
Cache Freshness in Named Data
Networking for the Internet of Things

Maroua Meddeb1,2, Amine Dhraief1, Abdelfettah Belghith4,5,
Thierry Monteil2,3, Khalil Drira2, Saad AlAhmadi4

1 HANA Lab, Univeristy of Manouba, Tunisia
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

3Univ de Toulouse, INSA, F-31400 Toulouse, France
4College of Computer and Information Sciences, King Saud University, Saudi Arabia

5Corresponding Author

Email: abelghith@ksu.edu.sa

The Information-Centric Networking (ICN) paradigm is shaping the foreseen
future Internet architecture by focusing on the data itself rather than its hosting
location. It is a shift from a host-centric communication model to a content-
centric model supporting among others unique and location-independent content
names, in-network caching and name-based routing. By leveraging the easy data
access, and reducing both the retrieval delay and the load on the data producer,
the ICN can be a viable framework to support the Internet of Things (IoT),
interconnecting billions of heterogeneous constrained objects. Among several ICN
architectures, the Named Data Networking (NDN) is considered as a suitable ICN
architecture for IoT systems. However, its default caching approach lacks a data
freshness mechanism, while IoT data are transient and frequently updated by the
producer which imposes stringent requirements in terms of information freshness.
Furthermore, IoT devices are usually resource-constrained with harsh limitations
on energy, memory and processing power. We propose in this paper a caching
strategy and a novel cache freshness mechanism to monitor the validity of cached
contents in an IoT environment while minimizing the caching process cost. We
compared our solution to several relevant schemes using the ccnSim simulator.
Our solution exhibits the best system performances in terms of hop reduction
ratio, server hit reduction ratio and response latency, yet it provides the lowest

cache cost and significantly improves the content validity.

Keywords: ICN; NDN; IoT; In-network caching; Freshness; Cache cost

1. INTRODUCTION

The rapid rise in the number of small embedded
devices along with the improvement of wireless
technologies enabling objects to communicate, compute
and coordinate form the foundation of the so-called
Internet of Things (IoT). Despite the diversity of the
research on IoT, its definition remains fuzzy [1]. Most
of the definitions agree on the fact that it can be
defined as a global network that interconnects smart
devices able to sense and react according to their
environmental situations. This innovation is expected
to significantly increase the number of contents carried
by the network. However, unlike traditional Internet
hosts, IoT devices are resource-constrained in terms of
memory, energy and processing power that require a
scalable architecture to support data dissemination in
the network.

IoT data are usually small and frequently transient
compared to Internet contents which are large and

time-invariant[1]. IoT applications impose stringent
requirements on some critical domain application
such as Smart Home. Furthermore, they are
looking for information rather than point-to-point
communications. Facing these distinct particularities of
IoT systems, the research community has been actively
working on the adoption of a new networking protocol
stack that effectively supports IoT communications.

The current Internet communication model is built
according to a host-centric view of the network.
Whenever a source node requests a specific content,
it has first to fully locate and identify the node on
which this content is stored. It is worth noting
that this paradigm has survived for the last four
decades. Nowadays, it has inexorably reached its
limits. Actually, current nodes are equipped with
several network interfaces bound to distinct access
technologies. With the democratization of the IPv6
protocol, each interface has its own global network
address. Besides, the Internet is no more an

The Computer Journal, Vol. ??, No. ??, ????

2 M. Meddeb

interconnection/concatenation of disjoint networks, but
has become an overlay network where users share
contents. Internet traffic pattern has mutated from the
classical ”one-to-one” to the dominant ”one-to-many”
and ”many-to-many”. In addition to the Internet
evolution, its current architecture has some limits
towards efficient and scalable content distribution,
mobility and security. Regarding these problems, the
Internet requires, nowadays, to be redesigned for its
healthy and sustainable future growth.

This issue has attracted the attention of many
researchers [1]. For instance, Van Jacobson et al. have
taken the initiative in [2] to address this subject. They
have introduced a novel paradigm, namely Information-
Centric Networking (ICN). The latter constitutes a shift
from a host-centric view of the network to a content-
centric one. According to this new paradigm, the user
requests a content by its name instead of using its
network localization. In ICN, every content is identified
by a unique, persistent and location-independent name.
ICN provides native multicast support, in-network
caching, name-based routing and easy data access. As
a result, ICN has the potential to become the key
technology for data dissemination in IoT networks.

Such issue has already been investigated by several
studies [3], [4], [5], [6], [7], [8] and [9]. In particular, the
in-network caching enhances the producer data access
since data can be provided by any intermediate node.
Consequently, data caching speeds up the data retrieval,
and reduces the network traffic. Hence, ICN leads to
a low dissemination latency, a considerable reduction
of the bandwidth as well as a decrease in the energy
consumed by producers which are resource-constrained
IoT devices.

Many test beds were proposed in the literature
to evaluate ICN solutions. We cite Open Network
Lab, PlanetLab, Emulab, Deter, NEPI, PURSUIT
Blackadder test bed and JGN-X [10]. Other test beds
are currently used for ICN experiments on IoT, which
are CCN-lite on top of the RIOT operating system [4]
and IoT-LAB [11].

The caching concept, which is not a revolutionary
term, has been widely used on the Web, P2P systems
and Content Distribution Networks (CDNs). However,
in ICN, the in-network caching is more prominent and
more challenging than the already existing caching
systems. First, it is transparent and does not require
any specific application to cache content. Second, it is
ubiquitous since any ICN nodes can be a cache[12]. It
is worth-noticing that in-network caching only provides
the last version of sensed data so it may be unsuitable
for applications requiring previous measurements as is
in the case of Health applications. In our study, we
rather consider the Smart Home scenario and we use
real smart building data.

Several studies have already addressed the in-network
caching in ICN. However, we claim that the proposed
caching strategies are not suitable for IoT systems due

to the stringent requirement in term of data freshness.
Since cached copies can be out of date, a freshness
mechanism must be adopted to check the validity of
the retrieved data. This problem is called the cache
freshness (coherence/validity) [13]. We notice that only
few work addressed the in-network caching in IoT[14],
[4].

Several ICN approaches have been proposed, such
as DONA, NDN, NetInf, COMET, CONVERGENCE,
Mobility First and PRISP. We refer the reader to
[15] and [16] for a general survey on ICN. The so-
called Named Data Networking (NDN) is considered
as the most suitable ICN architecture for IoT systems
[17], [8], [4], [6], [18], [19], [20] and [21]. It defines
a receiver-driven, pull-based, robust connection-less
communication model. These features are beneficial
for the IoT systems in terms of easy and scalable
data access, energy efficiency, security and mobility
support[22]. We adopt, in our study, the NDN
approach.

The use of NDN in an IoT environment must take
into consideration two major issues. Firstly, IoT devices
are heavily constrained in terms of memory, battery and
computation power, and as such we must introduce non-
costly caching strategies while maintaining good system
performances. Secondly, data freshness is paramount
since IoT contents are transient and frequently updated.

The contribution of this paper is twofold. We first
propose a caching strategy, named consumer-cache that
caches content close to consumers. Second, we design
a freshness mechanism termed event-based freshness
which is based on the time prediction of IoT traffic.
In this context, we aim to improve existing in-network
caching strategies, including our proposed strategy,
in order to support event-based freshness mechanism.
By comparing the latter to the existing freshness
mechanisms, we could demonstrate that our freshness
mechanism significantly improves the content validity
with all caching strategies.

The remainder of the paper is organized as follows:
we overview, in section 2, the in-network caching in
ICN. Furthermore, we discuss the principal studies
of the research community in ICN approaches that
targeted IoT systems. Section 3 describes our proposed
scheme and presents a concrete use case. We present
and analyze simulation results in section 4, before
discussing the results and concluding the paper in
section 5 and 6.

2. BACKGROUND

2.1. ICN in-network caching mechanisms

In this section, we will first focus on in-network caching
features, namely, in-network caching strategies end
freshness mechanisms. Then, we will introduce some
related work about in-network caching in ICN-IoT
systems.

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 3

A major building block of ICN concerns the in-
network caching. The latter is the most common
and important feature of ICN architectures. It was
introduced to alleviate the pressure on the network
bandwidth and consequently improves the efficiency of
contents dissemination[12]. However, the in-network
caching decision is affected by various aspects including
cache size, cache decision, cache eviction policies, cache
freshness and availability of cached contents. The
cache eviction is performed once the cache is full. Old
contents are deleted, according to a policy, to allow
storing new ones. It is also worth noticing that the
cost of in-network caching is somewhat high in terms
of larger overhead and complexity, which is unsuitable
for IoT systems in the presence of resource-constrained
devices.

The in-network caching is classified into two
scenarios: On-path and Off-path caching. With the
On-path scenario, cache nodes belong to the request
path. When the requested content is forwarded
to the consumer, nodes on the requested path may
choose to cache the content according to their specific
caching policy. We will detail different on-path caching
strategies in the following subsection. In the Off-
path caching scenario, cache nodes are rather fixed in
advance within the topology. In fact, each producer
has an associated cache element known in advance.
Producer forward the content to both the consumer and
the associated cache [23]. In this paper, we solely focus
on the on-path caching.

2.1.1. Existing on-path caching strategies
In order to improve the cache diversity, and reduce
cached contents redundancy, several caching strategies
have been proposed[12]. At a given node, the decision
to cache or not a content is made based on a caching
strategy. We quote some of the proposed in-network
caching strategies. The most known is Leave Copy
Everywhere (LCE) [24] in which each nodes, belonging
to the path towards the consumer, keeps a copy of
the content. While, with Leave Copy Down (LCD)
[24], only the node on one level down in the reverse
path towards the consumer stores a copy. Probabilistic
cache (ProbCache) [25] privileges caching close to
consumers. In fact, the caching process is performed
with a changing probability inversely proportional to
the distance between the consumer and the producer.
The Betweenness Centrality (Btw) [26] strategy is based
on a pre-calculated parameter for each node. This
parameter measures the number of times that a node
belongs to a path between all pairs of nodes in a network
topology. When the request is sent along a path, the
greatest betweenness centrality of the traversed nodes
is stored. Then, it is appended to the data message.
When the response is sent towards the consumer, a
copy of the content is only cached in nodes having the
highest value. Finally, the Edge-caching strategy[27] is

proposed for hierarchical topology and caches contents
at the topology leaves.

2.1.2. Existing freshness mechanisms

Cache freshness maintains the validity of the shared
contents stored in multiple caches. As an immediate
consequence, consumers can trust copies in caches. A
copy is considered valid when it has the same version as
the source, or when the difference between the data in
the source and its copy in the cache is not important.
For example, for a home automation usage, a cached
temperature value of 23◦ is considered valid when the
ambient temperature is to 24◦.

In [13], Dingle et al., have focused on the web
cache coherence. The cache freshness problem in both
the Web and ICN remains the same. This issue
is also addressed in the area of distributed systems.
Maintaining freshness is easier in Web caches than in
distributed files because these latter support distributed
writes. Whereas, updating Web contents is performed
only by the content’s producer. In the sequel, we
introduce the representative freshness mechanisms used
by popular distributed file systems. These mechanisms
can be classified into two major classes. First, the
Validation check [28] mechanism in which the validity
of the requested content is checked with the time-stamp
(caching time). The time-stamp is sent to the producer
to check if the data has not been modified since it was
cached. Second, the Callback mechanism [29], in which
all cache nodes are notified by the producer whenever
an update occurs. In this case, the producer must have
the list of all content’s caches, which is unsuitable.

Concerning the web-freshness mechanisms, there are
four major approaches. First, the HTTP Headers[30]
mechanism, in which an If-Modified-Since header is
appended to the request in order to check if the
last modification time of the content is greater than
the If-Modified-Since time in the request header.
This is called a conditional GET. Second, the
”Naive” coherence[30] which is proposed for hierarchical
topology. This mechanism is a particular case of HTTP
headers. In fact, to check the content validity in a cache,
the latter sends a conditional GET message only to the
next higher cache or server. Third, the Expiration-
based freshness[31] mechanism. In this one, each
content is marked with an expiration time. The content
is assumed valid as long as the expiration time has
not elapsed. Fourth, the pre-fetching[32] mechanism
consists in periodically refreshing the cached contents.
This is performed by sending conditional GET requests
to check if the content has been changed. The main
disadvantage of this mechanism is the decision of
contents refreshment time. This decision depends on
the content age and popularity. In some cases, it may
be useless to refresh it.

The Computer Journal, Vol. ??, No. ??, ????

4 M. Meddeb

2.2. Related Work

The deployment of IoT systems enabling ICN features
has started to gain momentum within the research
community. An interesting contribution in this field
was proposed by Pentikousis et al., in [3]. The authors
presented several ICN baseline scenarios including IoT
applications.

In [4], authors showed that ICN can be applicable in
IoT, and is efficient in terms of energy consumption and
memory costs. The results presented in [4] showed that
the number of radio transmissions is drastically reduced
thanks ti in-network caching. This work constitutes
the first study of ICN in a real IoT deployment. The
authors defended the NDN architecture that is very
effective in IoT scenarios. They also proved that this
architecture satisfies IoT requirements.

The beneficial effect of the named data on IoT is
identified in [5] by Heidemann et al. Authors discussed
that content naming is considered as the building block
of ICN by making the information easily and uniquely
identified in the network. Moreover, they showed
that naming, as one of the ICN features, makes the
deployment of IoT in ICN more effective.

Authors in [6], defined NDOMUS (Named Data
netwOrking for sMart home aUtomation) as a
framework based on the NDN-IoT architecture tailored
to the smart home domain. They presented several use-
cases. They also evaluated the proposed framework by
calculating the transmitted packets number.

As discussed in [7], using the already existing
ICN caching mechanisms leads to a considerable
reduction in the consumed energy and bandwidth.
Authors showed that as the available caching storage
capacity increases, the consumption of both energy and
bandwidth decreases.

Hail et al., in [8] proposed a novel distributed prob-
abilistic caching strategy named probabilistic CAching
STrategy for the INternet of thinGs (pCASTING) that
considers data freshness and potentially constrained ca-
pabilities of IoT devices. The pCASTING strategy ad-
justs the caching probability by considering the battery
energy level, the cache occupancy and the data fresh-
ness. In such a way, fresher data have priority in the
caching decision. The freshness is evaluated by a pa-
rameter that measures how many seconds the content
is considered as valid in the cache. Results show the
effectiveness of the proposed scheme in terms of energy
consumption and content retrieval delays.

The work presented in [9] addresses the information
freshness in cache nodes. Authors proposed a freshness
parameter. Unlike the defined parameter in [8], the
suggested one is not variable. It can be adjusted
by consumers to specify their particular freshness
requirements. Simulation results show that the received
data validity has been improved.

The work of [14] is the first study addressing the
in-network caching of IoT data at content routers on

the Internet. Authors of this work discussed the trade-
off between the multi-hop communication cost and the
freshness of a requested data. In this context, they
introduced a distributed probabilistic caching strategy
in which cache nodes dynamically update their caching
probability. This probability depends on the distance
between the producer and the consumer as well as on
the data freshness in a way that the closer the caching
location is to the producer, the fresher the retrieved
data packet is. Two results were observed. First,
the more popular the content is, the higher the cost
reduction will be. Second, when caching nodes are
closer to consumers, IoT data put a lower workload on
the network.

To the best of our knowledge, [33] was the first
attempt studying the in-network caching of transient
data in IoT systems. In this study, the authors
aimed to prove the efficiency of in-network caching
in IoT even with transient data. To this end,
they quantified caching gains with transient items by
introducing an analytical model to capture the trade-
off between communication cost and data freshness. In
their simulations, they assumed that each data has a
known lifetime. Through simulations, they showed the
benefit of using Internet routers to cache transient data
generated by IoT applications.

Few studies considered the ICN approach in specific
IoT application domains such as Vehicle-to-Vehicle
(V2V) communications[34], Wireless sensors networks
[35],[36],[37],[38], Smart Home [6] and Smart Grid [39].

3. A COHERENT CACHING STRATEGY
FOR A NAMED DATA IOT NETWORKS

In this section, we present our proposed freshness-aware
caching strategy for NDN IoT networks introduced in
our previous work[21]. Our main objective is, first, to
reduce the caching cost while maintaining the system
performances in terms of hop reduction and server
hit reduction ratios. Second, we aim to enhance the
percentage of the freshness of the requested content.
For this purpose, we suggest an in-network caching
strategy that privileges to cache at gateways close to the
consumers, and a cache freshness mechanism dedicated
to the IoT traffic pattern.

Before going into the details of our contributions, we
need first to understand the IoT architecture. Until
now, there is still no consensus on the physical model
of the IoT architecture to adopt. Two divergent visions
are tacitly used in various IoT experiments. The first
considers the IoT as a collection of sensors/actuators
interacting with each other without any intermediate
equipment. The second vision assumes that actuators
and sensors communicate through their respective
gateways. In an IoT scenario where actuators and
sensors directly communicate with each other, an
actuator directly requests a sensor to get the measured
value by the latter. This scenario assumes that the

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 5

actuators and sensors are provided with an operating
system, software applications and memory. In the
second model, gateways play a key role. In fact,
actuators, as well as sensors, are directly connected
thereto. Contrary to the first view, the measured value
by a sensor is no longer stored in the memory of the
latter but in the gateway to which it is attached.

Starting from the premise that IoT devices are
resource-constrained, caching data, as small as they
are, in a sensor memory, will be the determinant
of embedded applications and operating systems. In
addition, the caching decision is made by the CPU of
the sensor which decreases the battery lifetime. Finally,
the cached data retrieval will consume valuable sensor’s
radio resources. For these reasons, we propose to adopt,
in this paper, an NDN IoT architecture where data
are cached on the gateways and sensors represent the
producers.

3.1. Consumer-cache strategy

In this section, we detail our first contribution:
consumer-cache. Consumer-cache is an (i) on-path
caching strategy (ii) which targets to reduce the number
of caches nodes and (iii) privileges gateways directly
linked to consumers.

In an IoT context, we believe that it is preferable
to distribute caches on the network topology (on-
path) rather than centralizing them on fixed caching
nodes (off-path). With an important number of
equipment and large data flows, specifying particular
gateways to handle caching (even locally) would have
as an immediate consequence the creation of multiple
congestions within the network. In addition, the off-
path caching increases the signaling overhead since
it requires, in the caching process, additional packet
transmissions to the cache node.

W.K.Chai et al., showed in [26] that caching in fewer
nodes can perform better results in terms of producer
hits and number of the traversed hops to reach a
content. Even caching in one randomly selected cache
can be better than the LCE strategy. With LCE caches
fill up very quickly because the cache size is very limited
compared to the number of the contents to be cached.
Once the cache is full, a replacement process is triggered
to allow caching new items. The more frequent is the
replacement process, the least efficient is the caching,
as contents may be cached and then deleted without
ever being used which induces an increased caching
cost. In addition, IoT nodes are memory and energy-
constrained, consequently, it is more advantageous to
minimize the resource consumption. As a consequence,
the second directive aims to reduce the number of
caches. It should be emphasized that this does not
mean that lowering the number of cache nodes provides
a better strategy. It is a trade-off between the number
of evictions, the cache cost and the data availability.

From this point of view, we need to know what is the

selection criterion of the placement of cache nodes in a
topology. The results obtained in [27] show that edge-
caching saves in-network caching benefits. Recall here
that the edge-caching strategy is originally conceived
for hierarchical topologies. Under this strategy, caches
are located at the leaves of the topology. Results in
[27] proved that the most efficient nodes for caching are
located at the edges of the topology. Since consumers
are generally located at network edges and in some cases
in the middle of paths, we propose as the third directive
to cache at nodes close to consumers.

Based on these three directives, our caching strategy,
termed consumer-cache, proposes to store a copy of
contents on on-path nodes which are connected to a
consumer. We can say that if all nodes in the topology
are connected to consumers, consumer-cache strategy
tends towards LCE strategy. Moreover, if consumers
are only connected to edges, our strategy will be similar
to edge-caching strategy. Our strategy strictly depends
on the number of consumers and their locations. We
present below the algorithm of the consumer-cache
strategy (Algorithm 1). It is assumed that the request
has already arrived at the producer, which will send the
desired content to the consumer.

Data:
Data to cache
Prod = the producer node
Cons = the consumer node
G = (V,E) a graph that represents the network
Path = (v1, v2, ...vn) ∈ V ∗ V ∗ ... ∗ V s.a:
vi adjacent to vi+1 for 1 ≤ i ≤ n and
v1 ←− Prod
vn ←− Cons
Result:
The set of selected nodes as a cache
Caches = (vc, ..., vp) ∈ V ∗ V ∗ ... ∗ V s.a:
1 ≤ c ≤ p ≤ n
Caches ⊆ Path
for Each nodevi ∈ Path do

if ∃ a consumer connected to nodevi then
Caches = vi Cache(Data,vi)

end

end
Algorithm 1: Consumer-cache strategy

Let us take the example of the topology presented in
Figure.1 where Consumer1 requests a content named
(c). Initially, all caches are empty. So, the request
is forwarded to the producer. Producer1 holds the
content (c). The latter sends the response via the path
from n11 to n0. While forwarding the response, each of
the nodes in the response path has to decide whether to
cache a copy of (c) according to its own caching strategy.
With LCE, all the 10 nodes in the path store a copy.
Other strategies require that the content should be
stored in only a single node. For LCD, only n11 retains
a copy; whereas with Btw the cache is n6. However,

The Computer Journal, Vol. ??, No. ??, ????

6 M. Meddeb

under consumer-cache, caches are n7 and n0. For
ProbCache, n0 has the greatest probability to be the
cache. Let us now assume that Consumer4 requests the
same content (c). It sends a request towards Producer1.
With Btw and probably ProbCache, we have a cache
miss. Under the ProbCache strategy, the probability to
find the content in n7 is very low as this node is far
from Consumer1. Using consumer-cache and LCE the
request is satisfied by n7.

Using edge cache, the request is satisified by a leave
router (n1). With Edge caching strategy, n0, n1 and n2
are selected as caches. Requests issued by Consumer1
, Consumer2 or Consumer3 are directly satisfied.
However, requests issued from Consumer4 are satisfied
by n1 which is 5 hops away from Consumer4. In the
case of LCE, the cached copies at n0, n3, n4, n5, n6,
n8, n9, n10 and n11 are redundant. It is therefore clear
that caching content close to consumers is sufficient to
avoid redundancy in other caches.

3.2. Event-based freshness mechanism

To address the cache coherence problem related to
different in-network caching strategies, we conceive
a freshness mechanism which we call event-based
freshness. The mechanism process depends on the data
flows categories. Being in the case of IoT networks, we
first detail the different IoT traffic patterns.

3.2.1. The IoT traffic patterns
IoT traffic is usually classified into four categories:
continuous, periodic, OnOff and request-response
transmissions[40]. With the continuous transmission,
the data are transmitted in a continuous manner like
video streaming. Under periodic transmission, the
source sends a data at every fixed period of time. For
example, with a temperature sensor, after the elapse of
each period (e.g: 1 hour), a new value is recorded. The
OnOff transmission mode stipulates that the content is
updated as soon as new data is sent. Let us consider the
example of a presence sensor. The value 0 of the sensor
indicates the absence of persons. Once someone is in
the room, the value is updated to 1. Finally, in the
request-response transmission, as its name indicates,
the consumer sends directly a request to get the current
value of the sensor. By considering these transmission
modes, we can assume that sensors can be passive and
do not support any behavior as it is the case in the
request-response transmission. Otherwise, sensors can
be active with a periodic, OnOff or continuous behavior.
Considering the continuous transmission as a periodic
one with a tiny period(ε), IoT events are summed up to
periodic and OnOff mode.

3.2.2. Event-based freshness algorithm
The event-based freshness algorithm is an expiration-
based freshness with a variable expiration time. It
depends on producer behaviors, the instant of storing

a content in a cache called cache-time, the period in
the case of periodic mode, and past events in the case
of OnOff mode. The pseudo-code for forwarding the
request and checking the data freshness is given in
Algorithm 2.

Data:
Data to retrieve
Prod = the producer node
Cons = the consumer node
G = (V,E) a graph that represents the network
Path = (v1, v2, ...vn) ∈ V ∗ V ∗ ... ∗ V s.a:
vi adjacent to vi+1 for 1 ≤ i ≤ n and
v1 ←− Cons
vn ←− Prod
Result:
The Fresh Data to retrieve
for Each node ∈ Path do

if Data in cache then
if Data.flow = ”Periodic” then

Calculate the lifetime of the last version
in the source
Tlife = Exp(1/T)
if Tlife > Now − cache time then

Get(Data)
end
else

Delete(Data)
end

end
else if data.flow = ”OnOff” then

if Tevent > Now then
Get(Data)

end
else

Delete(Data)
end

end

end

end
Algorithm 2: Event-based freshness

As we can see in the algorithm, the check process is
performed when a request reaches a cache. To verify the
content validity, we compare the lifetime of the content
in the cache with its lifetime in the producer to check if
the cached content has been modified in its source. To
calculate the lifetime of a cached content, we use the
cache time value. The difference between the current
time Now and the cache time measures how long a
content was cached. On the other hand, to calculate
the lifetime of the last version in the source, we focus
on the transmission mode, namely periodic or OnOff
flow. In fact, in the case of periodic transmissions with
a period T , to calculate the lifetime Tlife in the source,
we use the residual life paradox. The residual life of
an exponentially distributed variable is also exponential
with the same rate. The period T must be then

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 7

n0

n1

n2

n3n4n5n6n7n8n9n10n11

Consumer4

n0

Consumer1

Consumer2

Consumer3

Producer1

Producer3

Producer2

FIGURE 1. An example of a Transit-Stub path

appended to the content. If Tlife is greater than the
difference between the current time and the cache time,
the content is returned to the consumer.

With an OnOff transmission, the procedure is
different because the updating time in the source is not
predicted, and every producer has a specific behavior.
To face this problem, we propose to use a prediction
method to estimate the time of the occurred events
Tevent. Prediction process is based on past events.
For this reason, we propose to store, in the source, all
past events in a list lastEvents. Using our mechanism
of validity, producers do not need to be synchronized.
In fact, in our algorithm, we proposed to save at the
producer level the time elapsed between two successive
events instead of saving the time when the event took
place. We take the example of a producer who had two
events at 10 am then at 11 am. In this case, the time
elapsed between these two successive events is 1 hour.
Therefore, we save this value (1 hour) in this producer’s
lastEvents list.

When a request arrives at the producer, we calculate
an estimate of the time for the next event to happen
based on the values in the lastEvents list (for example
the calculated value indicates that the next event will
take place in 30 minutes). This estimated value is added
as metadata to the response to say that this content is
only valid for 30 minutes. On the return path, content
can be cached in any node. The metadata is also saved
in the cache node with the copy of the content as Tevent.
Tevent is the cache time plus the metadata value.

When a copy is found in a cache, if Tevent is greater
than the current time, then we can presume that the
content has been updated in the source, and this copy
is considered invalid. Such decision is not always right
given that it is founded on estimations.

We use time series for the prediction process. Time
series data is analyzed in order to extract a meaningful
statistic model used to predict future values based
on the ones previously observed. Several time series
models exist such as the ARMA (Autoregressive Moving
Average) model or the exponential smoothing. The
exponential smoothing uses all past events to make the
prediction, while ARMA utilizes only the k past data
points. In an IoT context, we always prefer to put less
information in equipment. As a consequence, in our
event-based freshness mechanism, we choose to use the
ARMA model [41].

3.3. A scenario of Named Data IoT Networks

We describe in Figure.2 a scenario under the Named
Data IoT Networks using consumer-cache caching
strategy and event-based freshness mechanism. NDN
is based on three system elements: Content Store
(CS), Pending Interest Table (PIT) and Forwarding
Information Base (FIB) table. Consumers issue Interest
messages to request information objects. The request
is routed by name. CS acts as a cache in which the
received data are cached. When a request hits a cache,
a CS lookup is performed. In the case of a cache miss,
the Interest packet is sent to the next hop according
to the FIB, and the interface of the incoming Interest
is appended to a set of interfaces interested by that
chunk in the PIT. The FIB contains, for each content,
an entry that points to the right output interface. In
the case of a cache hit, the corresponding Data is sent
back according to the list of interfaces stored in the PIT.
When the request is satisfied, the corresponding entry
in the PIT is then removed. NDN approach natively
supports on-path caching using the CS. It also supports
multicast channels by allowing Interest messages to be
cached in intermediate hosts. If a new Interest message,
requesting the same name, reaches a host, it will be
pending until receiving the Data packet. Then, the host
will directly return the Data to both requesters.

In Figure.2a, Consumer1 sends an Interest packet
for the content named /Home/room1/Tmp (arrows 1-
5). When the node n2 receives the Interest message, it
first performs a lookup in its CS. If there is no entry
with this name, the request is forwarded to the next
hop according to the node’s FIB. This base contains
an entry which points to node n3. The router records
the request’s incoming interface n1 in the PIT. Then,
it sends the Interest to n3 and so on. In the case of a
cache miss, the producer satisfies the request. A Data
message is then returned. This packet is forwarded
based on states stored in PITs (arrows 6-10). Under
the consumer-cache strategy, only n3 and n1 store the
object in their CSs. Now, we suppose that Consumer2
asks for the same content /Home/room1/Tmp (arrow
11). When the Interest packet arrives to node n3, it
matches the information object found at the CS. Then,
the Data is directly returned (arrow 12).

We show, in Figure.2b, the operation of our freshness
mechanism. The event-based mechanism introduces

The Computer Journal, Vol. ??, No. ??, ????

8 M. Meddeb

Sensor2

Sensor1

/Home/room2/pre

/Home/room1/Tmp

n1

n2

n3

n4

n5

n6

Link
INTEREST
DATA

n2
CS

PIT

FIB

ID

ID

ID

DATA

From

To

n3

FIB
ID To

/Home/room1

/Tmp
n1

/Home/ n3

CS
ID DATA

/Home/room1

/Tmp
23°

PIT
ID From

/Home/room1

/Tmp
consumer2

/Home/room1

/Home/room2

n4

n5

Consumer1

Consumer2

(1)

(2
)

(3)(4
)

(5)

(6)

(7
) (8)

(9
)

0)

(1
1)

(1
2)

(a) Consumer-cache caching decision
Sensor2

Sensor1

/Home/room2/pre = 1

at 10:45am

/Home/room1/Tmp = 52°

at 11 am

n1

n2

n3

n4

n5

n6

Consumer1

Consumer2
Arma Model: Input

lastEvents

1h21min

Arma Model: Output
T

Period: 1h
Id

\Home\room1\ T mp 10:30 am
Data
23°

Cache-time

\Home\room2\pre 1 10:55 am

Flow

Periodic
OnOff

CS

Tevent: 12:55 am

2h

2h36min
56min

...

(b) Event-based freshness mechanism

FIGURE 2. An example with the NDN architecture using consumer-cache caching strategy and event-based freshness
mechanism

new parameters which are cache time, Tevent, the
period T and the flow (Periodic or OnOff). The
cache time parameter is stored in the cache structure
in the gateway when a new item is cached. However
Tevent in the case of an OnOff flow and T in the
case of a Periodic flow are sent as metadata with the
content and then stored in the Content Store structure
as shown in figure Fig. 2b. We consider two producers,
a temperature sensor and a presence sensor. When
the Interest packet reaches node n3, a cache lookup is
performed. Then, the content is found in the CS. The
use of the event-based freshness consists in verifying
the cached object before returning it. It is assumed
to be 11:30 am. The freshness of a data depends on
its flow. In the case of periodic transmission, when

the period elapses, the content is no longer valid. In
our scenario, the caching is performed at 10:30 am.
After 11:30 am, the temperature value 23◦ is considered
invalid. Consequently, this entry is removed from the
CS, and the request is forwarded to the next hop to look
for a valid data. In the case of OnOff transmission,
the time of the next event is calculated in the source
and is appended in the Data packet. As we have
already mentioned, the time series model ARMA is used
for this prediction based on past events. Calculations
assume that the next event will be after 2 hours.
When an Interest packet reaches the node n3, Tevent is
calculated (Tevent = cache time+ 2hours = 12 : 55am)
and compared to the current time. Based on this
comparison, we admit that the data is fresh since it

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 9

Backbone/ level0

Transit Domain/ level1 Transit Domain/ level1

Stub Domain/ level2

Stub Domain/ level2

Stub Domain/ level2

Stub Domain/ level2

..
..
..

Stub Domain/ level2

Backbone domain

Transit Domain

Stub Domain

Backbone node

Transit Node

Stub Node

..
..
..

FIGURE 3. Transit-Stub topology

is supposed that the next event has not occurred yet
(Tevent > Now). The Data is then returned to the
consumer.

4. PERFORMANCE EVALUATION

This section details the performance evaluation of
our caching strategy and freshness mechanism for
information-centric IoT networks. For this purpose,
we use the ccnSim simulator [42]. It is a
C++ framework under the OMNeT++ discrete-event
simulator that implements the routine to simulate the
NDN architecture. Every node implements the three
system elements mentioned in the subsection 3.3, in
form of layers. The first one, called ”Core layer”
is responsible for both the PIT management and the
communication with the different layers. The second
one, ”the cache layer”, represents the CS parts in
the NDN structure. It acts according to a caching
and replacement strategies. The third element is the
strategy layer that takes the decision about Interest
forwarding. CcnSim uses by default the shortest path
forwarding strategy. In the remainder of this section, we
describe the simulation scenario, the adopted metrics
and the obtained results.

4.1. Simulation scenario

We summarize in table 1 the system parameters used
in our simulations. Experiments were run with different

caching strategies as LCE, LCD, ProbCache, Btw, edge-
caching as well as with our caching strategy named
consumer-cache. We use LRU (Least Recently Used)
as a cache replacement policy.

Concerning the topology, authors in [10] affirm that
there is not a single topology that can be used to
evaluate ICN aspects and this choice depends on the
focus of evaluation. In this paper, we present results
with Transit-Stub (TS) topology whose properties
imitate closely the IoT topology. The TS graph is a 3-
level hierarchical topology presented in [43]. This model
is composed of interconnected stub and transit domains
and LANs connected to stub nodes. A stub domain
carries only the traffic that originates or terminates
in the domain. However, transit domains consider
all transmissions and their role consist of efficiently
interconnecting stub domains. The TS parameters are
T , which is the total number of transit domains, S is
the total number of stub domains per transit node. NT

and Ns are the average numbers of nodes per transit
and stub domain respectively. L is the average number
of LANs per stub node, and NL is the average number
of hosts per LAN. We set T = 2 with NT = 10, S = 2
with Ns = 6, L = 1 and NL = 1. The total number
of nodes is N = TNT (1 + SNS) = 260 nodes and
the total number of hosts NH = TNTSNSLNL = 240
hosts. Figure.3 presents our TS topology. Producers
and consumers can be connected to 240 hosts. We
choose to distribute them in such a way the producer

The Computer Journal, Vol. ??, No. ??, ????

10 M. Meddeb

and its consumer do not belong to the same transit
domain, however, a host can connect a consumer and a
producer at the same time. We generate the topology
with the GT-ITM tools 1 (Georgia Tech Internetwork
Topology Models) using the parameters fixed above.
GT-ITM is a complete set of tools for the conversion
of network topologies that support NED language used
in OMNET++.

Transmission delays are set by the GT-ITM. Values
are within the range of [2; 78]ms. They are set so
that transmissions in the third level are faster than the
second level and the same with the second and the first
level.

Analyzing the request popularity distribution in
different geographical locations, S. K. Fayazbakhsh et
al., [27] stated that the web distribution, used by a
vast majority of previous work on ICN, behaves as
a Zipfian distribution. Indeed, the majority of ICN
studies use the Zipf distribution which stipulates that
some popular contents have a high probability to be
requested (e.g., new films, news, today’s weather, etc.).
However, under IoT, we do not refer to this distribution
since it is rather devised for web-based contents and
Internet applications. In IoT, contents have close
request probabilities. As a result, we assume in this
work that Interest packets are uniformly distributed as
was done in other work such as [9, 8].

We note that each producer provides a single content
as a single chunk. The number of producers is then
equal to the number of contents | F | in the network
and the file size F is equal to 1 chunk. In [44], D.
Rossi and G. Rossini showed that the ratio C

F |F | of the

cache size C over the catalogue size F | F |, is such
that C

F |F | ∈
[
10−5; 10−1

]
. In our simulation, we set

C
F |F | = 10−3.

Taking into consideration this ratio, we set the
file number | F |= 4000 files and the cache size
C = 4 chunks. The 4000 sensors are connected
to 40 Gateways. We consider a variable number of
consumers ranging from 20 to 30 and we suppose that
all consumers are already connected at the beginning of
the simulation. Clients ask for files following the arrival
rate of the Poisson process with λ = 1. We use SPR
(Shortest Path Routing) as a forwarding strategy.

Our simulations were carried out with a real IoT
data extracted from the ADREAM [45] building in
LAAS-CNRS laboratory which is a smart building. The
4000 sensors are scattered in the building. It is about
periodic sensors (temperature, humidity and light)
with different period T and OnOff sensors (presence,
vibration and fall).

4.2. System performances

We start with evaluating different caching strategies
and compare them to our consumer-cache strategy in

1http://www.cc.gatech.edu/projects/gtitm/

term of system performances. We consider the hop
reduction ratio, the server hit reduction ratio and the
response latency metrics to evaluate a caching scheme.

The hop reduction ratio α measures the reduction
of the number of hops traversed to satisfy a request
compared to the number of hops required to retrieve the
content from the server. α is analytically represented
by Eq. 1

α = 1−
∑N

i=1

∑R
r=1

hir
Hir

R

N
(1)

Where N is the number of consumers, and R is the
number of requests created per consumer. α represents
the average over N consumers of averages over R
requests per consumer of the hop reduction ratio of the
request r sent by consumer i; hir

Hir
. The hir parameter is

the number of hops from i to the cache that satisfies r,
and Hir is the number of hops from i to the producer.
β represents the server hit reduction ratio, the second

metric that measures the reduction of the rate of access
to the server. In other words, the alleviation rate of
the server load. Eq. 2 calculates this metric, where
serverhiti is the number of requests sent by i and
satisfied by the server (producer) and totalReqi is the
total number of requests, satisfied by both the server
and the cache, sent by i.

β = 1−
∑N

i=1 serverhiti∑N
i=1 totalReqi

(2)

The third metric is the response latency. It is the
duration between the delivery of a request and its
response. In Eq. 3, we calculate γ, the average of the
response latency Tir over N consumers and each one
sends R requests.

γ =

∑N
i=1

∑R
r=1 Tir

R

N
(ms) (3)

Figure. 4 portrays the system performances: the
Server hit reduction ratio (Figure 4a), the number
of evictions (Figure 4b) and the hop reduction ratio
(Figure 4c), using 25 consumers. Figure.4d portrays
the response latency as a function of the number of
consumers (varying from 20 to 30). From the latter,
we notice that the response latency gets better as the
number of consumers increases. Indeed, increasing the
number of consumers leads to an increase in the number
of requests, which in turn augments the contents
availability inside the topology.

Without a caching strategy the Server hit Reduction
Ratio and the Hop Reduction Ratio are equal to zero
as all requests are satisfied by the producers.

The LCE strategy stores copies everywhere, which
make content available at every node. However, caches
fill up quickly and consequently, old contents at the
bottom of the stack are rapidly evicted which increases
the number of evictions and leads to cache misses.
This explains the fact that this strategy performs the

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 11

TABLE 1. System parameters
Parameter Meaning Values

C Cache size 4 chunks

| F | Producers 4000 sensors

F File size 1 chunk
C

F |F | Cache size and Cata-
logue size ratio

10−3

Cons Consumers [20; 30] consumers

λ Arrival rate 1

R Replicas 1

RS Replacement strat-
egy

LRU

FS Forwarding strategy SPR

transmission delay Transmission Delay [2; 78]ms

simulation time Simulation Time 200s

expirationtime Expiration Time 20s

lastEvents Time events ADREAM DATA

0

0.2

0.4

0.6

0.8

1

NoCaching LCE LCD ProbCache Btw EdgeConsumer−cache

S
e
rv

e
r

h
it
 R

e
d
u
c
ti
o
n
 R

a
ti
o

(a) Server hit reduction ratio

0

50

100

150

200

LCE LCD ProbCache Btw Edge Consumer−cache

N
u
m

b
e
r

o
f
e
v
ic

ti
o
n
s

(b) Number of evictions

0

0.2

0.4

0.6

0.8

1

NoCaching LCE LCD ProbCache Btw Edge Consumer−cache

H
o
p
 R

e
d
u
c
ti
o
n
 R

a
ti
o

(c) Hop reduction ratio

 100

 120

 140

 160

 180

 200

 220

 240

 20 22 24 26 28 30

R
e

s
p

o
n

s
e

 L
a

te
n

c
y
 (

m
s
)

Number of consumers

No Caching
LCE
LCD

ProbCache
Btw

Edge
Consumer−cache

(d) Response latency

FIGURE 4. System performances

worst results in this scenario. To clarify the Server Hit
Reduction Ratio results, we plot the average number of
evictions for each caching strategy. Figure. 4b shows
that LCE has the highest number of evictions as it was
expected. Also with ProbCache, contents can probably
be cached on more than one node within the request
path which increases the number of evictions. However,
with LCD and Btw there is one cache node in each
request path. As a consequence, the number of evictions
is lower compared to LCE and ProbCache. Finally, the
edge-caching and consumer-cache have almost the same

number of evictions. With LCE caching strategy, The
Server Hit Reduction Ratio (Figure. 4a) is 0.43. This
value means that only 43% of requests are satisfied from
cache nodes. The Hop Reduction Ratio (Figure. 4c)
for this strategy is about 0.61. Which means that
paths are reduced by 61% in term of the number of
hops. Concerning the third metric, the response latency
(Figure. 4d) is about 182ms to 210ms.

The caching strategy LCD decides to cache contents
at the node on one level down from the response source
(Producer/cache node). After a certain number of

The Computer Journal, Vol. ??, No. ??, ????

12 M. Meddeb

requests, it tends to LCE and all path nodes become
caches. For this reason, LCD results, are not so good
as LCE. Figure. 4c shows that LCD records 69% of hop
reduction, and requests take about 164ms to 188ms of
response latency (Figure. 4d). Its server hit reduction
is about 0.59.

Concerning ProbCache and Btw, cache nodes are
selected in the middle of the request path and probably
more close to consumers, in the case of ProbCache.
Simulation results of these two strategies are medium
comparing to other caching strategies. The hop
reduction ratio using ProbCache and Btw is respectively
about 0.73 and 0.75. The same for response latency,
ProbCache and Btw reports respectively about 137ms
to 157ms and 135ms to 151ms. Figure. 4a shows 0.73
of the server hit reduction under ProbCache and 0.75
for Btw.

We remind that the third hypothesis on which we are
based was that the edge nodes are the best placement
for cache nodes. Our findings confirm the results
presented in [27]. In fact, edge-caching reports good
results. Under this strategy, we measured 0.83 in server
hit reduction, 0.80 of hop reduction ratio, and 126ms to
144ms as response latency.

We detail now the results of our consumer-cache
strategy. This latter stores copies in nodes attached
to consumers which allow these consumers to easily
reach requested contents. Consumer-cache has the
best simulation results because requests are, in most
cases, satisfied by the first hop node. We report for
our strategy 0.89 of the server hit reduction. The
hop reduction ratio is about 0.89, this implies that
requests only cross 11% of hops on the path towards
the producer. Finally, with our strategy, the response
latency varies from 112ms to 126ms.

Since caching strategies can be quite costly in term
of used resources, we calculate in the next section the
cache cost of all caching strategies.

4.3. Cache cost

The cache cost is a compromise between data
availability and caching overhead. It captures the trade-
off between the average delay to receive a content
and the corresponding caching cost[46]. The delay to
obtain information is considered as a cost because, in
the case of a cache miss, the time of waiting for the
response by searching the caches is longer than the
time of directly looking for the content from the remote
server. As we have already mentioned in section 2.1,
the decision whether to cache a content or not in each
node depends on the adopted caching strategy. So, the
caching cost is related to this decision; the more we
have ”yes” decisions, the higher the global caching cost
is. Although caching improves content availability, it
increases redundancy, and causes network overhead due
to the existing stores in the cache nodes. In addition,
some strategies, as LCE, come to fill up caches faster

than other ones. In this case, we may remove still valid
contents. As a consequence, the number of cache misses
increases, and the cache is no longer effective. From
this point of view, we consider the cache eviction as a
cost; the more we evict contents, the higher the global
caching cost is.

To calculate the cache cost, we were inspired by the
cache cost function (Eq. 4) proposed in [46].

Totalcost = Phit∗Chit+(1−Phit)∗Cmiss+N(S)∗Ccache

(4)
Where Phit is the probability to have a cache hit. It
is calculated by the ratio of the number of requests
satisfied by caches over the total number of requests.
Chit and Cmiss are the average delays experienced by a
consumer in order to receive its requested information
from a cache and the producer, respectively. N(S) is
the number of caches in the topology. Finally, Ccache is
the cost to cache items which is defined by Eq. 5.

Cj
cache =

a

1− ρjutil
(5)

Where a is the cost coefficient that is set to 2[46], and
ρjutil is the cache utilization. The cache utilization
at a node j is the ratio of the number of times a
content is cached in j (Ncaching) over the number of
times a content passes through j (Ndecisions). Ccache

calculates the average of Cj
cache over j cache nodes. The

proposed cost function (Eq. 4) captures the trade-off
between the average delays for a consumer to receive
an information item, given by the first and the second
terms of Eq. 4, and the corresponding caching cost given
by the third term of Eq. 4.

To calculate the eviction cost, we should add, to
Eq. 4, a fourth term which is similar to the third
one. However, the calculation of ρutil differs from
that calculated in the third term. In fact, in the
cache eviction function, the utilization is the ratio of
the number of times an eviction is performed in node
j (Nevictions) over the number of time a content is
cached in j (Ncaching). This is because the eviction
takes place when a new item will be cached and the
cache is full.

To summarize, we define our cache cost metric in
Eq. 6.

Totalcost = Phit ∗ Chit + (1− Phit) ∗ Cmiss

+N(S) ∗ 2

1− Ncaching
Ndecisions

+N(S) ∗ 2

1− Nevictions
Ncaching

(6)

We evaluate the cache cost consumed by different
caching strategies. Figure. 5 illustrates the cache
cost function. Collected values show that the sum
of the third and fourth parts in the cost function,
which represent caching and eviction cost, is notably
higher than the sum of the first and the second parts
which illustrate the delay. For this reason, we use

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 13

−3

−2

−1

 0

 1

 2

 3

 20 22 24 26 28 30

C
a

c
h

e
 C

o
s
t

Number of consumers

LCE
LCD

ProbCache
Btw

Edge
Consumer−cache

(a) Cache cost

0

1

2

3

4

5

LCE LCD ProbCache Btw Edge Consumer−cache

C
a
c
h
e
 c

o
s
t

Global cost
Caching and eviction cost

Delay Cost

(b) Caching cost and delay cost

FIGURE 5. Global cache cost

normalization method to adjust the two values. The
normalization method, named ”reduced-centred”, is
calculated as shown in Eq. 7, where µ is the average
of the distribution, and σ represents the standard
deviation of the distribution.

Z =
X − µ
σ

(7)

Figure. 5a plots values of the reduced centered normal
distribution Z for the calculated values of the cache
cost function X. Negative values are the result of the
normalization method. Simulation results are obviously
positive.

We illustrate, in Figure. 5a, the cache cost with
different caching strategies. We notice that the
increasing of the number of consumers leads to a
decrease in the cache cost. Caching strategies have
different cache costs. In fact, we expect that LCE has
the higher caching and eviction costs seen that it stores
copies everywhere and cache nodes are more numerous.
In addition, LCE has the worst system performances.
From this view, LCE will have the worst global cache
cost. In our previous results, LCD strategy doesn’t
perform good system performances. Furthermore,
this strategy has many cache nodes because for each
request the content is solved at one level down. As a
consequence, LCD, in our scenario, is a costly strategy.
Also with the ProbCache strategy, cache cost is assumed
to be high. This is due to the fact that system
performances are medium and content can probably be
cached in different nodes for each request. Under Btw
strategy, the caching and eviction costs are expected to
be minimal, because it is always the same node having
the highest betweenness centrality that keeps a copy of a
content. On the other hand, system performances with
Btw strategy are medium. This makes its cache cost
medium. The edge-caching strategy had good system
performance results as consumer-cache, in addition, the
number of cache nodes in the topology are constant
and not very high. Consequently, the cache cost under
this strategy is not very high. Concerning, our caching
strategy, consumer-cache, it performs the best system
performances, and moreover, cache nodes are limited

as with edge-caching, which makes it the least costly
strategy.

As we have discussed, we report, in Figure. 5a, from
2 to 1.4 cache cost as the highest cost with LCE. The
minimum cost is calculated with our consumer-cache
strategy with −2.4 to −2.1. The second least costly
strategy, edge-cache, reports −2.1 to −1.7. Then, Btw,
has −1 to −0.5 of global cache cost. At the last, we
found that ProbCache and LCD have similar results
with 1 to 0.25.

For better understand of the trade-off between the
caching cost and delay cost, we separately depict in
Figure. 5b the delay cost and the caching and eviction
cost with 25 consumers. The objective is to show which
of the different components building up the Global Cost
metric dominate.

Figure. 5b shows that the delay cost is less than the
caching and eviction cost. Furthermore, we remark that
with LCE, the cache cost is very important. In the other
side, the edge-caching strategy has the least caching
and eviction cost since it has the least number of cache
nodes. Consumer-cache strategy has also a very low
caching and eviction cost and its low delay cost makes
it the least costly caching strategy. We can also remark
that although ProbCache system performance results
were better than LCD results, these two strategies have
similar cache cost results. With Figure. 5b, we can
understand that ProbCache has well a low delay cost,
however its caching and eviction cost is higher than the
LCD one which makes them equal in term of global cost.

In the following section, we evaluate our second
contribution, which is the freshness mechanism.

4.4. IoT data freshness

To evaluate the freshness mechanism, we use the
following metric presented in Eq. 8. Validity is
the percentage of the valid contents received by N
consumers against the total number of received content
including valid and invalid ones. In Eq. 8, we
respectively note validi and invalidi as the number of
valid and invalid content received by consumer i.

The Computer Journal, Vol. ??, No. ??, ????

14 M. Meddeb

V alidity(%) =

∑N
i=1 validi ∗ 100∑N

i=1 validi + invalidi
(8)

With the aim of maximizing the content validity
percentage to meet the IoT coherence requirement, we
propose to integrate our freshness mechanism to several
caching strategies. Event-based freshness mechanism
tries to predict the exact times of updates in order
to eliminate copies supposed to be invalid. Figure.6
depicts the percentage of fresh content with or without
freshness mechanisms using different caching strategies.

Without freshness mechanism, cached copies are
never checked before being sent. After a certain
amount of time, all copies will be deprecated. As it
is shown in Figure.6, the percentage of content validity
for all caching strategies, without the use of freshness
mechanism, do not exceed 20%. We report, 2%
using the LCE, LCD, Btw and ProbCache strategies,
9% with edge-caching and 19% under consumer-cache.
We notice that the consumer-cache strategy inherently
maintains data validity. This result depends on the
number of evictions (Figure.4b). In fact, strategies that
have a high number of evictions may remove from caches
still valid contents.

Expiration-based freshness mechanism comes to deal
with this problem, but it is difficult to fix the right
expiration time. We propose to put the average
of events period in order to cover the maximum
of content updates. We choose expiration time =
20s. Under Expiration-based freshness mechanism, the
improvements are not very impressive. The graph
portrays 9% using LCE, LCD and Btw, 5% with
ProbCache, 34% under edge-caching and 40% using
consumer-cache.

Our freshness mechanism has proven that it can
significantly improve the content validity percentage.
Figure.6 shows that this percentage can reach 98%
with different strategies. We conclude, from this figure,
that event prediction is a good solution to increase the
content validity, especially with steady systems.

We infer that even if the expiration-based freshness
mechanism combined with our consumer-cache strategy
improved the validity percentage, the event-based
freshness still performs better results. Consequently,
we deduce that our proposal is a good solution for IoT
data freshness.

5. DISCUSSION

As it was shown in the previous subsection, in-network
caching efficiency strictly depends on the number of
cache evictions. In fact, this parameter impacts the
system performances since the cache replacement may
cause cache misses. We remark that the closer the
cache nodes are to the producer the higher is the
number of evictions. This is because nodes close to
the producers belongs to many request paths by against
nodes close to consumers belongs only to request paths

starting from this consumer. However, the impact of the
number of evictions on the performance results is not
proportional. For instance, edge-caching and consumer-
cache have the same number of evictions but consumer-
cache outperforms edge-caching. In fact, under edge-
caching, Interest packets sent by consumers in the
middle of paths will be satisfied by the producer since
there is no cache node within the request path. In this
case, we have a cache miss without any cache eviction.
However, consumer-cache makes contents available to
consumers, just in one hop.

Furthermore, we may assert that, in high traffic
environment like IoT, we should minimize packets
transmission within the first (backbone) and the second
topology levels. Our proposed consumer-cache strategy,
as well as the edge-cache strategy, significantly relieve
these two levels as most of the requests are satisfied
within the stub domain.

In an IoT environment, system performances, as well
as cache cost, need to be closely considered. Our
proposed consumer-cache performs the best trade-off
between content availability and caching cost. As such,
consumer-cache strategy stands out as a viable solution
in a such IoT environment.

Finally, we showed that with an integrated event-
based freshness mechanism, caching strategies perform
much better and attain a high percentage of content
validity up to 96% of fresh contents. Without
any freshness mechanism, the number of evictions
influences the data freshness due essentially to adopted
replacement strategy which may delete still fresh
contents.

6. CONCLUSION

In the quest to exhibit the potential of Information-
Centric Networking (ICN) as a solution to adequately
support Internet-of-Things (IoT) systems, we focused
on Named Data Networking (NDN). IoT data are
mostly transient and frequently updated by their
producers which imposes stringent requirements in
terms of cache replacement and information freshness.
We investigated the most relevant in-network caching
mechanisms and proposed a caching strategy called
consumer-cache along with a freshness mechanism
called event-based freshness. consumer-cache stores a
copy of contents on on-path nodes directly connected
consumers in a way to minimize the response latency
and maximize the hop reduction ration.

We carried out extensive experiments using the
ccnSim on a real IoT scenario. The obtained
results indicated that our two proposals outperform
other schemes and satisfy IoT systems requirements
in terms of data freshness and cache cost, with a
notable improvement in content validity and content
availability.

As IoT scenarios and applications are very diverse in
terms of nature and requirements, further experiments

The Computer Journal, Vol. ??, No. ??, ????

Cache Freshness in Named Data Networking for the Internet of Things 15

 0

 20

 40

 60

 80

 100

 120

LCE LCD ProbCache Btw Edge Consumer
V

a
lid

it
y
 %

Event−based freshness
Expiration−based freshness

Without freshness mechanism

FIGURE 6. Validity %

are underway to properly ascertain the adequacy and
relevance of our proposed strategy on various IoT
scenarios. Furthermore, as IoT devices can be mobile,
there is certainly a need to study the effect of both
consumer and producer mobility on our proposed
caching strategy.

7. ACKNOWLEDGEMENT

The authors extend their appreciations to the Deanship
of Scientific Research at King Saud University for
funding this work through Research Group No. RGP-
1439-023.

REFERENCES

[1] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013) Internet of things (iot): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29, 1645 – 1660.

[2] Jacobson, V., Smetters, D. K., Thornton, J. D.,
Plass, M. F., Briggs, N. H., and Braynard, R. L.
(2009) Networking named content. Proceedings of the
5th International Conference on Emerging Networking
Experiments and Technologies CoNEXT ’09, Rome,
Italy, 1-4 December, pp. 1–12. ACM.

[3] Pentikousis, K., Ohlman, B., Corujo, D., Boggia, G.,
Tyson, G., Davies, E. B., Molinaro, A., and Eum,
S. (2015). Information-Centric Networking: Baseline
Scenarios. RFC 7476.

[4] Baccelli, E., Mehlis, C., Hahm, O., Schmidt, T. C., and
Wählisch, M. (2014) Information centric networking in
the iot: Experiments with ndn in the wild. Proceedings
of the 1st International Conference on Information-
centric Networking ICN ’14, Paris, France, 25-26
September, pp. 77–86. ACM.

[5] Heidemann, J., Silva, F., Intanagonwiwat, C.,
Govindan, R., Estrin, D., and Ganesan, D. (2001)
Building efficient wireless sensor networks with low-
level naming. SIGOPS Oper. Syst. Rev., 35, 146–159.

[6] Amadeo, M., Campolo, C., Iera, A., and Molinaro, A.
(2015) Information centric networking in iot scenarios:
The case of a smart home. 2015 IEEE International
Conference on Communications (ICC’15), London,
UK, 8-12 June, pp. 648–653. IEEE.

[7] Quevedo, J., Corujo, D., and Aguiar, R. (2014) A case
for icn usage in iot environments. IEEE Global Com-
munications Conference (GLOBECOM’14), Austin,
Texas, USA, 8-12 December, pp. 2770–2775. IEEE.

[8] Hail, M., Amadeo, M., Molinaro, A., and Fischer,
S. (2015) Caching in named data networking for the
wireless internet of things. International Conference
on Recent Advances in Internet of Things (RIoT’15),
Singapore, 7-9 April, pp. 1–6. IEEE.

[9] Quevedo, J., Corujo, D., and Aguiar, R. (2014)
Consumer driven information freshness approach for
content centric networking. IEEE Conference on
Computer Communications Workshops (INFOCOM
WKSHPS’14), Toronto, Canada, 27 April- 2 May, pp.
482–487. IEEE.

[10] Pentikousis, K., Ohlman, B., Davies, E. B., Boggia,
G., and Spirou, S. (2016). Information-Centric
Networking: Evaluation and Security Considerations.
RFC 7945.

[11] Adjih, C., Baccelli, E., and Fleury, E. (2015) Fit iot-
lab: A large scale open experimental iot testbed. IEEE
2nd World Forum on Internet of Things (WF-IoT’15),
Milan, Italy, 14-16 December. IEEE.

[12] Zhang, G., Li, Y., and Lin, T. (2013) Caching in
information centric networking: A survey. Computer
Networks, 57, 3128 – 3141.

[13] Dingle, A. and Pártl, T. (1996) Web cache coherence.
Comput. Netw. ISDN Syst., 28, 907–920.

[14] Vural, S., Navaratnam, P., Wang, N., Wang, C.,
Dong, L., and Tafazolli, R. (2014) In-network
caching of internet-of-things data. IEEE International
Conference on Communications (ICC’14),, Sydney,
Australia, 10-14 June, pp. 3185–3190. IEEE.

[15] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher,
D., and Ohlman, B. (2012) A survey of information-
centric networking. IEEE Communications Magazine,
50, 26–36.

[16] Xylomenos, G., Ververidis, C., Siris, V., Fotiou, N.,
Tsilopoulos, C., Vasilakos, X., Katsaros, K., and
Polyzos, G. (2014) A survey of information-centric
networking research. IEEE Communications Surveys
and Tutorials, 16, 1024–1049.

[17] Amadeo, M., Campolo, C., Iera, A., and Molinaro, A.
(2014) Named data networking for iot: An architectural
perspective. European Conference on Networks and
Communications (EuCNC’14), Bologna, Italy, 23-26
June, pp. 1–5. IEEE.

The Computer Journal, Vol. ??, No. ??, ????

16 M. Meddeb

[18] Amadeo, M., Briante, O., Campolo, C., Molinaro, A.,
and Ruggeri, G. (2016) Information-centric networking
for {M2M} communications: Design and deployment.
Computer Communications, 89-90, 105 – 116.

[19] Amadeo, M., Campolo, C., Molinaro, A., and Ruggeri,
G. (2014) Content-centric wireless networking: A
survey. Computer Networks, 72, 1 – 13.

[20] Franois, J., Cholez, T., and Engel, T. (2013) Ccn traffic
optimization for iot. Fourth International Conference
on the Network of the Future (NOF’13), Pohang, South
Korea, 23-25 October, pp. 1–5. IEEE.

[21] Meddeb, M., Dhraief, A., Belghith, A., Monteil, T.,
and Drira, K. (2015) Cache coherence in machine-
to-machine information centric networks. IEEE 40th
Conference on Local Computer Networks (LCN’15),
ClearWater Beach, Florida, USA, 26-29 October, pp.
430–433. IEEE.

[22] Amadeo, M., Campolo, C., and Molinaro, A. (2014)
Internet of things via named data networking: The
support of push traffic. International Conference and
Workshop on the Network of the Future (NOF’14),
Paris, France, 3-5 December, pp. 1–5. IEEE.

[23] Xylomenos, G., Vasilakos, X., Tsilopoulos, C., Siris, V.,
and Polyzos, G. (2012) Caching and mobility support
in a publish-subscribe internet architecture. IEEE
Communications Magazine, 50, 52–58.

[24] Saino, L., Psaras, I., and Pavlou, G. (2014)
Icarus: a caching simulator for information centric
networking (icn). Proceedings of the 7th International
ICST Conference on Simulation Tools and Techniques
(SIMUTOOLS’14), Lisbon, Portugal, 17-19 March.
ICST.

[25] Psaras, I., Chai, W. K., and Pavlou, G. (2012)
Probabilistic in-network caching for information-centric
networks. Proceedings of the Second ICN Workshop
on Information-centric Networking ICN(’12), Helsinki,
Finland, 17 August, pp. 55–60. ACM.

[26] Chai, W. K., He, D., Psaras, I., and Pavlou, G. (2012)
Cache ”less for more” in information-centric networks.
Proceedings of the 11th International IFIP TC 6
Conference on Networking - Volume Part I, Prague,
Czech Republic, 21-25 May, pp. 27–40. Springer-Verlag.

[27] Fayazbakhsh, S. e. a. (2013) Less pain, most of the gain:
Incrementally deployable icn. SIGCOMM Comput.
Commun. Rev., 43, 147–158.

[28] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D.,
and Lyon, B. (1985) Design and implementation of the
sun network filesystem. USENIX.

[29] Kazar, M. L. (1988) Synchronization and caching issues
in the andrew file system. USENIX, pp. 27–36.

[30] World wide web consortium, hypertext transfer proto-
col. http://www.w3.org/pub/WWW/Protocols/.

[31] World wide web consortium, w3c httpd.
http://www.w3.org/pub/WWW/Daemon/.

[32] Berners-Lee, T. (2007). Analysis of caching and
replication strategies for web applications.

[33] Vural, S., Wang, N., Navaratnam, P., and Tafazolli,
R. (2016) Caching transient data in internet content
routers. IEEE/ACM Transactions on Networking, 25,
1048 – 1061.

[34] Wang, L., Wakikawa, R., Kuntz, R., Vuyyuru, R.,
and Zhang, L. (2012) Data naming in vehicle-to-
vehicle communications. In Proceedings of INFOCOM

2012 Workshop on Emerging Design Choices in Name-
Oriented Networking, Orlando, Florida, USA, 25-30
March. IEEE.

[35] Ngoc-Thanh, D. and Younghan, K. (2013) Potential of
information-centric wireless sensor and actor network-
ing. International Conference on Computing, Manage-
ment and Telecommunications (ComManTel’13), Ho
Chi Minh City, Vietnam, 12-14 January, pp. 163–168.
IEEE.

[36] Ren, Z., Hail, M., and Hellbruck, H. (2013) Ccn-
wsn - a lightweight, flexible content-centric networking
protocol for wireless sensor networks. IEEE Eighth
International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP’13),
Melbourne, Australia, 2-5 April. IEEE.

[37] Teubler, T., Hail, M. A., and Hellbrck, H. (2013)
Efficient data aggregation with ccnx in wireless sensor
networks. 19th EUNICE Workshop on Advances in
Communication Networking (EUNICE’13), hemnitz,
Germany, 28-30 August. Springer.

[38] Amadeo, M., Campolo, C., Molinaro, A., and
Mitton, N. (2013) Named data networking: A natural
design for data collection in wireless sensor networks.
IFIP Wireless Days (WD’13), Valencia, Spain, 13-15
November. IEEE/IFIP.

[39] Katsaros, K., Chai, W., Wang, N., Pavlou, G., Bontius,
H., and Paolone, M. (2014) Information-centric
networking for machine-to-machine data delivery: a
case study in smart grid applications. IEEE Network,
28, 58–64.

[40] Liu, R., Wu, W., Zhu, H., and Yang, D. (2011) M2m-
oriented qos categorization in cellular network. 7th
International Conference on Wireless Communications,
Networking and Mobile Computing (WiCOM’11),
Wuhan, China, 23-25 September. IEEE.

[41] Makridakis, S. and Hibon, M. (1997) Arma models and
the boxjenkins methodology. Journal of Forecasting,
16, 147–163.

[42] Chiocchetti, R., Rossi, D., and Rossini, G. (2013) ccn-
sim: An highly scalable ccn simulator. IEEE Interna-
tional Conference on Communications (ICC’13), Bu-
dapest, Hungry, 9-13 June. IEEE.

[43] Calvert, K. L., Doar, M. B., and Zegura, E. W. (1997)
Modeling internet topology. IEEE Communications
Magazine, 35, 160–163.

[44] Rossi, D. and Rossini, G. (2011) Caching performance
of content centric networks under multi-path routing.
Technical report. Telecom ParisTech, Paris, France.

[45] LAAS-CNRS (2013). Adream. http://www.laas.fr/1-
32329-Le-batiment-intelligent-Adream-instrumente-et-
econome-en-energie.php.

[46] Vasilakos, X., Siris, V. A., Polyzos, G. C., and Pomonis,
M. (2012) Proactive selective neighbor caching for
enhancing mobility support in information-centric
networks. Proceedings of the Second Edition of the ICN
Workshop on Information-centric Networking (ICN
’12), Helsinki, Finland, 17 August, pp. 61–66. ACM.

The Computer Journal, Vol. ??, No. ??, ????

