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Abstract
Despite the efforts made from both the research community and the in-

dustry in inventing new methods to deal with distributed denial of service
attacks, they stay a major threat in the Internet network. Those attacks
are numerous, and can prevent, in most serious cases, the targeted system
from answering any request from its clients.

Detecting such attacks means dealing with several difficulties, such as
their distributed nature or the several evasions techniques available to the
attackers. The detection process has also a cost, which includes both the
resources needed to perform the detection and the work of the network
administrator.

In this paper we introduce AATAC (Autonomous Algorithm for Traf-
fic Anomaly Detection), an unsupervised DDoS detector that focuses on
reducing the computational resources needed to process the traffic. It
models the traffic using a set of regularly created snapshots. Each new
snapshot is compared to this model using a k-NN based measure to de-
tect significant deviations toward the usual traffic profile. Those snapshots
are also used to provide the network administrator with an explicit and
dynamic view of the traffic when an anomaly occurs.

Our evaluation shows that AATAC is able to efficiently process real
traces with low computational resources requirements, while achieving an
efficient detection producing a low number of false-positives.

1 Introduction
When considering network anomalies, one of the most concerning problem stays
Distributed Denial of Service (DDoS) attacks. Using a set of compromised hosts
all over the Internet, these attacks try to prevent the victim servers from deliv-
ering a proper service by sending illegitimate requests to the victim’s network.
This exhausts some of the victim’s routers or servers resources causing from
small disturbance of the victim’s operations to its total inability to handle le-
gitimate clients’ requests. With the multiplication of connected devices and the
emergence of IoT, these kind of attacks is an increasing threat. Therefore, being
able to prevent DDoS attacks is a priority for numerous Internet stakeholders.
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Dealing with anomalies in general is a costly process requiring, inter alia,
the expertise of a network administrator. As his time is a valuable resource, he
needs specific tools that enable a relevant and fast decision-making, reducing
his work as much as possible. Thus, setting up, configuring and keeping up to
date an anomaly detector should be an easy task. On every-day operation, it
should be able to handle traffic anomalies as autonomously as possible, while
providing pertinent and accurate information to the network administrator for
the diagnosis phase. Finally, such detector needs to be scalable towards the
traffic bandwidth, enabling a real time operation with a reasonable amount of
allocated resources.

Adding to those problems, the DDoS detection needs specific approaches
able to tackle the following challenges:

• DDoS can harm a whole system really fast, including the DDoS detection
and mitigation services. Thus DDoS should be detected as soon as possible
to avoid irreversible damages.

• The detector should be able to process traffic in real-time even under
network saturation.

• Isolating the malicious traffic from the legitimate one is a difficult task:
first because the malicious packets overwhelms the traffic, and secondly
because the DDoS traffic —as it consists in fake requests towards the
victim network— resembles the legitimate one.

• If the attacker uses IP spoofing, tracking the source of the attack is diffi-
cult.

Despite the constant interest of the research community, no specific detector
emerged as a perfect or consensual solution to the DDoS detection problem.

Our work was conducted in the context of the AATAC (Autonomous Al-
gorithm for Traffic Anomaly Detection) project that aims at finding practical
solutions to the DDoS detection problem. This project is carried out in collab-
oration with Border 6, a software editor that offers a BGP routing optimization
solution. As their clients regularly suffer from such attacks, Border 6 is naturally
interested in investigating new solutions to the DDoS detection and mitigation
problem.

In this paper, we introduce a new unsupervised anomaly detection algo-
rithm eponymously named AATAC. This detector specifically focuses on DDoS
attacks. It uses regularly taken traffic snapshots to detect unexpected changes
in the whole network traffic. AATAC is an autonomous detector, able to detect
anomalies as soon as they occur while processing the traffic in real time with a
low amount of resources needed. It also produces a low number of false-positives
while having a good detection rate. More than that, the last created snapshots
can be plotted when an anomaly occurs. This set of graphs provides a dy-
namic view of the traffic that helps the network administrator decision making
regarding the anomaly.
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The rest of the paper is as follows: related works are presented in section
2. The AATAC algorithm is presented in section 3 while its performances are
evaluated in section 4. Section 5 concludes the paper and considers future works.

2 Related works
In an industrial context, autonomy is probably among the most important prop-
erties of a detector. For this reason, we present here several related works from
the least to the most autonomous approaches, grouped into three categories. We
first introduce several knowledge-based approaches, which heavily rely on expert
knowledge of existing attacks. Other approaches based on the traffic properties
statistical analysis are then presented, followed by most recent approaches based
on machines learning techniques. We present here detectors that are represen-
tative of approaches that are either well known, or from recent state-of-the-art
techniques. We focus on detectors that have practical developments, i.e. that
could be used in an industrial context.

2.1 Knowledge-based
Also known as Misuse-based, the knowledge-based techniques rely on knowledge
gathered about seen anomalies. They thus provide a detection focused on known
attacks. Expert systems, signature analysis and state transition analysis are
common knowledge-based approaches.

Gil and Poletto [1] presented the well known MULTOPS (MUlti-Level Tree
for Online Packet Statistics) detector. This approach monitors several traf-
fic characteristics in a tree-based structure, where each node stores the packet
rate statistics of a given subnet. MULTOPS processing assumes that DDoS
attacks produce unusual imbalanced traffic flow. It thus detects bandwidth at-
tacks by spotting significant imbalance between incoming and outgoing packet
rates. MULTOPS needs few resources to operate, but outputs only the per-
subnet packets rate, a non-comprehensive information complicating the diag-
nostic phase. Wang et al. [2] present a new way to model DDoS attacks by
using Augmented Attack Tree (AAT). This approach models the attack goals
(tree nodes) along with attack means (tree branches), and detects a set of known
types of DDoS. However, it does not detect unknown attacks. FastNetMon [3]
is an open-source threshold-based detector that provides a practical solution to
the DDoS detection and mitigation. FastNetMon uses a set of counters to de-
tect abnormally high bandwidths or packet rates towards given subnets. With
few computational resources, FastNetMon generates alarms with information
on detected attacks, and can automatically run a banning script. However it
might fail in correctly segregating the malicious traffic from the legitimate one.

In general, Knowledge-based techniques, despite producing a low number
of false-positives, need a lot of work from the network administrator to keep
the detection up to date with state-of-the-art attacks. Indeed, either building
new signatures or setting up a new specialized detector for each new attack is a
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tedious task. Moreover, having a detector (or a rule) dedicated to each attack
might imply high computational requirements when the number of attacks to
be detected increases.

2.2 Statistical
To overcome knowledge-based detectors limitations, researchers proposed tech-
niques based on anomaly detection. These detectors autonomously monitor the
patterns of the traffic and detect events (flows, packets, etc...) that deviate from
those usual patterns. The most common approaches rely on statistical analysis.

Udhayan and Hamsapriya [4] introduce the statistical segregation method
(SMM). This method samples the flows in consecutive intervals, compares the
samples towards the attack state condition, and sorts them according to the
mean as a parameter. A final correlation analysis is then performed to sepa-
rate attack flows from the legitimate ones. A flow-based detector is introduced
in [5] which analyses the fast entropy (modified version of the entropy) of re-
quests per flow. An adaptive threshold is finally computed to detect anomalies
within the traffic. The AFEA detector [6] is also based on similar techniques.
Özçelik and Brooks [7] present a detector using the traffic headers entropy post-
processed with a wavelet filter and CUSUM to improve the detection accuracy.
The entropy, as a measure of the predictability of the traffic features, as been
commonly used to detect DDoS attacks.

2.3 Machine learning based
Various DDoS detectors proposed in the literature take advantage of the re-
cent emergence of machine learning techniques. Such techniques are meant to
autonomously extract metrics that encompass the traffic characteristics, either
from a labelled (semi-supervised techniques) or an unlabelled traffic dataset (un-
supervised techniques). They usually provide more information than statistical
techniques.

Supervised machine learning autonomously learn the traffic characteristics
using a hand-crafted labelled dataset, then detect deviation toward the produced
model while in operation. These approaches are not truly autonomous, as they
need to be re-trained every time the traffic evolves. Such approaches can be
based on Artificial Neural Network [8], SVM [9] or decisions trees [10].

Most recent approaches use unsupervised learning techniques. Based on the
assumption that anomalies are rare events, they autonomously build a model
of the usual traffic and detect significant deviations from this model. Conse-
quently, these approaches do not need any previous knowledge on the traffic
characteristics, they are thus flexible need few work from the network adminis-
trator. However, they usually need a lot of computing power, as characterizing
the traffic without any previous knowledge is a difficult task.

For example, unsupervised Artificial Neural Network were widely used for
DDoS detection, as with [11], [12] or more recently [13]. Other unsupervised
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approaches might rely on Nearest-Neighbours based techniques [14] or cluster-
ing [15]. The recent framework STONE [16] provides both the DDoS detection
and mitigation. To model the traffic, STONE clusters arriving flows using their
source prefix. Some clusters properties are then registered and will be used for
the detection. STONE performs an efficient detection but relies only over three
traffic features, which is few to manually verify that the detected behaviour is
truly anomalous. Our previous detector UNADA [17] or its more recent version
ORUNADA [18] are based on clustering. They achieve good detection results
and provide the network administrator with automatically created signatures of
the malicious traffic. Their autonomy makes them a good detector, but their
high computational power requirements does not make them applicable in all
situations.

3 AATAC algorithm
In this section we describe a new DDoS detector algorithm called AATAC.
AATAC intends to tackle the DDoS detection problem by providing a solution
balancing the detection cost with the comprehensiveness of the produced results.

AATAC was first built to limit the work of the network administrator. It is
an unsupervised detector assuming that DDoS significantly impact the traffic
statistical distributions when occurring. It inherently needs no training data, re-
quires few configuration and autonomously adapts to the traffic shape changes.
Moreover, when it raises an alarm, AATAC also provides the network adminis-
trator with a set of dynamic 2D plots representing multiple traffic feature distri-
butions or global values. This helps the anomaly diagnostic phase. Finally, and
as proved by our evaluation in section 4, AATAC performs an efficient detec-
tion producing a low number of false-positives. This avoids wasting the network
administrator’s time with false alarms.

3.1 Overview
As illustrated by Figure 1, AATAC processing is split into two components.
A first part, the continuous processing quickly handles network instances, it
updates a set of automatically decreasing densities, most of them beign or-
ganized as histograms characterizing some traffic feature distribution (IP ad-
dresses, ports...). The second part, the discrete processing, builds at a regular
interval a relevant short-time characterization of the traffic called traffic snap-
shot. Each traffic snapshot is composed of a set F of snapshot features that
can be divided into two subsets:

Fdistributions whose features are histogram prototypes, built from the densities
organized as histograms and characterizing a traffic feature distribution,

Fglobal whose features use a single counter value, and characterize a global prop-
erty of the traffic.
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Figure 1: AATAC architecture

The AATAC separation into two parts makes it able to process the traffic in
an almost linear time. It makes it robust to sudden traffic increases and reduces
its computational needs when dealing with larger bandwidths.

3.2 Online processing
The continuous part of the algorithm uses as input a per-flow aggregated data. A
flow is usually defined as a 5-tuple: IP source address, IP destination address,
source port, destination port, protocol. Each flow is associated with several
characteristics such as its average packet size, its number of packets or even its
number of SYN packets. Those characteristics are called flow features. Each
flow should be associated with a timestamp set to either the beginning or the
end of the flow.

AATAC uses histograms to model a flow feature distribution. Given a flow
feature i, an histogram assigns a probability to each value that i may take
within its set of possible values Xi. Each histogram is used to produce a single
snapshot feature f ∈ Fdistributions.

The histogram construction, and its processing, was originally inspired by
D-Stream [19], a grid-based stream clustering algorithm. Each instance x added
to the model is assigned a density coefficient D(x, t) that decreases when x
ages. If the instance arrived at a time tc, its current density coefficient at a time
t is:

D(x, t) = wxλ
t−tc (1)

where λ ∈ (0, 1). The wx variable is a weight assigned to x. λ is a parameter
of the algorithm called decay factor, which illustrates how fast the density
coefficient of an instance decreases over time.

The input space is then divided into a set of equally-sized partitions, also
called grids, that can be assimilated to an histogram bins. For each grid g, let
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us consider the set E(g, t) of all instances that fell into this grid at a given time
t. Each grid g is assigned a density value D(g, t) calculated as follow:

D(g, t) =
∑

x∈E(g,t)
D(x, t) (2)

As the number of instances constantly increases over time, it is not conceiv-
able to store all records to calculate the value of D(g, t). Luckily, this value can
be calculated in an incremental fashion: Let us consider a grid g that received
a last instance at a time tl with a corresponding density D(g, tl). Whenever
g receives a next instance at a time tn, tn ≥ tl, the new density of g can be
calculated as follows:

D(g, tn) = λtn−tlD(g, tl) + wn (3)

with wn the weight of the new instance. Therefore, keeping up-to-date the
density of a grid needs only to store two values: a last update timestamp tl and
the corresponding density D(g, tl). The instance weight wn parameter is set to
1 when considering a per-flow distribution, while multiplied by the number of
packets in the flow for a per-packets distribution.

Considering a time t > tl, if g did no received any instance between t and
tl, its density at t is:

D(g, t) = λt−tlD(g, tl) (4)

Similarly, the traffic-wide features (in Fglobal) are processed in a similar
manner. A unique density is assigned to each feature which is updated as a grid
that would receive all instances. The weight parameter wn depends here on the
feature. For example, the density of the total SYN packets feature is weighted
using the number of SYN packets in an arriving flow.

3.3 Offline processing
The discrete processing is applied every ∆T seconds. It is split into three parts:
the continuous processing data structure update, the snapshot creation and the
anomaly detection.

3.3.1 Online data structure update

As the continuous processing data structure is required to be up-to-date when
the discrete processing is performed, the grids’ densities must be updated. This
is done applying equation 4 with t = tsnapshot, the snapshot creation date. The
densities of the traffic-wide features are updated in a similar manner.

To avoid the number of grids in a given feature space to overgrow, AATAC
performs a dynamic resource allocation. This implies that grids having a density
lower than a given value Dl should be removed from the model. Indeed, these
sparse grids (having a low density) haven’t received instances recently, and
are thus no more representative in a picture of the current traffic.
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3.3.2 Snapshot creation

To reduce the complexity of the anomaly detection phase and keep light the
model of the traffic, AATAC records a simplified version of each histogram.
Those are called histogram prototype, and are made only from grids having a
density over a threshold Dm. These grids, said dense, are selected because
they provide much more information on the traffic than the low-density grids,
despite needing as much memory to be characterized. These histogram proto-
types are created by gathering adjacent dense grids into clusters. To produce
the histogram prototype, our algorithm uses for each cluster: the average den-
sity of its grids (avgc) and its boundaries (minc and maxc). The histogram
prototype, which is basically a piecewise linear curve, includes, for each cluster,
the following set of points: (minc, 0), (minc, avgc), (maxc, avgc) and (maxc, 0).
Grids that have a density between Dl and Dm are called transitional.

The final snapshot is created storing the produced histogram prototypes (in
Fdistributions) along with the current values (updated) of the traffic-wide features
densities (in Fglobal). They constitute the set of snapshot features. A snapshot
is noted S, and its value for feature f is noted S(f).

3.3.3 Anomaly detection

The anomaly detection phase uses the set LN of the last N snapshots created by
the previous phase. AATAC applies a per-snapshot feature k-nearest neighbour
(k-NN ) based technique [20]. Slast being the last snapshot added to the model,
k-NN searches for Sk, its k nearest neighbour in the set LN considering a feature
f . The distance between Sk(f) and Slast(f) is an estimation of the local density
around Slast considering the snapshot feature f . This value is used as an outlier
score, illustrating how unlikely is the Slast(f) value.

The distance function used for features from Fglobal is the absolute value of
the numerical difference (the one-dimensional Euclidean distance). For features
into Fdistributions, and because histogram prototypes are basically piecewise lin-
ear curves, AATAC uses the area between the two curves as a distance function.
The distances between the last N snapshots are stored in an incrementally up-
dated distance matrix.

Finally, AATAC applies a per-feature standard normalization considering the
set LN . The output value is then used as a score, which is compared towards
a threshold τanomaly. If the score goes over this threshold, AATAC considers
that the last produced snapshot is anomalous and raises an alarm.

3.4 Selecting appropriate parameters for AATAC
The decay factor λ parameter characterizes how fast the grid densities decreases
over time, it thus impacts the similarity between two snapshots: the density of
g in a given snapshot is always under the influence of previously stored densi-
ties. High values of λ can produce strongly correlated snapshots (reducing the
information provided by each snapshot) but low values may also provide a too
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short-term view of the traffic. We call R = λ∆T the ratio corresponding to how
much the densities of a given snapshot weight in those of the following one. As
this ratio is more meaningful than the lambda parameter, it can thus be used
to fix lambda with λ = ∆T

√
R.

Both R, N and ∆T parameters have a deep impact on the temporal repre-
sentation of the traffic. While larger values for any of those parameters imply
a less sensitive detection to short-term changes into the traffic, those parame-
ters should be balanced considering other criteria. Reducing ∆T reduces the
time needed to detect an anomaly, but triggers the discrete treatment more
often. Increasing N provides a longer term view of the traffic but increases the
computational time needed for the discrete processing. Finally, R acts as an
adjustment parameter, impacting how the traffic representation of a snapshot
is instantaneous. The best parameters are highly dependant on the monitored
traffic, and should be balanced according to the required sensitivity, specificity
and computational resources available. These three parameters should be ex-
perimentally set before τanomaly, which is used as a final adjustment to the
sensitivity of AATAC.

The Dl and Dm values should by fixed independently from one snapshot fea-
ture to another, as they may depend on the weight assigned to added instances.
To set them, we use the average density in an histogram while operating on a
sample traffic. Indeed, we consider that a density is pertinent enough if it repre-
sents, at least, a significant part of the summed densities. As Dl is only used to
avoid memory leaks from the multiplication of unused grids, and because densi-
ties decreases in an exponential manner, Dl can be chosen very small. Thus, a
value around 0.01% of the average density is a good choice. The Dm threshold
is more difficult to fix. It is used to select dense enough grids to be stored into
the snapshot. We empirically fix this value around 5% of the average density.

As the k parameter (for the k-NN -based score), corresponds to the number
of nearest neighbours used to estimate a local density, it is thus to be considered
along with N , the total number of snapshots kept for the k-NN -based analysis.
k also impacts the algorithm sensitivity. Thus fixing its value should be done
considering previously selected parameters. There is no strict method to fix k
but it can be fixed from experimentations on a training dataset. However a
common rule of thumb is to fix k = 1

2

√
N , which empirically achieved good

results.

3.5 Alarm analysis
An advantage of AATAC is its capability to produce a graphical representation
of each snapshot. Indeed, histogram prototypes can be plotted as curves, and
global densities as a simple dot. Thus, whenever AATAC generates an alarm, the
last N snapshots can be plotted as a sequence of graphs, providing a dynamic
view of the traffic properties when an anomaly occurs. They can be plotted
along with the outlier score to give a better understanding of the occurring
anomaly. During our evaluation, we were able to produce videos of the traffic
anomalies [21].
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4 Performance analysis
To evaluate its performances, we implemented AATAC in C. It uses the libp-
cap [22] capture format as input and performs a flow extraction using tumbling
window. The timestamp associated to each flow is set to the date of each win-
dow end. Experimentations are run over a single machine powered by a 3.00GHz
Intel Xeon CPU (E5-2623 v3). It features 8 cores (16 with hyper-threading),
but our implementation does not fully benefit from this feature. Indeed, only
the discrete part of AATAC is per-dimension parallelized.

Our evaluation discusses AATAC properties in terms of detection accuracy
and computational resource consumption, depending on its parameters. Ob-
tained results are then compared with FastNetMon and ORUNADA.

4.1 Detection accuracy
4.1.1 Evaluation methodology

To evaluate our algorithm ability to efficiently detect DDoS attacks, we needed
a labelled dataset containing various types of DDoS attacks within realistic and
up-to-date traces. Unfortunately, we were not able to find a publicly available
dataset meeting those criteria. Thus, in the context of the ONTIC project,
we created a set of 13 synthetic attacks in an emulated network. Each of these
attacks was inserted in a 1 hour long subset of the ONTS dataset, which consists
in five months of anonymized and payload-free traces, captured at the entrance
of a large cloud service provider. These traces are publicly available on the
ONTIC project website [23]. The dataset including the generated attacks is
called synthONTS, it is still a work in progress as it should be completed with
other attacks.

To perform the evaluation, we run AATAC over each trace included into
the synthONTS dataset. This evaluation over labelled traces allows an estima-
tion of several characteristics of the detector, in terms of accuracy, such as the
true-positive rate (TPR, the probability that there is a real anomaly when the
detector raises an alarm) and the false-positive rate (FPR, the probability that
the detector raises an alarm while there is no anomaly).

The most common tool to evaluate an intrusion detection system accuracy is
the Receiver Operating Characteristic (ROC) curve. This curve plots the TPR
against the corresponding FPR for a given IDS. Thus, an ideal detector should
be plotted at (0 , 1 ). AATAC’s ROC curves are plotted varying the detection
threshold τanomaly. To evaluate a detector operation point independently from
the threshold value, the Area Under the ROC Curve (AUC ) is used. A perfect
detector has AUC = 1 while a random one has AUC = 0.5.

Despite providing interesting and readable results, ROC curves applied to
synthONTS suffer from the base-rate fallacy [24]. This is a common bias that
happens when considering such rates without considering the base-rate, i.e.
the probability that an anomalous event occurs. To overcome this problem,
we complete our ROC-based evaluation with another evaluation method from
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Nasr et al. [25]. This method uses the positive predictive value (also known as
Bayesian Detection rate) which corresponds to the probability of an intrusion
given that the IDS raised an alarms. From the result of an experimentation, it
can be computed as follows:

PPV =
Number of true-positives
Number of positives

(5)

This value is plotted against the corresponding false-positive rate, consti-
tuting the actual IDS operation curve. This curve is compared to the zero
reference curve (ZRC ) which corresponds to the trade-off between PPV and
the false-positive rate FPR. Concretely, the various PPV values for the ZRC
are calculated considering a detector that detects all anomalies (TPR = 1), but
that generates an increasing number of false-positives. As the PPV calcula-
tion encompasses the base-rate, this method does not suffer from the base-rate
fallacy.

The accuracy of the detector is finally estimated using the detector intrusion
detection effectiveness (EID ∈ [0, 1]), which is the normalized variance between
the actual IDS operation curve and the ZRC . It is calculated as follows:

EID =
1∫ TFP

0

PPVZRC dα

(

∫ TFP

0

PPVZRC dα−
∫ TFP

0

PPVID dα) (6)

Where TFP is the maximum acceptable false-positive rate exhibited by the
IDS. The lower EID, the more effective the detector.

4.1.2 Evaluation results

In our experimentations, we tested several values for R: 1%, 2%, 5%, 10%,
50% and 90%, and several values for N : 100, 500, 1000. As the traces are
quite short, ∆T is set to 1 second to have enough recorded snapshots to train
AATAC. The different ROC curves obtained are pictured in Figure 2. Despite
that it seems that we obtain better results with lower values of R, they tend
to produce a lot of false-positives. However, as we can see from the different
operation points, the best point appears to be with R = 0.90, N = 500 and a
threshold τanomaly = 3.0. For this operation point, we have TPR = 0.83 and
FPR = 0.0013. While the TPR is relatively low, due to the fact that the dataset
contains a low number of anomalies, the FPR in this situation is very good.

The AUC values, as depicted in table 1, confirms those preliminary re-
sults: the higher values for AUC correspond to the lowest values for R and the
highest for N . However, the IDS operation curve (for N = 500) depicted by
Figure 3 shows different results than the ROC curves. Indeed, the base-rate
fallacy is removed from this evaluation, showing that, considering a low enough
false-positive rate, a higher value of R corresponds to more efficient detection.
The calculated instruction detection efficiency is depicted in Table 2 (values
where EID = 1.0 stands for conditions for which there were no valid PPV
for any FPR < TFP ). For any TFP ∈ {10−2, 10−3, 10−4}, AATAC appears
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Figure 2: ROC curves for multiple values of N and R
HH

HHHR
N 100 500 1000

0.01 0.9211 0.9668 0.9722
0.02 0.9202 0.9666 0.9721
0.05 0.9197 0.9598 0.9716
0.10 0.9181 0.9595 0.9717
0.50 0.8860 0.9487 0.9639
0.90 0.9083 0.9445 0.9443

Table 1: AUC for multiple values for R and N

more efficient with higher values of R. Increasing N still improves the detection
efficiency.

Needing R = 90% is quite high (as a reminder, this means that a snapshot
includes 90% from the previous one in its densities). However, this can be
explained by the fact that we used a short snapshot interval time ∆T . Indeed,
this large value of R makes the detector less sensitive to short-term variations,
which reduces the number of generated false-positives.

4.2 Real time
To estimate the capability of AATAC to process the traffic in real-time, we ran
another evaluation. In the context of the Border 6/LAAS-CNRS project, we
had the opportunity to capture the traffic of a company whose main activity
consists in hosting online sales websites. The traffic is 3 Gbit/s and 440.000

TFP 10−2 10−3 10−4

HHH
HHR
N 100 500 1000 100 500 1000 100 500 1000

0.01 0.4286 0.1627 0.1579 0.5520 0.1221 0.1054 1.0 0.0200 0.0163
0.02 0.4794 0.1628 0.1570 0.7772 0.1217 0.1011 1.0 0.0201 0.0183
0.05 0.4278 0.1616 0.1587 0.5602 0.1174 0.1088 1.0 0.0201 0.0185
0.10 0.4414 0.1599 0.1593 0.5602 0.1140 0.1073 1.0 0.0209 0.0178
0.50 0.4372 0.1537 0.1465 0.5930 0.0989 0.0796 1.0 0.0218 0.0205
0.90 0.4636 0.0790 0.1114 0.6973 0.0586 0.0843 1.0 0.0158 0.0216

Table 2: Intrusion Detection Effectiveness for multiple values of N , TFP and R
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Figure 3: IDS operation curves for
N = 500 and several R values

pkt/s average. This evaluation was ran over one day of network traces containing
the beginning of a DDoS attack (the rest was removed by the mitigation system
of the company). As they are the only parameters that may significantly impact
the processing time, we chose to vary only ∆T ∈ {1s, 5s, 10s, 30s, 1min} and
N ∈ {100, 1000, 5000} for our evaluation.

As we run our experimentations from recorded traffic, we use the process-
ing time as our evaluation measure. The continuous and discrete part of the
algorithm are distinctly considered:

• For the continuous part we measure the ratio between the processing time
over the corresponding traces interval treated,

• For the discrete time we measure the time needed to produce a single
snapshot, independently of how many of them were created.

The results with 18 features are depicted in table 3. The values are averaged
within the different value of ∆T . From those results we can see that even with
relatively low computer resources, our implementation of AATAC is able to
handle the traffic in real time. Even in stress situations, the detector still takes
less than one second to treat one second of traffic. Thanks to the simplicity of
the discrete processing, the time needed to produce a snapshot and compare it
to the N last produced ones appears negligible (around 30µs), independently of
N .

4.3 Comparative evaluation with other detectors
For a fair evaluation of AATAC, we compared the obtained results over syn-
thONTS with the best performances obtained by two other detectors: FastNet-
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N 100 1000 5000
Continuous (maximum for 1s of trafic) 0.80 0.79 0.89

Continuous (average for 1s of trafic) 0.21 0.25 0.26
Discrete 0.028 0.027 0.033

Table 3: Processing time in seconds

Mon [3] and ORUNADA [18]. While those detectors are respectively represen-
tative of knowledge-based and unsupervised detectors, they were also available
to us.

In terms of detection accuracy, ORUNADA in its best operation point is
able to detect all DDoS attacks included into the synthONTS dataset, but also
detects other kinds of anomalies that were already present in the original traces.
However, in this configuration, ORUNADA needs a lot of resources to perform
the detection: it needs 220% of one CPU computing power to operate in real
time.

FastNetMon manages to operate a real time detection on the traffic with
two cores at 60% load. In its best operating point, it detects 6 out of 13 DDoS
attacks, and produces one false-positive.

In its best operation point, mentioned earlier, AATAC can operate at 21%
load on a single core. Those results confirms that AATAC can operate with few
resources, while still providing an accurate detection.

5 Conclusion and future works
In this paper we introduced AATAC, a new anomaly detector that focuses on
DDoS attacks. We proposed a detector divided into two components, one that
processes the traffic in linear time while a second one performs the traffic analy-
sis and anomaly detection. As showed in our evaluation, the several algorithmic
optimizations make AATAC able to process actual traffic in real time with few
computational resources. That being said, AATAC still performs an efficient de-
tection, producing a low number of false-positives. Also, AATAC provides the
administrator with pertinent information on the detected anomalies. Its unsu-
pervised nature makes it an autonomous detector, needing little configuration
and maintenance to be operational.

The short duration of the discrete treatment makes us consider running a
more complex analysis over the snapshots to provide the administrator with
more information over detected anomalies. This treatment could include a cor-
relation analysis of the several features scores. A final goal should be to suggest
the network administrator with automatically generated filtering rules.

As a request from our collaborators from Border 6 and regarding implemen-
tation concerns, we also consider evaluating AATAC over sampled traces. We
plan to evaluate the impact of sampling on both the computational resource
consumption and the detection accuracy.
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