a preview schedule.
Using this, the robot can automatically discover different
foothold sequences by enabling or disabling different phases
in our optimization process.
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WORLD

BASE

STANCE

Fig. 7: Sketch of different variables and frames used in our
optimization. The footshift δfLF is described w.r.t. the stance
frame, its boundary values are defined by the foothold region
(the pink rectangle). The stance frame is calculated from the
default posture and expressed w.r.t. the base frame. (Figure
modified from [3])

In the preview schedule, we build up a sequence of control
parameters that describes the locomotion action of the n
phases:

U =
[
u
st/sw
1 · · · u

st/sw
n

]
, (8)

where usti =
[
T δpH

]
and uswi =

[
T δpH δf l

]
are the

preview control parameters for the stance and swing phases,
respectively. Additionally, the footshift δf l is described w.r.t.
the stance frame (Fig. 7), which is calculated from the default
posture of the robot. Note that n is the number of phases, and
l is the foot index.

We describe a dynamic walking gait as a combination of
6 different preview phases or timeslots (i.e. n = 6) where
4 of them are swing phases. Our combination of phases is
stance, Left-Hind (LH) swing phase, Left-Front (LF) swing
phase, stance, Right-Hind (RH) swing phase and Right-Front
(RF) swing phase7. With this fixed preview schedule, we can
describe different walking patterns, e.g. by assigning a zero
duration to different phases (Ti = 0).

B. Trajectory optimization

The trajectory optimization step computes an optimal se-
quence of control parameters U∗ used for the generation of the
low-dimensional trajectories (Section IV-A). We formulate this
as a receding horizon trajectory optimization problem, where
the current timeslot is optimized while taking future timeslots
into account. The horizon is described by a predefined number
of preview schedules N with n timeslots or phases (e.g. our
locomotion cycle has 6 timeslots). Considering future phases
presents several advantages for challenging terrain locomotion.
It enables us to generate desired behaviors that anticipate
future terrain conditions, and it results in smoother transitions
between phases.

In our approach, the optimal solution at the current phase
i comprises of a set of control parameters u∗i describing

7The robot is in stance phase when all the feet are on the ground.

the duration of phase T ∗i , the CoP displacement δpH
∗
i , and

the footshift δf∗i of the corresponding phase. We define the
footshift in the nominal stance frame which corresponds to
the default posture. Note that there are phases without foot
swing. To the best of our knowledge, our approach is the first
that jointly optimizes phase duration and foothold selection,
while considering terrain conditions. This contribution has
been presented in [3].

1) Receding horizon planning
Given an initial state s0, we optimize a sequence of control

parameters inside a predefined horizon, and apply the optimal
control of the current phase. We find the sequence of control
parameters U∗, through an unconstrained optimization prob-
lem, given the desired user commands (trunk velocities):

U∗ = argmin
U

∑
j

ωjgj(S(U)), (9)

where S =
[
s1 · · · sNn

]
is the sequence of preview

states. The preview state is defined by the CoM position
and velocity (x, ẋ), CoP position p and the stance support
region σ, i.e. s =

[
x ẋ p σ

]
, where σ =

[
f1 · · · fj

]
is defined by the position of the active feet fj ∈ R2. We
solve the trajectory optimization using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [43]. CMA-ES is
capable of handling optimization problems that have multiple
local minima, such as those introduced by the costmap (see
Section III-A and Eq. (12)) and the phase duration (see
Eq. (3)). In the description of our optimization problem, we
use soft-constraints as these provide the required freedom to
search in the landscape of our optimization problem. The
cost functions or soft-constraints gi(S) describe: 1) the user
command as desired walking velocity and travel direction, 2)
the CoM energy, 3) the terrain cost, 4) a soft-constraint to
ensure stability, i.e. the CoP condition, and 5) the preview
model soft-constraint, which is required due to the decoupling
of the horizontal and vertical dynamics.

2) Cost functions
We encode the desired body velocity from the user by

mapping it into an average walking velocity. Additionally, the
CoM trajectory should accelerate as little as possible during
the phases. Note that this implicitly reduces the required joint
torques. We evaluate the desired velocity command for the
entire planning horizon Nn as follows:

gvelocity =

(
ẋHdesired −

xHNn − xH0∑Nn
i=1 ti

)2

, (10)

where ẋHdesired ∈ R2 is the desired horizontal velocity, xHNn is
the terminal CoM position, xHNn is the actual CoM position,
and ti is the durations of ith phase. Note that the terminal
state defines the latest state that we consider in the planning
horizon.

The Mechanical Cost of Transport (MCoT) quantifies the
mechanical energy of transporting the robot from one place to
another. Minimizing the MCoT reduces the energy consump-
tion for navigating a determined terrain. Since we do not have
access to the joint torques and velocities in our optimization,
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we estimate the MCoT from the kinetic energy for a point-
mass system (i.e. K = 1

2mẋ2). Thus, we compute the total
cost along the phases by:

gcot =

Nn∑
i=1

COT (ẋ), (11)

where the MCoT for point-mass system is defined as
COT (ẋ) Kmgd with d equals to the travel distance in the xy
plane.

To cope with different terrain difficulties, we compute a
costmap from an onboard sensor as described in Section III-A.
The costmap quantifies how desirable it is to place a foot at
a specific location using geometric features such as height
deviation, slope and curvature. This allows the robot to
negotiate different terrain conditions (Fig. 8). Thus, given a
footshift and CoM position, we compute the foothold location
cost as:

gterrain = wTT(x, y), (12)

where w and T(x, y) are the weights and cost values of
every feature, respectively. We use a cell grid resolution of
2 cm, a half of the robot’s foot size, and the terrain features
are computed from a voxel resolution of 2 cm (described in
Section III-A). As in [2], we demonstrated that this coarse map
is a good trade-off in terms of computation time and informa-
tion resolution for foothold selection. We cannot guarantee
convexity in the terrain costmap, which has to be considered
in our optimization process.

3) Soft-constraints
As mentioned in Section IV-A1b, the CoP trajectory must be

kept inside the support polygon which is shrunk by a margin
r. This margin guarantees dynamic stability when a maximum
moment is applied to the CoM (Section IV-A1b). We use a
set of nonlinear inequality constraints to describe the support
region:

L(σ)T
[
p
1

]
> 0, (13)

where L(·) ∈ Rl×3 are the coefficients of the l lines, σ the
support region defined from the selected foothold locations,
and p the CoP position. Note that the stability constraints are
nonlinear as a consequence of adding the foothold positions
as decision variables.

Due to the decoupling of the horizontal and vertical motions,
we implement a preview model soft-constraint that ensures the
cart-table height is approximately equal to:

h = ‖x− p‖ (14)

where x and p are the CoM and CoP positions, respectively.
Note that when the cart-table is falling down, the CoM
trajectory increases exponentially as in Eq. (3). This effect
arises from the fact that we decouple the horizontal and
vertical dynamics, hence adding this soft-constraint guarantees
the validity of the model.

To reduce the computation time, we impose both soft-
constraints only in the initial and terminal state of each phase
as they will be guaranteed in the entire phase. In fact, the linear
CoP trajectory will belong to the convex support polygon if

Fig. 8: A costmap allows the robot to negotiate different terrain
conditions while following the desired user commands. The
costmap is computed from onboard sensors as described in
Section III-A. The cost values are continuous and represented
in color scale, where blue is the minimum and red is the
maximum cost. (Figure taken from [3])

the initial and terminal positions are inside this region. Note
that the support polygon remains a convex hull as the possible
foothold locations cannot cross its geometric center. We ensure
this by limiting the foothold search region, i.e. by bounding
the footshift (see Fig. 7). These soft-constraints are described
as quadratic cost terms.

V. WHOLE-BODY CONTROLLER

The CoM motion, body attitude and swing motions are
controlled by a trunk controller. It computes the feed-forward
joint torques τ ∗ff necessary to achieve a desired motion
without violating friction, torques or kinematic limits. To
fulfill these additional constraints we exploit the redundancy
in the mapping between the joint space (∈ Rn) and the
body task (∈ R6). To address unpredictable events (e.g. limit
foot divergence in case of slippage on an unknown surface),
an impedance controller computes in parallel the feedback
joint torques τfb from the desired joint motion (qdj , q̇

d
j ).

This controller receives position/velocity set-points that are
consistent with the body motion in order to prevent conflicts
with the trunk controller. In nominal operations the biggest
contribution is generated by the feed-forward torques, i.e. by
the trunk controller.

In our previous works [3, 14], the trunk controller was
designed for quasi-static motions. Indeed we only optimized
the ground reaction forces, and then map them into feed-
forward joint torques through the centroidal dynamics of
the robot. Note that this is a quasi-static mapping where,
for instance, the base accelerations and joint motions have
no direct influence on the feed-forward torques. Here we
improve it by incorporating the full dynamics, the kinematic
and torque limits of the robot. This controller allows us to
track faster motions than in the previous cases. For instance,
for the dynamic motions obtained in Section VI, the legs’
joint dynamics starts to play a role, and it becomes necessary
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to relax the assumption of quasi-static motions to achieve a
good tracking.

To achieve compliantly desired trunk motions, we compute
a reference CoM acceleration (r̈r ∈ R3) and body angular
acceleration (ω̇rb ∈ R3) through a virtual model:

r̈r = r̈d + Kr(r
d − r) + Dr(ṙ

d − ṙ),

ω̇rb = ω̇db + Kθe(R
d
bR

T
b ) + Dθ(ω

d
b − ωb), (15)

where (rd, ṙd, r̈d) ∈ R3 are the desired CoM position,
velocity and acceleration respectively, e(·) : R3×3 → R3

is a mapping from the rotation matrix into the associated
rotation vector, ωb ∈ R3 is the angular velocity of the
trunk. Kr,Dr,Kθ,Dθ ∈ R3×3 are positive-definite diagonal
matrices of proportional and derivative gains, respectively.

The target of our trunk controller is to minimize the error
between the reference and actual accelerations while enforc-
ing friction, torque and kinematic constraints. As mentioned
above, the reference accelerations are computed from (15).
We formulate the problem using Quadratic Programming (QP)
with the generalized accelerations and the contact forces as
decision variables, i.e. x = [q̈T ,λT ]T ∈ R6+n+3nl :

x∗ = arg min
x
gerr(x) + ‖x‖W

s. t. Ax = b

d < Cx < d̄

(16)

where n represents the number of active Degree of Freedoms
(DoFs). The first term of the cost function (16) penalizes the
tracking error:

gerr(x) =

∥∥∥∥ r̈− r̈r

ω̇b − ω̇rb

∥∥∥∥
S

, (17)

while the second one is a regularization factor to keep the
solution bounded or to pursue additional criteria. Both costs
are quadratic-weighted terms. As the CoM acceleration is not
a decision variable, we compute them from the contact forces
using the centroidal dynamic model. We then re-write the
tracking cost (17) as ‖Gx− g0‖ where:

G =

[
03×3 03×3 03×n

1
mI1 · · · 1

mInl

03×3 13×3 03×n 03×3nl

]
,g0 =

[
r̈r + g
ω̇rb

]
,

and Ik representing an identity matrix for the kth end-
effector. The equality constraints Ax = b encodes dynamic
consistency, stance condition and swing task. On the other
hand, the inequality constraints d < Cx < d̄ encode friction,
torque, and kinematic limits.

We map the optimal solution x∗ into desired feed-forward
joint torques τ ∗ff ∈ Rn using the actuated part of the full
dynamics of the robot as:

τ ∗ff =
[
MT

bj Mj

]
q̈∗ + hj − JTcjλ

∗ (18)

where Mbj ∈ R(6+n)×n represents the coupled inertia be-
tween the floating-base and joints, Mj ∈ Rn×n the joint
contribution to the inertia matrix, hj ∈ Rn is the force vector
that accounts for Coriolis, centrifugal, and gravitational forces
to the joint torque, and Jcj ∈ R3nl×n is a stack of Jacobians
of the nl end-effectors.

Finally, the feed-forward torques τ ∗ff are summed with the
joint PD torques (i.e. feedback torques τfb) to form the desired
torque command τ d:

τ d = τ ∗ff + PD(qdj , q̇
d
j ), (19)

which is sent to a low-level joint-torque controller.

VI. EXPERIMENTAL RESULTS

To understand the benefit of the coupled motion planning
method, we first compare the decoupled and coupled ap-
proaches in various challenging terrains (e.g. stepping stones,
pallet, stairs and gap). We use as test-cases the decoupled
and coupled planners presented in [1] and [3], respectively.
After that, we demonstrate how trunk attitude modulation
can heuristically generate angular motions that ensure the
CoP condition. Subsequently, we analyze the effect of the
terrain costmap in our coupled planner. We show how different
weighting choices result in various behaviors without affecting
significantly the robot stability and the reduction of the MCoT.
Finally we demonstrate the capabilities of our locomotion
framework (i.e. coupled planner, whole-body controller, terrain
mapping and state estimation) by crossing terrains with various
slopes and obstacles. For all the experimental results, please
see the accompanying video in Extension 1 or in Youtube8.

All the experiments are conducted with HyQ, a 85 kg
hydraulically actuated quadruped robot [44]. The HyQ robot
is fully-torque controlled and equipped with precision joint
encoders, a depth camera (Asus Xtion), a MultiSense SL
sensor and an Inertial Measurement Unit (MicroStrain). HyQ
roughly has the dimensions of a goat, i.e. 1.0 m×0.5 m×0.98 m
(length × width × height). The leg length ranges from 0.339-
0.789 m and the hip-to-hip distance is 0.75 m (in the sagittal
plane). HyQ has two onboard computers: a Pentium i5 with
Real Time (RT) Linux (Xenomai) patch, and a Pentium i5
with Linux. The Xenomai PC handles the low-level control
(hydraulic-actuator control) at 1 KHz and communicates with
the proprioceptive sensors through EtherCAT boards. Addi-
tionally, this PC runs the high-level controller (whole-body
controller) at 250 Hz. Both RT threads (i.e. low- and high-
level controllers) communicate through shared memory. On the
other hand, the non-RT PC processes the exteroceptive sensors
for generating the terrain map and then computing the plans.
These motion plans are sent to the whole-body controller (i.e.
the RT PC) through a RT-friendly communication.

A. Decoupled and coupled planning

In this section we show how our decoupled and coupled
planning approaches perform on various challenging terrains,
including terrains with height variations such as the gap and
stepping stones cases. For all these scenarios, we computed
the costmap using the standard deviation of the height values,
which is estimated through a regression in a 2 cm×2 cm
window around the cell of interest. The costmap is built using
a resolution of (2 cm×2 cm×1 cm) in (x, y, z), respectively
(Section III). The higher resolution value in z reduces the

8https://youtu.be/ywkiCu3ZAyE

https://youtu.be/ywkiCu3ZAyE
https://youtu.be/ywkiCu3ZAyE
https://youtu.be/ywkiCu3ZAyE
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TABLE II: Number of footholds, averaged walking speed and normalized MCoT for various challenging terrains for our
coupled (Coup.) and decoupled (Dec.) planners. We normalize the MCoT with respect to the walking velocity. All the results
are computed from simulations.

# of Footholds Avg. Speed [cm/s] MCoT / speed [s/cm]

Terrain Coup. Dec. Ratio Coup. Dec. Ratio Coup. Dec. Ratio

S. Stones 31 38 0.82 11.16 6.29 1.77 13.20 11.43 1.15
Pallet 35 36 0.97 9.23 6.92 1.33 13.21 11.70 1.13
Stairs 21 23 0.91 12.79 11.26 1.14 10.22 6.24 1.63
Gap 18 24 0.75 12.76 9.00 1.42 9.05 6.84 1.32

Fig. 9: Snapshots of experimental trials used to evaluate the performance of the coupled planner. (a) crossing a gap of 25 cm
length while climbing up 6 cm. (b) crossing a gap of 25 cm length while climbing down 12 cm. (c) crossing a set of 7 stepping
stones. (d) crossing a sparse set of stepping stones with different stone elevations (6 cm). To watch the video, click the figure.

discrepancy between expected and detected footholds, that
sometimes lead to inconsistencies, that in turn generate tacking
errors.

For the decoupled planner, the swing and stance durations
are pre-configured since they cannot be optimized over, as in
a decoupled planner. The footstep planner explores partially
a set of candidate footholds using the terrain-aware heuristic
function [see 2]. It might not be possible to compute a set of
polynomial’s coefficients, given a predefined swing and stance
duration, that satisfy the dynamic stability for a determined
footstep sequence choice. We tuned those durations per every
terrain, they range from 0.5 to 0.7 sec and from 0.05 to 1.4 sec
for the swing and stance9 phases, respectively.

In the case of the coupled planner, we used the same
weight values (see Section IV-B2-IV-B3) for all the results
presented in Table II (i.e. 300, 30 and 10 for the human
velocity commands, terrain, and CoM energy weight values,
respectively). We do not re-tune these gains for navigating all
these terrains, as is sometimes necessary with the decoupled
planner; in this respect the coupled planner shows a higher

9In this work, with stance phase, we refer to all the feet on ground.

level of generality compared with our decoupled planner. We
impose a soft-constraint boundary in the terrain cost, when
the terrain cost is higher than 80% of its maximum value. All
soft-constraints have higher weights and a high offset cost10,
which allows the CMA-ES solver to ensure the constraints
are satisfied, given enough exploration steps [45]. We hand-
tuned the terrain soft-constraint parameters (weight and offset)
in such a way that the dynamic stability and preview model
soft-constraints are not violated. For all the cases presented
in this paper, the defined mapping from geometry feature to
terrain cost values (see Section III-A) is suitable. However,
with machine learning, we can infer a mapping function
that increases the generality of the terrain costmap model
as explained in [29]. Another important point is that our
coupled planner does not depend on having a good warm-
start, which might be difficult to define for all possible terrain
topologies. We used the same stability margin and allowed
angular acceleration (as in Section VI-B) for the trunk attitude
planner, and our horizon is N = 1, i.e. 1 cycle of locomotion

10This method allows us to handling non-linear constraints, and it often
works better than resampling. See [45] for a general overview on boundary
and constraints handling.

https://youtu.be/ywkiCu3ZAyE#t=01m24s
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Fig. 10: An optimized sequence of control parameters for the
stair climbing case. As in previous experiments, we use the
same optimization weight values for the entire course of the
motion. To watch the video, click the figure.

or 4 steps.
Compared to the decoupled planner, we managed to increase

the walking velocity at least 14%, while also modulating the
trunk attitude. The foothold error is on average around 2 cm,
half compared with the decoupled planner; we get these results
with the state estimation algorithm proposed in [46]. This dra-
matically increases the success rate of the stepping stones trials
to 90%; an increment of 30% with respect to the decoupled
planner, see the reported success rate in [1]. We define as
success when the robot crosses the various obstacles of the
terrain, e.g. it does not make a step in the gap, reaches torque
limits, etc. In Table II we report the number of footholds,
the averaged trunk speed, and the MCoT our coupled and
decoupled planners for various challenging terrains. Jointly
optimizing the motion and footholds reduces the number of
required footholds for crossing a terrains because it considers
the robot dynamics for the foothold selection. It also increases
the trunk speed and success rate even with terrain elevation
changes (e.g. gap and stepping stones). The MCoT is higher
for our coupled planner; however, this is an effect of higher
walking velocities and of the tuning of the cost function.
This is expected even if we normalized the MCoT with
respect to the walking velocity. Note that the velocity increases
quadratically the kinetic energy, and as a consequence the
MCoT. We also found that the tuning of the MCoT cost does
not affect the stability and the foothold selection. An important
drawback of optimizing foothold location and step timing
giving a terrain costmap is that increases substantially the
computation time. In fact for our planners, it is increased from
2-3 sec to 10-15 min, for more details about the computation
time of the decoupled planner see [2]. The main reason is that
we search for global minimum by estimating the gradient in
the latter case [see 43]. Instead, for the former one, we use
a tree-search algorithm (i.e. Anytime Repairing A* (ARA*))
with heuristic function that guides the solution towards a
shortest path, not the safest one.

Trunk attitude adaptation tends to overextend the legs, espe-
cially in challenging terrains, as larger motions are required.
To avoid kinematic limits, we defined a foot search region.
This ensures kinematic feasibility up to 12 cm of terrain height
difference (coupled planner), as is illustrated in Fig. 9a,b. Note
that we had to define a more conservative foot search region in
the decoupled one, making very challenging to cross gaps or

stepping stones with height variations. We could also generate
trajectories with two stepping stones 6 cm higher than the other
ones. These terrain irregularities produce a trunk modulation in
roll and pitch as can be observed in Fig. 9d; the terrain height
is used for the trajectory generation not for the optimization (as
explained in Fig. 5). The execution performance on stepping
stones without changes in terrain elevation is shown in Fig. 9c.
Crossing the terrain in Fig. 9a-d is only possible with the
coupled planner since we managed to increase the foothold
region from (20 cm×23.5 cm) to (34 cm×28 cm). For all our
optimizations, we define a stability margin of r = 0.1 m which
is good trade-off between modeling error and allowed trunk
attitude adjustment on the HyQ robot. Note that the origin of
this region is defined by the stance frame (see Fig. 7), and
that increasing this region enables broader foothold options.
In fact, the coupled planning considers the robot’s dynamics as
it jointly optimizes the CoM motions and foothold locations,
while the decoupled planning can only consider the robot’s
kinematics for the foothold planning. Additionally, we show
in simulation that our planner can climb stairs (see Fig. 10).
The robot computes a footstep sequence for climbing up and
down using the terrain costmap and the same optimization
weights as before. This supports that previously tuned weights
generalize well in new terrains.

B. Approximating the angular momentum effects

Both motion planning methods use the cart-table model
which reduces the dimensionality of the problem but it ne-
glects the angular momentum of the motion. However, the
robot needs to modulate its attitude (i.e. change the angu-
lar momentum) for navigating terrains with various heights.
Therefore, we have proposed (Section IV-A1b) a trunk attitude
method that ensures the CoP condition. We showcase the
automatic trunk attitude modulation, during a dynamic walk,
as illustrated in Fig. 11a. To validate the attitude modulation
method, we plan a fast (compared to the common walking-
gait velocities of HyQ) dynamic walk with a trunk velocity of
18 cm/s, with initial trunk attitude of 0.17 and 0.22 radians in
roll and pitch, respectively. We do not use the terrain costmap
for generating the corresponding footholds, thus the resulting
feet locations come from the dynamics of walking itself, while
maximizing the stability of the gait. We compute the maximum
allowed angular acceleration given the trunk inertia matrix
of HyQ, from Eq. (7), which results in 0.11 rad/s2 as the
maximum diagonal element. The trunk attitude planner uses
this maximum allowed acceleration to align the trunk and
support plane through cubic polynomial splines (as explained
in Section IV-A1b).

The resulting behavior shows the HyQ robot successfully
walking while changing its trunk roll and pitch angles. The
trunk attitude planner adjusts the roll and pitch angles given
the estimated support region at each phase. Fig. 11b shows the
CoM tracking performance for initial trunk attitude of 0.17 rad
and 0.22 rad in roll and pitch, respectively. Fig. 11c shows that
the entire attitude modulation is accomplished in the first 6
phases (i.e. one cycle of locomotion or four steps). Because
our attitude planner ensures dynamic stability, the HyQ robot

https://youtu.be/ywkiCu3ZAyE#t=00m54s
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(a) Dynamic walking and trunk modulation

(b) CoM tracking performance

(c) Trunk attitude modulation

Fig. 11: (a) Dynamic attitude modulation by approximating
the angular momentum effects. The initial trunk attitude is
0.17 and 0.22 radians in roll and pitch, respectively. (b)
Body tracking when walking and dynamically modulating the
trunk attitude. The planned CoM (magenta) and the executed
trajectory (white) are shown together with the sequence of
support polygons, CoP and CoM positions. Note that each
phase is identified with a specific color. (c) A lateral view
of the same motion shows the attitude correction (sequence
of frames), and the cart-table displacement. Note that we use
the RGB color convention for drawing the different frames. In
(b)-(c) the brown, yellow, green and blue trajectories represent
the LF, RF, LH and RH foot trajectories, respectively.

crosses successfully terrains with various elevations as shown
in Fig. 9a-d. Note that the stability margin is the same for all
the experiments in this paper (r = 0.1 m).

C. The effect of the terrain costmap

The terrain costmap plays an important role for the foothold
selection. Different weighting choices on the terrain costmap
produce various behaviors, affected by Eq. (12). In Fig. 12
we show two different behaviors obtained with two different
weights values of the terrain cost function. For simplicity, we
analyzed the effect of these weights for gap crossing. In this
study case we compute the terrain costmap using only the
height deviation feature, since the geometry of the terrain is
simple. The cost values are represented using gray scale, where

Fig. 12: The effect of changing terrain weight values when
crossing a gap of 25 cm. The costmap is computed only using
the height deviation feature (top); the red points represent the
discretization of the continuous cost function (1 cm). If we
choose an appropriate terrain weight value the robot crosses
the gap (middle). In contrast, an increment of 200% in the
weight penalizes excessively footholds close to the gap and as
result the robot cannot cross the gap as kinematic limits are
exceeded (bottom).

white and black are the minimum and maximum cost values,
respectively. A higher value in the terrain weight describes
a higher risk for foothold locations near the borders of the
gap. Strongly penalizing the terrain costmap results in the
robot not being able to cross the gap due to its kinematic
limits (Fig. 12(bottom)). By reducing the terrain weight up
to an appropriate value, the coupled planner decides to select
footholds closer to the gap borders, which allows the robot
to cross the gap (Fig. 12(top)). The terrain weight mainly
influences the foothold selection, and does not influence the
stability or the MCoT.

D. Crossing terrain with various slopes

Our coupled planner does not consider the non-coplanar
contact condition and friction cone (since the used cart-table
model neglects them). However, the HyQ robot can still cross
successfully a wide range of terrains, as demonstrated in
Fig. 13. The robot can successfully cross in simulation ramps
up to 20 degrees in similar friction conditions to real exper-
iments (µ = 0.7). For the non-coplanar condition problem
we use the cart-table model to plan horizontal CoM motions;
then we ensure dynamic stability even with trunk attitude
adjustments (i.e. applying a bounded CoM torque). Addition-
ally, our whole-body controller achieves the planned motion
without violating friction, torques or kinematics constraints
(see Fig. 14). For that, it considers the full robot dynamics
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Fig. 13: Crossing a terrain that combines elements of the previous cases; first a ramp of 10 degree, then a gap of 15 cm
and finally a step with 15 cm height. Execution of the planned motion with the HyQ robot (top). Visualization of the terrain
costmap, friction cone and Ground Reaction Forces (GRFs) (bottom). The color for the friction cone and GRFs are magenta
and purple, respectively. To watch the video, click the figure.
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Fig. 14: The execution performance of the HyQ robot cross-
ing a terrain that combines elements of all previous cases.
(Top): CoM tracking performance, desired (blue) and executed
(black) motions. The tracking error is mainly due to low-
frequency correction of the pose estimate drift from extero-
ceptive sources. (Bottom): applied torque command along the
course of the motion. At t = 14 sec, the planned motion
produced a movement that reached the torque limits; however,
the controller applies a torque command inside the robot’s
limits. In fact, the tracking error increases at approximately
x = 1.25m, and is reduced in the next steps.

and optimizes both CoM accelerations and contact forces;
for instance, the GRFs have to lie inside the friction cone
constraints Fig. 13(bottom). The terrain surface normals are
computed online from vision (see Section III). The coefficient
of friction used in this trials (i.e. simulation and experiments)
is 0.7, which is a conservative estimation of the real contact
conditions.

VII. DISCUSSION

In Section VI, we performed a substantial number of trials
with the HyQ robot. To compare decoupled and coupled

planning approaches, we used the similar terrain environments
for the two groups of experiments. Hereafter, we describe the
factors that improve the overall performance of the tasks.

A. Decoupled and coupled planning
Coupled motion and foothold planning allows us to con-

sider the dynamics for the foothold selection. Considering
the dynamics is important to increase the range of potential
foothold locations and to adjust the step duration; both allow
the robot to cross a broader range of terrains. We noticed that
the coupled planner handles various terrain elevations more
easily because of the joint optimization process. Crossing gaps
with various elevations exposed the limitation of decoupled
methods, since the required motions (steps) were larger (see
Fig. 9a). However, an important drawback of coupled foothold
and motion planning is the increment of the computation time
compared with decoupled planning. It is possible to reduce
the computation time by describing the foothold through
integer variables [e.g. 22, 23], but this would not allow
us to model non-linear curvature of the terrain. Instead the
presented coupled planning uses a terrain model that considers
a broader range of challenging environments. In any case, the
computation time remains longer for coupled planning as we
presented in [24].

B. Considering angular momentum effects
The cart-table model estimates the CoP position, yet it

neglects the angular components of the body motion, which
can lead to inaccurate estimation within the support polygon.
This can affect the stability when going up or down gaps or
stairs, crossing uneven stepping stones with various elevations,
etc. To systematically address these effects without affecting
the stability, we found a relationship between the applied
torques to the CoM and the displacement of the CoP. Later,
we connected it with the stability margin by assuming a time-
invariant inertial tensor approximation of the inertia matrix.

https://youtu.be/ywkiCu3ZAyE#t=01m59s
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Experimental results with the HyQ robot validated this method
for flat and challenging terrain locomotion. Our proposed
method can be applied to other legged systems, such as
humanoids.

C. The effect of the terrain costmap

Considering the terrain topology increases the complexity
of the trajectory optimization problem. Moreover, optimizing
the step duration introduces many local minima in the prob-
lem landscape. For solving these issues, we propose a low-
dimensional parametrized model which allows us to solve the
optimization problem with stochastic-based exploration. Even
thought our problem is non-convex, we reduced the number
of required footholds by an average of 13.75% compared to
our convex decoupled planner (Table II).

D. Considering terrain with slopes

Higher walking speed increases the probability of foot-
slippage. When one or some of the feet slip backwards, or
when a foot is only slightly loaded, in the subsequent base
motion phase th “pushing” backwards can result into foot
slippage. Both events are more likely to happen in a terrain
with different elevations due to errors in the state estimation
or noise in the perception sensors. Including friction-cone
constraints in the inverse dynamics torque calculation step
has shown to generate movements without foot slippage. We
demonstrated experimentally that is possible to navigate a wide
range of terrain slopes without considering the friction cone
stability in the planning level.

E. Terrain mapping and state estimation

Estimating the state of the robot with a level of accuracy
suitable for planned motions has been proven to be a challeng-
ing task. Reliable state estimation is crucial for planned walks,
as accurate foot placement directly depends on the robot’s
base pose estimate. The body pose estimate is also used to
compute the feed-forward torque commands through a virtual
model. The major sources of error for inertial-legged state
estimation are Inertial Measurement Unit (IMU) gyro bias and
foot slippage. These produce a pose estimate drift, which can
be reduced by improving the contact state estimate [37], but it
cannot be completely eliminated, since the pose is not observ-
able from proprioceptive sources. The pose drift particularly
affects the feed-forward torques, which are computed from the
trunk controller, see Eq. (??). To eliminate it, we fused high
frequency (1 kHz) proprioceptive sources (inertial and Leg
odometry) with low frequency exteroceptive updates (0.5 Hz
for LiDAR scan matching, 10 Hz for visual odometry) in a
combined Extended Kalman Filter [46]. However, we noticed
that the drift accumulated in between the high frequency
proprioceptive updates and the low frequency exteroceptive
updates affected the overall execution during our experimental
trials. In practice, to cope with this problem we reduced the
compliance of our whole-body controller, by increasing the
proportional control gains, since the controller can quickly
track the pose estimate corrections from exteroceptive updates.

VIII. CONCLUSION

In this paper, we presented our framework for dynamic
whole-body locomotion on challenging terrain. We presented
our coupled planning approach that exploits terrain normals
and torque limits for real-time whole-body control. We com-
pared with prior work on motion planning methods and
highlighted the advantages and disadvantages of coupled and
decoupled motion and foothold planning. In our test-case
planners, we built a unified method for quantifying the terrain
difficulty (i.e. terrain costmap). We showed that our terrain
model is suitable for decoupled and coupled planning. We
showed that reduced models for motion planning (such as
cart-table) are still suitable for a wide range of challenging
scenarios. In fact, we used full dynamic models in our real-
time whole-body controller in order to avoid slippage, torque
and kinematic limits. Furthermore, these models allow us to
better formulate the trajectory optimization while also con-
sidering the terrain topology. We demonstrated that coupled
planners increase the locomotion capabilities, at the price of
higher computation time and problem complexity.

A. Future works

The decoupled and coupled motion planners are able to
generate specific behaviors such as the walking gait. An im-
portant limitation of coupled planning is the high computation
time, which is required for replanning. Learning a control
policy from a data base of control parameters could potentially
tackle the limitation regarding the computation time. On the
other hand, some terrain conditions cannot be successfully
crossed with a pre-specified behavior/gait. Many cases may
require more general behaviors, where we need to consider
the contact forces, discontinuities and the hybrid nature of the
dynamics of a legged robot. Including the contact forces in
the problem formulation and optimization might improve the
motion generality, for example as shown in [26, 27, 47].

Finding useful model representations for legged locomotion
has been explored earlier [e.g. 48], where Central Pattern
Generators (CPGs) are used as an efficient representation
to integrate sensory information into trajectory generation.
However, it is not clear how to use such methods for motion
planning because they do not allow us to easily predict the
system’s stability in a determined horizon. Instead, we believe
that our representation (using control parameters) allows us to
evaluate and predict the system’s stability in a more intuitive
and computationally efficient manner. In fact, we could po-
tentially integrate reactive strategies such as step reflexes for
negotiation of unexpected obstacles [13] and slip recovery for
uncertainties over the terrain normal and friction coefficient
[49] along a planned motion. We believe that a combination
of both approaches will increase the required robustness for
real-world applications.
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