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Abstract

This paper studies optimal control subject to changing conditions. This is an area that
recently received a lot of attention as it arises in numerous situations in practice. Some
applications being cloud computing systems where the arrival rates of new jobs fluctuate over
time, or the time-varying capacity as encountered in power-aware systems or wireless downlink
channels. To study this, we focus on a restless bandit model, which has proved to be a powerful
stochastic optimization framework to model scheduling of activities. In particular, it has been
extensively applied in the context of optimal control of computing systems. This paper is a
first step to its optimal control when restless bandits are subject to changing conditions, the
latter being modeled by Markov-modulated environments.

We consider the restless bandit problem in an asymptotic regime, which is obtained by
letting the population of bandits grow large, and letting the environment change relatively
fast. We present sufficient conditions for a policy to be asymptotically optimal and show that
a set of priority policies satisfies these. Under an indexability assumption, an averaged version
of Whittle’s index policy is proved to be inside this set of asymptotic optimal policies. The
performance of the averaged Whittle’s index policy is numerically evaluated for a multi-class
scheduling problem in a wireless downlink subject to changing conditions. While keeping the
number of bandits constant, we observe that the average Whittle index policy becomes close
to optimal as the speed of the modulated environment increases.

1 Introduction

Optimal control subject to changing conditions is an area that recently received a lot of attention
as it arises in numerous situations in practice. For example, the arrival rate of new jobs in call
centers, hospital ERs or cloud computing systems vary strongly over time. Another example is
systems with time-varying capacity as encountered in power-aware systems where the speed is a
controllable parameter [1] or in a wireless downlink channel where quality of the downlink channel
is influenced by fading and interference effects [13].
In general, finding optimal solutions for stochastic scheduling problems in a changing environment is
notoriously difficult and the results obtained are scarce. In this paper we will restrict our attention
to optimal control in a restless bandit problem as this provides a powerful optimization framework
to model dynamic scheduling of activities. In particular, regarding optimal control of computing
systems, the restless bandit framework has been successfully applied in for example the context of
wireless downlink scheduling [3, 7, 33], load balancing problems [26], systems with delayed state
observation [19], broadcast systems [35], multi-channel access models [2, 27], stochastic scheduling
problems [4, 23, 30] and scheduling in the presence of impatient customers [9, 22, 25, 31].
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The restless bandit problem is concerned with the optimal dynamic activation of several competing
bandits. Each bandit is a controllable stochastic process whose state evolution depends on whether
or not the bandit is made active. The aim is to find a control that determines at each decision
epoch which bandits to activate in order to minimize the cost over time associated to the states
the bandits are in. In the by now classical multi-armed bandit model, [21], it is assumed that only
active bandits can change state. In [39], Whittle introduced the so-called restless bandits, where
a bandit can also change its state while being passive (that is, not active), possibly according
to a different law from the one that applies when it is active. The restless bandit model gained
popularity due to its multiple applications in, real-life examples.
The restless bandit problem is an important subclass of Markov decision problems, which, in
general, are hard to solve [21, 28, 40]. Obtaining optimal solutions for Markov decision problems
are typically out of reach for dimensions higher than two, the so-called “curse of dimensionality”.
In fact, finding an optimal solution for restless bandit problems is PSPACE-hard, hence infeasible.
The elegance of the class of restless bandit problems lies in the fact that a powerful approximation
framework exists, allowing to go beyond the dimension of two. This technique, as proposed by
Whittle [39], consists of solving a relaxed version of the optimization problem where the sample-
path constraint on the maximum number of active bandits is relaxed to its time-average version.
This simplifies notably the problem as it allows to reduce the multi-dimensional control problem to
several one-dimensional control problems. An optimal solution of the relaxed problem is described
by index values, where each bandit is associated an index that only depends on its own state and
its own transition rates. This provides a policy for the original problem, the so-called Whittle
index policy that activates at each moment in time the bandits having currently the highest index
values.
In this paper, we make a first step in the optimal control of the restless bandit problem living
in a changing environment. Each bandit is associated a Markov modulated environment, whose
state influences the transition rates of the bandits. No assumption is made on the correlation
between the different random environments of bandits. In the case of independent distributed
environments, this allows to model the effect of fluctuating parameters, for example, the arrival
rate of new jobs as one may encounter in load balancing systems, or the abandonment rate of
impatient customers. On the other hand, when environments are strongly correlated, one could
model dependence between different bandits through “environmental effects” as one encounters for
example in wireless downlink scheduling.
Our main focus will be on a rapidly varying environment, which allows us to find asymptotically
optimal policies for Markov-modulated restless bandits. In addition, we assume one cannot observe
the environment. Note that in practice one could use Bayesian analysis to infer the environment
from the events that happened. However, as the environments vary relatively fast, it might be too
costly to learn the environment and/or to change action each time the environment changes. We
therefore focus on policies that are not trying to learn the state of the environments.
We will propose an index policy and prove it to be optimal in the asymptotic regime as the number
of bandits grows large and the environment changes relatively fast. This regime is motivated by
the seminal work in [38], where for the standard restless bandit problem, Whittle’s index policy
was shown to be optimal as the number of bandits that can be made active grows proportionally
to the total number of bandits. Recently, in [24] approaches of [38] were set forth and extended to
problems for which a bandit can have multiple activation levels. In [37] a different proof technique is
used to include models with possible new arrivals of bandits, and asymptotic optimality is proved
for a set of priority policies. Another recent result on asymptotic optimality is [33] where the
authors considered a specific model representing downlink scheduling in wireless systems.
When fixing the policy, our model can be seen as a particle system living in a Markov modulated
environment. Since the speed of the background processes will scale proportionally with the number
of bandits, we can use convergence results as obtained in [10, 12] for particle systems living in a
rapidly varying environment. In particular, they derived that in the limit the system is described
by an ODE where the transitions rates of the bandits are averaged according to the steady-state
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distribution of the modulated environments. The paper [12] considers a countable state space and
each particle is associated its own modulated environment (no assumption is made on the joint
evolution of the environments). On the other hand, in [10] a finite state space and one common
environment is considered, resulting in less complex technical conditions.
The novelty of our work is the addition of the Markov modulated environment to the restless
bandit model.

• In our first main contribution, we prove a set of priority policies to be asymptotically optimal.

• In our second main contribution, we introduce the averaged Whittle index policy and prove
it to be inside the set of asymptotically optimal policies.

• The numerical evaluation of the averaged Whittle index policy shows optimal performance
as the speed of the environment is fast enough. The numerical example considered is that of
a multi-class scheduling problem in a wireless downlink. In particular, this example shows
that the averaged Whittle index policy performs close to optimal even though the number of
bandits remains constant.

The remainder of this paper is organized as follows. In Section 2 we describe related work on
optimal scheduling in a changing environment. In Section 3, we define the multi-class restless
bandit control problem and introduce the Markov modulated environments. Section 4 contains
the asymptotic optimality results. In Section 5, we define a set of priority policies and prove them
to be asymptotically optimal when the state space is finite. In Section 6 we define an averaged
version of Whittle’s index policy and prove it to be asymptotically optimal. Section 7 presents our
numerical results.

2 Related work

In this section we describe several works related to the optimal control of stochastic scheduling
problems living in a changing environment.
In the case of a(n) (partially) unobservable modulating environment, optimal stochastic control
can be solved using Bayesian dynamic programming. The latter involves continuity of the state
space and as such there is a lack of tractable solution methodologies [34]. For results regarding
specific models, we mention here for example [5, 6, 29]. In [5] optimal load balancing is studied
when the queue lengths of the servers are unobservable. A set of round-robin policies is proved
to be optimal in a heavy-traffic many-server limiting regime. Optimal control in a multi-class
queueing system where the server performance varies according to a Markov modulated random
environment is studied in [6, 29]. The environment can be partially observed for the activated
server. As the control decision influences the observation made, the authors search for policies
that achieve maximum stability.
In the case of an observable environment, we refer to [7, 8, 17] where efficient controls are derived
for a single server with an observable time-varying capacity. For limiting regimes, optimal policies
in the observable environment setting have been obtained in [15] and [20]. In [20], a general particle
system with one common underlying observable environment is studied. The authors show that the
optimal cost and optimal policy converges, as the number of particles grow, to those of a discrete-
time deterministic system with observable environment. The authors of [15] study a multi-class
scheduling problem with one common observable environment in a heavily-loaded regime. For
modulated arrival rates it is shown that the cµ-rule (which is optimal in a standard multi-class
queue [16]) is asymptotically optimal for fast changing environment, fixed environment, and slowly
changing environment. In the case of modulated service rates, an averaged version of the cµ-rule
is shown to be asymptotically optimal only in the case of a fast changing environment.
In the context of learning bandits, we like to mention the work [36], where optimal control in a
changing environment is studied. Here, the laws according to which the bandits evolve and receive
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reward/cost, are not known to the decision maker [14]. In [36] it is assumed that the (unknown)
laws depend on the modulated environment. The aim is to find an algorithm that finds the right
trade-off between exploitation and exploration in order to converge to the best bandit, i.e., minimize
the regret (the cost due to the fact that a globally optimal policy is not followed at all time). This
as opposed to the restless bandit setting in the current paper, where the laws according to which
the state of the bandits changes are known and the aim is to find a dynamic control that achieves
close to optimal performance.

3 Model description

We consider a multi-class restless bandit problem in continuous time. There are K classes of
bandits and there are Nk class-k bandits present in the system. We further define N :=

∑
kNk

as the total number of bandits and define γk := Nk/N as the fraction of class-k bandits. At any
moment in time, a class-k bandit is in a certain state j ∈ {1, 2, . . . , Jk}, with Jk ≤ ∞. In particular,
the state space can be countable infinite.
At any moment in time, a bandit can either be kept passive or active, denoted by a = 0 and a = 1,
respectively. There is the restriction that at most αN bandits can be made active at a time, α ≤ 1.
The transitions of the class-k bandits depend on a background process described by the Markov
process Dk(t) that lives in a countable state space Z = {1, . . . , d, . . .} and is positive recurrent.

We make no further assumptions on the distribution of the joint vector ~D = (D1, . . . , DK). For
example, it could be that there is one common environment for all classes of bandits, or instead, the
environments per class are independently distributed. We further let φ(~d) denote the stationary

probability vector that the environment vector ~D is in state ~d. We let φk(d) denote the marginal

probability of environment Dk to be in state d. We further assume that
∑

~d′ r(
~d′|~d) < C1, for all

~d, for some C1 <∞, with r(~d′|~d) the transition rate of ~D(t) from ~d to ~d′.
When action a is performed on a class-k bandit in state i, i = 1, . . . , Jk, and the environment of this

class-k bandit is in state d, it makes a transition to state j with rate 1
N q

(d)
k (j|i, a), j = 1, . . . , Jk,

j 6= i. The scaling 1/N makes sure that the evolution of the state of a bandit is relatively slow
compared to that of its environment, i.e., the environment changes relatively fast. We assume
that the evolution of one bandit (given its action and the state of its environment) is independent
of that of all the other bandits. We further define the averaged transition rate by qk(j|i, a) :=∑
d∈Z φk(d)q

(d)
k (j|i, a). The fact that the state of a bandit might evolve even under the passive

action explains the term of a restless bandit. Throughout the paper, we assume that the transition
rates are uniformly bounded, i.e.,

Jk∑
j=1

q
(d)
k (j|i, a) < C2, for all a, d, i, k, (1)

for some C2 <∞.
A policy determines at each decision epoch which αN bandits are made active. Decision epochs
are moments when one of the N bandits changes state. We focus on Markovian policies that base
their decisions only on the current proportion of bandits present in the different states. Hence,
this means that the decision maker cannot observe the state of the background process ~D(t). In
addition, we assume the decision maker does not attempt to learn the state of the environment
either. We write ~x := (xj,k; k = 1, . . . ,K, j = 1, . . . , Jk), where xj,k represents the proportion of
class-k bandits that are in state j, hence,

~x ∈ B :=

~x : 0 ≤ xj,k ≤ 1 ∀j, k and
∑
j

xj,k = γk

 .
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Given policy π, we then define the function yπ,1 : B → [0, 1]
∑K
k=1 Jk that distinguishes the action

chosen for the bandits. That is, given a policy π, yπ,1j,k (~x) denotes the proportion of class-k bandits
in state j that are activated when the proportion of bandits in each state is given by ~x. Hence,
yπ,1(·) satisfies yπ,1j,k (~x) ≤ xj,k and yπ,1j,k (~x) ≤ α, ∀j, k. We focus on the set of policies such that

yπ,1(·) is continuous. We further define yπ,0j,k (~x) := xj,k − yπ,1j,k (~x), as the proportion of class-k
bandits in state j that are kept passive.
For a given policy π, we define ~XN,π(t) := (XN,π

j,k (t); k = 1, . . . ,K, j = 1, . . . , Jk), with XN,π
j,k (t)

the number of class-k bandits that are in state j at time t.
Our performance criteria are stability and long-run average holding cost. For a given policy π, we
will call the system stable if the process ~XN,π(t) has a unique invariant probability distribution.

We will denote by ~XN,π and XN,π
j,k the random variables following the steady state distributions,

assuming they exist. In case the state space is finite, the process ~XN,π(t) being unichain is a
sufficient condition for stability of the policy π. For infinite state space, whether or not the system
is stable can depend strongly on the employed policy. We will only be interested in the set of stable
policies.

We denote by C
(d)
k (j, a) ∈ R, j = 1, . . . , Jk, the holding cost per unit of time for having a class-

k customer in state j under action a and when in environment d. We note that C
(d)
k (j, a) can

be negative, i.e., representing a reward. We define the holding cost averaged over the states of

the environment as Ck(j, a) :=
∑
d∈Z φk(d)C

(d)
k (j, a). We further introduce the following value

functions for given policy π, and initial proportion of bandits
~XN,π(0)

N
= ~x ∈ B:

V N,π− (~x) := lim inf
T→∞

1

T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yπ,aj,k

(
~XN,π(t)

N

)
dt


and

V N,π+ (~x) := lim sup
T→∞

1

T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yπ,aj,k

(
~XN,π(t)

N

)
dt

 . (2)

If V N,π− (~x) = V N,π+ (~x) for all ~x, then we define V N,π(~x) := V N,π+ (~x). We assume there exists a
stable policy for which V N,π(~x) <∞. Our objective is to find a policy π∗ that is average optimal,

V N,π
∗

+ (~x) ≤ V N,π− (~x), for all ~x and for all policies π, (3)

under the constraint that at any moment in time at most αN bandits can be made active, that is,

K∑
k=1

Jk∑
j=1

yπ,1j,k

(
~XN,π(t)

N

)
≤ α, for all t. (4)

4 Rapidly varying modulated environments

In this section we study the process as the background process is fast changing and the number of
bandits scales. In Section 4.1 we prove asymptotic independence between the proportion of bandits
in each state and the environment. In Section 4.2 we establish convergence to a fluid limit and use
this to lower bound the performance for any policy. This lower bound allows to prove asymptotic
optimality of certain policies, which is presented in Section 4.3.
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4.1 Asymptotic independence

In the lemma below we prove that the bandits are asymptotically independent of the environment,
i.e., when the amount of bandits N tends to infinity. The proof can be found in the Appendix.

Lemma 4.1 Assume π is a stable policy for any N . Then, for any subsequence of N such that(
~XN,π/N

)
N∈N

converges in distribution, we have

lim
N→∞

E

(
e−s11

X
N,π
11
N . . . e−sJKK

X
N,π
JKK

N 1(~D=~d)

)
= φ(~d) lim

N→∞
E

(
e−s11

X
N,π
11
N . . . e−sJKK

X
N,π
JKK

N

)
. (5)

4.2 Fluid control problem and lower bound

In this section we study the behavior of the system as N grows large, that is, as the number of
bandits grows large and the environments vary rapidly. We state convergence to the fluid limit
and derive an associated fluid control problem. The latter allows to derive a lower bound on the
average holding cost for any policy π.
Before presenting the fluid process to which the stochastic system converges, we first provide
some intuition. Recall that the transition rate of a bandit in state j to state i, when action a

is performed, is given by 1
N q

(d)
k (i|j, a). Since the rates of the background process do not scale

with N , when we take N → ∞, the bandit will perceive a rapidly changing environment. Before
it can make a new transition, its environment has already changed infinitely many times. Its
transition rate will therefore be the average over the states the environment can be in, that is

qk(j|i, a) =
∑
d∈Z φk(d)q

(d)
k (j|i, a). The fluid process then arises by taking into account only the

mean drifts q.
We denote by u a fluid control and let xu(t) be the corresponding fluid process. Let xu,aj,k (t) denote

the proportion of class-k fluid in state j under action a at time t and let xuj,k(t) = xu,0j,k (t) + xu,1j,k (t)
be the proportion of class-k fluid in state j.
We consider fluid controls u(t) that base their actions only on the state of the fluid process x(t).
As such, policies for the stochastic process can be reduced to controls for the fluid problem. In
particular, when given a policy π, the corresponding fluid control u = π is defined as

xu,aj,k (t) = yπ,aj,k (~xπ(t)). (6)

We define the dynamics of xu(t) as follows:

dxuj,k(t)

dt
=

1∑
a=0

Jk∑
i=1,i6=j

xu,ai,k (t)qk(j|i, a)−
1∑
a=0

Jk∑
i=1,i6=j

xu,aj,k (t)qk(i|j, a)

=

1∑
a=0

Jk∑
i=1

xu,ai,k (t)qk(j|i, a), (7)

where the last step follows from qk(j|j, a) := −
∑Jk
i=1,i6=j qk(i|j, a). The constraint on the fluid

control u is that the total proportion of active fluid satisfies

K∑
k=1

Jk∑
j=1

xu,1j,k (t) ≤ α, for all t ≥ 0. (8)

In the lemma below we formally state the convergence of the stochastic process ~Xπ(t)/N of the
proportions of bandits. This result will not be used in any of the proofs of our results, but is
presented for completeness. The proof can be found in the appendix.
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For the convergence to hold, it is assumed in Lemma 4.2 that the process describing the state of
a class-k bandit at time t, is tight [11] in N , that is, roughly speaking that the processes must
not oscillate too wildly so that probability mass cannot disappear from compact sets. For either a
finite state space (Jk <∞) or when the possible transitions in each state is finite, tightness follows
directly, see [12, page 12] for details.

Lemma 4.2 Assume policy π is such that yπ,1j,k (·) is uniformly Lipschitz continuous, i.e.,

sup
j,k
|yπ
∗,1
j,k (~x)− yπ

∗,1
j,k (~z)| ≤ C sup

i,l
|xi,l − zi,l|, for all ~x, ~z, (9)

with C > 0. For a given policy π, if the process describing the state of a class-k bandit at time

t is tight (with respect to N), then the stochastic process
~XN,π(Nt)

N converges to the deterministic
process xu(t), with u = π (as defined in (6) and (7)).

We will be interested in finding an optimal equilibrium point ~x of the fluid dynamics that minimizes
the holding cost averaged over the environments,

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

φk(d)C
(d)
k (j, a)xaj,k =

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)xaj,k.

Setting (7) equal to zero, this gives us the following linear optimization problem:

(LP ) v∗ := min
(xaj,k)

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)xaj,k

s.t. 0 =

1∑
a=0

Jk∑
i=1

xai,kqk(j|i, a), ∀ j, k, (10)

K∑
k=1

Jk∑
j=1

x1j,k ≤ α, (11)

Jk∑
j=1

1∑
a=0

xaj,k = γk, ∀ k (12)

xaj,k ≥ 0, ∀ j, k, a, (13)

Let x∗ and v∗ denote an optimal solution and optimal value of the (LP) problem, respectively.
In Lemma 4.4 below, we use the LP formulation to find a lower bound on the original stochastic
optimization problem. For that, we need the following condition.

Condition 4.3 Given a policy π,

a) the process
~XN,π

N (t) has a unique invariant probability distribution pN,π ∀N .

b) the family
{
pN,π

}
N∈N is tight.

c) the family
{
pN,π

}
N∈N is uniform integrable.

When bandits have a finite state space (Jk < ∞), the condition is true whenever XN,π(t) is
unichain.

Lemma 4.4 Assume Condition 4.3 is satisfied. It then holds that the feasible set of the (LP)
problem is non-empty and

lim inf
N→∞

V N,π− (~x) ≥ v∗, (14)

with v∗ the optimal value of the (LP) problem.

The proof can be found in the appendix.
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4.3 Asymptotic optimality

In this section we present the asymptotic optimality results.

Proposition 4.5 Let x∗ be an optimal solution of the (LP) problem. Let π∗ be a policy for which
the fluid process xπ

∗
(t) converges to x∗ as t → ∞, and x∗ is the unique equilibrium point (global

attractor property). Assume π∗ satisfies Condition 4.3 and the assumptions made in Lemma 4.2.
Then, π∗ is asymptotically optimal, that is, for all ~x and all policies π, it holds that

lim
N→∞

V N,π
∗
(~x) ≤ lim inf

N→∞
V N,π− (~x). (15)

In Section 5 we will present a class of policies that satisfy (9). The global attractor property is
verified numerically for the different examples presented in this paper, see Section 7.

Proof of Proposition 4.5: In [12, Theorem 2.3] the mean-field limit for a particle system in
a rapidly varying environment is given for the stationary regime. Since we assumed tightness of
~XN,π

∗

N (Condition 4.3) and the fact that the fluid process xπ
∗
(t) has a unique global attractor x∗,

we can apply their result. Also recall the discussion in the proof of Lemma 4.2. Hence, from [12,

Theorem 2.3] we have, limN→∞ P
(
~XN,π

∗

N = x∗
)

= 1, for each state j and class k. Together with

Lemma 4.1, this gives

lim
N→∞

P

(
~XN,π∗

N
= x∗, ~D = ~d

)
= φ(~d). (16)

Recall that Ck(j, a) =
∑
d∈Z φk(d)C

(d)
k (j, a). Thus

lim
N→∞

V N,π
∗

+ (~x) = lim
N→∞

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

∑
~x

C
(d)
k (j, a)yπ

∗,a
j,k (~x) · P(

~XN,π∗

N
= ~x, ~D = ~d)

=

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

C
(d)
k (j, a)yπ

∗,a
j,k (~x∗)φk(d)

=

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)x∗,aj,k = v∗.

where the first step follows from the ergodicity theorem, the second step from uniform integra-
bility of ~X/N(interchange of limit and summations) and (16), the third step from the fact that

yπ
∗,a
j,k (~x∗) = x∗,aj,k (see (6) and limt→∞ xπ

∗
(t) = x∗), and the last step follows since x∗ is an optimal

solution of (LP). This concludes the proof of Proposition 4.5. �

5 Priority policies

In this section we will define an important class of priority policies for which we can prove asymp-
totic optimality results.
A priority policy is defined as follows. There is a predefined priority ordering on the states each
bandit can be in. At any moment in time, a priority policy makes active a maximum number of
bandits being in the states having the highest priority among all the bandits present. Hence, for a
given priority policy prio, we would have that the proportion of class-k bandits in state j that see
action 1 is given by

yprio,1j,k (~x) = min

α− ∑
(i,l)∈Spriok (j)

xi,l

+

, xj,k

 , (17)
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where Spriok (j) denotes the set of pairs (i, l), i = 1, . . . , Jl, l = 1, . . . ,K such that class-l bandits in
state i have higher priority than class-k bandits in state j under policy prio. In the lemma below
we show that this function satisfies (9) when bandits have a finite state space. The proof is in the
Appendix.

Lemma 5.1 If Jk <∞, Equation (9) is valid for any priority policy.

We now define a set of priority policies Π∗ that will play a key role in the paper. The priority
policies are derived from (the) optimal equilibrium point(s) x∗ of the (LP) problem: for a given
equilibrium point x∗, we consider all priority orderings such that the states that in equilibrium
are never passive (x∗,0j,k = 0) are of higher priority than states that receive some passive action

(x∗,0j,k > 0). In addition, states that in equilibrium are both active and passive (x∗,0j,k · x
∗,1
j,k > 0)

receive higher priority than states that are never active (x∗,1j,k = 0). Further, if the full capacity is not

used in equilibrium (that is,
∑
k

∑
j x
∗,1
j,k < α), then the states that are never active in equilibrium

are never activated in the priority ordering. The set of priority policies Π∗ is formalized in the
definition below. In particular, in the next section we will prove that an averaged version of the
well-known Whittle’s index policy is in fact inside this set of policies.

Definition 5.2 (Set of priority policies Π∗)
We define

X∗ := {x∗ : x∗ is an optimal solution of (LP) with xk(0) = Xk(0) }.

The set of priority policies Π∗ is defined as

Π∗ := ∪x∗∈X∗Π(x∗),

where Π(x∗) is the set of all priority policies that satisfy the following rules:

1. A class-k bandit in state j with x∗,1j,k > 0 and x∗,0j,k = 0 is given higher priority than a class-k̃

bandit in state j̃ with x∗,0
j̃,k̃

> 0.

2. A class-k bandit in state j with x∗,0j,k > 0 and x∗,1j,k > 0 is given higher priority than a class-k̃

bandit in state j̃ with x∗,0
j̃,k̃

> 0 and x∗,1
j̃,k̃

= 0.

3. If
∑K
k=1

∑Jk
j=1 x

∗,1
j,k < α, then any class-k bandit in state j with x∗,1j,k = 0 and x∗,0j,k > 0 will

never be made active.

We can now state the asymptotic optimality result for priority policies in the class Π∗. Intuitively,
this result can be explained as follows. Let π∗ be some policy from the set Π(x∗) ⊂ Π∗. It is easily
verified that x∗ is an equilibrium point of the fluid process xπ

∗
(t). If in addition, the point x∗

is a global attractor, that is, for any initial point, the process xπ
∗
(t) converges to x∗, then using

Proposition 4.5 one obtains the result.

Corollary 5.3 Assume a finite state space, Jk <∞, for all k. For a given policy π∗ ∈ Π(x∗) ⊂ Π∗,
assume x∗ is the global attractor of the fluid process xπ

∗
(t). If in addition, the process XN,π∗(t) is

unichain, then π∗ is asymptotically optimal, that is, (15) is satisfied.

Proof: Lemma 5.1 gives that π∗ satisfies (9). Hence the result follows directly from Proposition 4.5.
�

Remark 5.4 (Infinite state space) The assumption of finite state space in order for the priority
policy to be asymptotically optimal was made in order to assure uniformly Lipschitz continuity of

the function yπ
∗,1
j,k (·). In fact, when Jk = ∞, one can easily construct a setting in which (9) does
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not hold. For example, for K = 1, take ~x(l) s.t. x
(l)
i = α/l for i < l, x

(l)
l = 1−α, and x

(l)
i = 0, for

i > l. Take ~z(l) s.t. z
(l)
i = 0 for i < l, z

(l)
l = 1−α, and z

(l)
i = α/l, for i > l. Then, yprio,1l (~x(l)) = 0

and yprio,1l (~z(l)) = 1− α, where prio is the policy that prioritizes state 1 over state 2, and state 2

over state 3, etc. However, supj |x
(l)
j − z

(l)
j | = α/l. Since the state space is infinite, we can now

take l→∞. We then directly see that (9) does not hold.
We however note that in our numerical example, where we consider an infinite state space, we do
observe a very close to optimal performance of the priority policies. In future research, we plan
to further investigate this, and find policies for which asymptotic optimality can be proved in the
infinite state space setting.

6 Averaged Whittle’s index policy

In this section we introduce the averaged version of Whittle’s index policy. This is a particular case
of a priority policy. It is however only defined in case the system is so-called indexable, while our
definition of the set of policies Π∗ is well-defined for both indexable and non-indexable systems.
Before stating our result, we first give a short introduction to Whittle’s index policy for the
standard restless bandit setting (that is, without modulated environment). In order to obtain
a policy for the restless bandit model, Whittle introduced in 1988 a relaxation technique [39].
This approximation consists in relaxing the sample-path constraint into a time-average constraint.
That is, the constraint that at most αN bandits can be active at a time, see (4), is replaced by its
time-average version:

lim
T→∞

1

T
E

∫ T

t=0

K∑
k=1

Jk∑
j=1

yπ,1j,k

(
~XN,π(t)

N

)
dt

 ≤ α. (18)

Using the Lagrangian approach, this relaxed-constraint problem (minimize (2) under constraint (18))
can then be written as minimizing

lim
T→∞

1

T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yπ,aj,k

(
~XN,π(t)

N

)
dt

+W (

∫ T

t=0

K∑
k=1

Jk∑
j=1

yπ,1j,k

(
~XN,π(t)

N

)
dt− αN)

 ,

where W is the Lagrange multiplier (chosen such that the time-average constraint (18) holds).
The latter can be decomposed into K subproblems, one for each class of bandit, where in each
subproblem one needs to minimize the cost term plus a cost W whenever the bandit is made active:

lim
T→∞

1

T
E

(∫ T

t=0

(C
(Dk(t))
k (Sπk (t), Aπl (t)) +W1(Aπk (t)=1)dt

)
, (19)

where Sπk (t) denotes the state of a class-k bandit at time t and Aπk (t) denotes the action chosen
for the class-k bandit under policy π (for the one-dimensional process).
The above relaxation simplifies notably the problem, as it transforms the multi-dimensional stochas-
tic problem to several one-dimensional stochastic problems. We can now define Whittle’s index.

Definition 6.1 (Whittle’s index) Whittle’s index Wk(j) is defined as the least value of W for
which it is optimal in (19) to make the class-k bandit in state j passive.

Under a technical indexability condition – assuring structural properties on the optimal policy of
the relaxed control problem – the optimal solution to the K subproblems can be described by the
Whittle’s indices. We refer to [30] for a survey on indexability results.
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Definition 6.2 (Indexability) A bandit is indexable if the set of states in which passive is an
optimal action in (19) is increasing in W .

The solution for the relaxed subproblem (19) is to activate all bandits that are currently in a
state j such that there Whittle index Wk(j) is larger than W . This solution is however not feasible
for the original K-dimensional problem, since sometimes it may activate more than αN bandits
at a time. For the original problem, the following heuristic was then proposed: active those αN
bandits having currently the highest index value. This is referred to as Whittle’s index policy. The
relaxation technique as such provides a systematic approach to get a simple index policy.
In this paper, we study restless bandits living in a modulated environment. In the limiting regime,
as the environment varies rapidly, we found that a bandit observes only the averaged (over the
steady state of the environment) parameters, that is, qk(·) and Ck(·, ·). This motivates us to define
the averaged Whittle index policy.

Definition 6.3 (Averaged Whittle’s index policy) The averaged Whittle’s index W k(j) for
our restless bandit problem living in a modulated environment is defined as the Whittle index that
would result from the restless bandit problem with parameters qk(i|j, a), Ck(j, a), and no modulating
environment.
The averaged Whittle index policy activates those αN bandits having currently the highest averaged
Whittle index value W k(Sn,k(t)), where Sn,k(t) is the state of the nth class-k bandit, k = 1, . . . ,K,
n = 1, . . . , Nk.

Proposition 6.4 If for the averaged version of the restless bandit problem the process describing
the state of a class-k bandit is unichain, regardless of the policy employed, and in addition the
averaged restless bandit problem is indexable, then there is an x∗ such that the averaged Whittle’s
index policy is inside the set of priority policies Π(x∗) ⊂ Π∗.
If in addition Jk <∞, for all k, and x∗ is the global attractor of the fluid process xπ

∗
(t), then the

averaged Whittle index policy is asymptotically optimal.

The above proposition extends the asymptotic optimality result of Whittle’s index policy as ob-
tained in [24, 37, 38] to that of restless bandits living in rapidly varying Markov modulated envi-
ronments. The assumptions made in Proposition 6.4 are the same as those needed in [24, 37, 38].

Proof of Proposition 6.4: In [37, Proposition 5.6] it was proved that for the standard restless
bandit problem, Whittle’s index policy was inside some set of priority policies defined by some
linear program problem (L̃P ). Since we defined our averaged Whittle’s index policy based on the
standard restless bandit problem with averaged parameters, we directly have that the averaged
Whittle index policy is inside the set of priority policies defined for (L̃P ) based on the averaged
parameters. However, it can be checked that the (L̃P ) for the averagered parameters is equivalent
to our (LP) problem, hence, the averaged Whittle index policy is inside Π̃∗, which is equal to Π∗.
From the unichain assumption, we obtain that Condition 4.3 is satisfied when Jk < ∞. The
asymptotic optimality result now follows directly from Proposition 4.5. �

7 Numerical evaluation

The objective of this section is to evaluate the performance of the averaged Whittle index policy
(and other heuristics) outside the asymptotic regime. We do this for a multi-class scheduling
problem in a wireless downlink channel. The model we consider is the following. There is one
wireless downlink channel that is shared by two classes of users. For a given policy, let Qπk (t)
denote the number of class-k users in the system. Each class of users is associated a Markov
modulated environment, Dk(t), k = 1, 2, which can be in two states. When Dk(t) = d, class-k

users arrive according to a Poisson process with parameter λ
(d)
k , k = 1, 2. At each moment in time,
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the base station can send data to at most one of the classes. Given Dk(t) = d and Qπk (t) = nk,
class k (if served) has departure rate

µ
(d)
k

nk
nk + 1

.

This mimics opportunistic scheduling, since the more class-k users present in the system, the
higher will be the maximum capacity available among the class-k users. See for further details the
discussion in [26, Section 6.1].
The scheduler now needs to decide at each moment in time which of the two classes to activate.
We assume

ρ :=

2∑
k=1

λk
µk

< 1,

with λk =
∑2
d=1 λ

(d)
k φk(d) and µk =

∑2
d=1 µ

(d)
k φk(d), so any work-conserving policy makes the

system stable. The objective will be to minimize the mean number of users in the system.
The performance for a given policy will be computed using the Value Iteration approach [34] by
writing the dynamic programming equation for the process

(Qπ1 (t), Qπ2 (t), D1(t), D2(t)).

Note that we only consider policies that cannot observe the environments when the scheduling
decision is taken.
We describe the averaged Whittle index policy in Section 7.1. We calculate an optimal policy
and numerically evaluate index policies for several settings: in Section 7.3 each class is associated
its own environment in order to model Markov modulated arrival processes. In Section 7.4 we
will study the effect of having one common environment that influences the departure rates of the
classes. In Section 7.5 we discuss the observable case. Our overall conclusion is that the averaged
Whittle index policy performs close to optimal when the modulated environments varies rapidly.

7.1 Averaged Whittle index

This model fits in the restless bandit framework with Markov modulated environments, as presented
in this paper. In particular, there are two bandits, each bandit representing a class of users, and
the state of the class-k bandit representing its queue length Nk. Hence, when Dk = d, the class-k

bandit makes a transition from state nk to state nk + 1 at rate λ
(d)
k , and from nk to nk − 1 at

rate µ
(d)
k

nk
nk+1a, where a = 1 when the class-k bandit is served, and a = 0 otherwise. At most one

bandit can be activated at a time.
Using the expression of Whittle’s index as derived in [26], we obtain that the averaged Whittle
index for the class-k bandit in state n (its queue length), is given by

W k(n) =
E(Qnk )− E(Qn−1k )

πnk (n)− πn−1k (n− 1)
, n = 1, 2, . . . .

Here Qnk denotes the stationary random variable of the one-dimensional birth-and-death process
process with birth rates λk and death rates in state nk at rate 1(nk>n)µk

nk
nk+1 , and πnk (·) denotes

the stationary measure of Qnk .
The averaged Whittle index policy serves at each moment in time the class of users having the
highest index value W k(Nk(t)). From Proposition 6.4 we have that this policy is asymptotically
optimal under certain conditions. One of the conditions concerns indexability, which is easily veri-
fied for this example using [26, Proposition 2]. The global attractor property is verified numerically
for the different examples presented in this section. Another condition needed is that the state
space is bounded, which is not the case for our example. The numerical results however do indicate
a good performance.
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γ 1 5 10 25 50 100 500 750 1000 2500 5000
gOPT 9.6 9.7 9.4 8.6 7.7 7.0 6.2 6.1 6.0 6.0 5.9

gW 11.2 10.9 10.2 8.8 7.7 7.0 6.2 6.1 6.0 6.0 5.9

g
∑
d φ(d)W

(d)

12.6 11.9 10.7 8.9 7.8 7.1 6.3 6.2 6.1 6.1 6.0

gW
(1)

10.6 10.5 10.1 8.8 7.8 7.1 6.2 6.1 6.1 6.0 6.0

gW
(2)

12.3 12.9 13 12.1 11.1 10.2 9.2 9.1 9.1 9.1 9.0

Rel(W ) 16.2 12.7 8.4 2.4 0.4 0.01 0.03 0.03 0.03 0.03 0.03
Rel(

∑
d φ(d)W (d)) 30.9 22.6 14 4.2 1.7 1.4 1.7 1.7 1.7 1.7 1.7

Rel(W (1)) 10.5 9 6.7 2.9 1.3 0.9 0.9 0.9 0.9 0.9 1
Rel(W (2)) 27.6 33.6 37.5 42.1 44 45 49.2 50.2 50.9 52.1 52.6

Table 1: Results for Example 1.

The optimality results in this paper are for the limiting regime where both the number of bandits
(classes) as well as the speed of the modulated environments grow large. In the numerical examples
we will instead keep the number of bandits equal to two, which allows to evaluate the performance
of our policy outside the asymptotic regime. We then evaluate the performance of the averaged
Whittle index policy, as well as other heuristics, for different speeds of the environments.

7.2 Optimal solution

The modulated environments are unobservable. In addition, their evolution does not depend on the
state of the bandits. Since we assume no learning we can find optimal actions with the following
Bellman equation:

V (~n) = n1 + n2 +

2∑
k=1

2∑
d=1

φk(d)λ
(d)
k V (~n+ ek) + min

a∈{1,2}

[
2∑
k=1

2∑
d=1

1(a=k)φk(d)µ
(d)
k V ((~n− ek)+)

]
,

(20)

that is, in every state n, the only information available to the decision maker is the steady-state
distribution of the environment. In the next sections we compare the performance of our heuristics
to that of the performance under the actions as defined in (20).

7.3 Markov modulated arrival processes

Our first numerical example studies Markov modulated arrival processes. That is, environments
D1(t) and D2(t) are two independent Markov processes. Each environment can be in two states
{1, 2} and environment Dk(t) makes a transition from state d to state d′ at rate rk(d′|d). When

class k sees environment d, the arrival rate is λ
(d)
k (while the departure rates remain unchanged).

Example 1: We set the parameters as follows: λ
(1)
1 = 5, λ

(2)
1 = 0.1, λ

(1)
2 = 0.5, λ

(2)
2 = 5, and

µ
(d)
1 = 7.5, µ

(d)
2 = 9, for d = 1, 2. We take rk(2|1) = 0.001 · γ, rk(1|2) = 0.009 · γ, k = 1, 2, and let

γ vary from 1 up to 5000, in order to study the effect of the speed of the modulated environments.
We then have φ1(1) = φ2(1) = 0.9, hence ρ ≈ 0.67.
In Table 1 we show the average performance under the averaged Whittle index policy and that
of the optimal policy. We also show the performance under three other index policies: we con-

sider the index policy
∑2
d=1 φk(d)W

(d)
k (n), which is the Whittle index averaged over the different

environments, and we consider the index policy W
(d)
k (n), which is the Whittle index in case the

environment would be always in state d, d = 1, 2. We denote by gOPT the performance of the
optimal policy as defined in Section 7.2 and let gπ denote the average cost under policy π. We

define by Rel(π) := gπ−gOPT
gOPT

∗ 100% the suboptimality gap (in %). We observe that the averaged
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γ 1 5 10 50 100 500 750 1000 2500 5000 7500 10000 25000
gOPT 56.6 45.8 43.2 40.6 39.8 25.7 17.9 14.1 9.0 7.8 7.4 7.3 7.0

gW 87.4 85.4 84.5 83.0 81.9 43.8 21.0 15.0 9.1 7.8 7.5 7.3 7.0

Rel(W ) 54.4 86.3 96 105 106 70.2 17.4 6.4 0.8 0.3 0.2 0.1 0.04

Table 2: Results for Example 2.

Whittle index policy W is 2.5% away from the lower bound for γ = 25, i.e., when the transition
rates of the environment are rk(2|1) = 0.025 and rk(1|2) = 0.225. Hence, already for a normal
scaled environment, the performance of the averaged Whittle index policy is very close to optimal.
For slow speed, γ = 1, the averaged Whittle index policy is only 16% away from the optimal. The

index policy
∑2
d=1 φk(d)W

(d)
k (n) gives slightly worse performance than that of W .

For any speed of the environment, we observe that the index policy W
(1)
k (n) outperforms the

averaged Whittle index policy, while the index policy W
(2)
k (n) gives very bad performance ranging

between a suboptimality gap of 30% until 53%. This can be explained from the fact that the
environment is 90% of the time in state 1.

7.4 One common environment affecting the departure rates

We now consider one common environment D(t), which can be in two states {1, 2}, with transition
rates r(d′|d). This time, we let the arrival rates be independent of the environment. Instead, the
state of the environment influences both the departure rate of class 1 and class 2.
Example 2: In this example, we chose the parameters such that, when in environment 1, class 1
has a high departure rate and class 2 a low departure rate, while in environment 2, we have the

opposite. The values for the parameters are: λ
(d)
1 = 0.6, λ

(d)
2 = 1.2, for d = 1, 2, and µ

(1)
1 = 4,

µ
(2)
1 = 0.5, µ

(1)
2 = 0.1, µ

(2)
2 = 6. We take r(2|1) = 0.004 · γ, r(1|2) = 0.006 · γ. We then have

φ1(1) = φ2(1) = 0.6, hence ρ ≈ 0.72.

Note that for these parameters, λ
(2)
1 > µ

(2)
1 and λ

(1)
2 > µ

(1)
2 . That is, if D(t) = 1, then class 2 is in

overload, while if D(t) = 2, then class 1 is in overload. In particular, this implies that the indices

W
(d)
k (n) are not well-defined. We therefore only simulate the performance under the averaged

Whittle index policy W .
The results can be found in Table 2. We observe that the averaged Whittle index policy is 6.4%
away from the optimal policy when γ = 1000, i.e., r(2|1) = 4 and r(1|2) = 6. Hence, we observe
that already for a normal scaled environment, the performance of the averaged Whittle index policy
is very close to optimal. When γ = 2500, i.e., r(2|1) = 10 and r(1|2) = 15, the gap reduces to
0.8%. For γ = 500, i.e., r(2|1) = 2 and r(1|2) = 3, and smaller γ, the suboptimality gap becomes
significantly large.
Example 3: In this example, we chose the parameters such that the departure rate of class 1 is
always lower than that of class 2, in each environment. In addition, the departure rate for class 1
is considerably higher in environment 2 compared to its rate in environment 1.

The values for the parameters are: λ
(d)
1 = 1, λ

(d)
2 = 3.5, for d = 1, 2, and µ

(1)
1 = 1.5, µ

(2)
1 = 10,

µ
(1)
2 = 12, µ

(2)
2 = 11. We take r(2|1) = 0.002 · γ, r(1|2) = 0.008 · γ. We then have φ1(1) = φ2(1) =

0.8, hence ρ ≈ 0.61.
The results can be found in Table 3. We observe that the averaged Whittle index policy W is
7% away from the optimal policy for γ = 5000, i.e., the transition rates of the environment are
rk(2|1) = 10 and rk(1|2) = 40. For slow speed, γ = 1, the averaged Whittle index policy is 29%

away from the optimal. The index policy
∑2
d=1 φk(d)W

(d)
k (n) gives worse performance than that

of W .
For any speed of the environment, we observe that the index policy W

(1)
k (n) outperforms the

averaged Whittle index policy, while the index policy W
(2)
k (n) gives very bad performance ranging
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γ 1 5 10 25 50 100 500 750 1000 2500 5000
gOPT 25.9 17.0 13.2 9.4 7.6 6.3 4.8 4.6 4.4 4.2 4.0

gW 33.3 21.4 16.7 12.0 9.5 7.8 5.6 5.2 5.0 4.5 4.3

g
∑
d φ(d)W

(d)

33.3 21.5 16.8 12.2 9.8 8.1 5.8 5.4 5.2 4.8 4.6

gW
(1)

30.0 19.4 15.2 10.9 8.7 7.2 5.3 5.0 4.8 4.4 4.2

gW
(2)

34.1 25.4 20.8 15.4 12.4 10.1 6.8 6.3 6.0 5.3 5.0

Rel(W ) 28.5 26.2 26.6 26.7 25.7 23.7 16 13.9 12.5 8.8 6.9
Rel(

∑
d φ(d)W (d)) 28.9 26.9 27.8 29 29 27.9 21.4 19.5 18.2 14.7 13

Rel(W (1)) 15.7 14.6 15.1 15.8 15.6 14.6 10.5 9.2 8.4 6.1 4.8
Rel(W (2)) 31.8 49.9 57.7 63.5 63.6 60.1 42.2 37.5 34.5 27.5 24.4

Table 3: Results for Example 3.

between a suboptimality gap of 32% until 21%. Again, this difference can be explained from the
fact that the environment is 80% of the time in environment 1.

7.5 Observable environment

In the numerical examples, we observed that already for a rather normal speed of the environment,
the averaged Whittle index policy works well. Hence, in case the decision maker aims for a policy
that is robust with respect to the environment, our heuristic seems to be a good choice. We leave
it for future research to find efficient heuristics in case of an observable environment (or when the
environment could be learned from the state transitions of the bandits). Regarding the latter, for
Example 3 we have calculated the performance under the optimal policy when the environment
can be observed, and where decision epochs are moments when one of the bandits changes state,
or the environment changes state. Note that for the observable setting, the stability condition
strongly depends on the policy employed. Numerically, we derived that being able to observe the
environment gives an improvement of 16% when γ = 1, and of 60% when γ = 50000. The large
improvement, especially when γ = 5000, comes from the fact that the policy will schedule in an
opportunistic manner. Recall that the departure rate of class 1 is much larger in environment 2
(compared to environment 1). Hence, in environment 2, an optimal policy will give more preference
to class 1. However, in environment 1, class 2 has a much higher departure rate compared to
class 1, hence, more priority will be given to class 2. Observing the environment, and being able to
change the action when the environment changes, makes this large improvement in the performance
possible.

8 Conclusions and future work

This paper presents a first step to the optimal control of stochastic scheduling problems in a
Markov modulated environment. We assumed the decision maker cannot observe the state of
the environment. Since the environment varies in the limit very rapidly, bandits only experience
the averaged behavior of the environments, and as such we proved that the averaged version of
Whittle’s index policy is asymptotically optimal.
Numerically we observed that the averaged Whittle index policy performs close to optimal when
the speed of the environment grows large, even though the number of bandits remained fixed.
Further insights remain to be derived for efficient control when the speed of the environment is
of normal order, or arbitrarily slow. On a similar note, it would be interesting to investigate
efficient control in the case of an observable environment. Then, it could be expected that certain
environment-dependent index policies provide provably close to optimal performance.
For the problem as presented in this paper, there are many interesting threads to be further
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developed. For example, it remains to be understood what would be efficient heuristics for the
case of an infinite state space, since only in the case of a finite state space we were able to propose
concrete policies that satisfy (9). As future work, we further plan to investigate what happens if
the evolution of the environment can also depend on the population of bandits. For example, it
might be the case that the environment represents the queue length, whose evolution depends on
the state of a server (bandit). Other interesting extensions are to include arrivals of new bandits
to the system, as was done in [37]. This would require an extension of the results as presented
in [12].
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Appendix

Proof of Lemma 4.1: For ease of notation, we remove the superscripts π and N in the proof.

For the random vector
~X
N (t), we define the following Probability Generating Function (21) and the

Moment Generating Function (22), conditioned on the environment vector ~d:

g(
~d)(~z) := E

(
z
X11
N

11 z
X21
N

21 . . . z
Xjk
N

jk . . . z
XJKK

N

JKK
1(~D=~d)

)
=
∑
~x

z
x11
N

11 z
x21
N

21 . . . z
xjk
N

jk . . . z
xJKK

N

JKK
P

(
~X

N
= ~x, ~D = ~d

)
, (21)

and

g̃(
~d)(~s) = g(

~d)(e−~s) = E
(

e−~s
~X
N 1(~D=~d)

)
. (22)
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The balance equations for the Markov process

(
~X(t)

N
, ~D(t)

)
state that for each (~x, ~d), we have

P

(
~X

N
= ~x, ~D = ~d

) ∑
~d′∈ZK

r(~d′|~d) +
∑
k,a,i,j

1

N
q
(dk)
k (j|i, a)yai,k(~x) ·N

 (23)

=
∑
~d′∈ZK

r(~d|~d′)P

(
~X

N
= ~x, ~D = ~d′

)
+

∑
k,a,j

i/xi,k>0
j/xj,k<1

1

N
q
(dk)
k (i|j, a)yaj,k(~x+

~ej,k
N
− ~ei,k

N
)

·N · P

(
~X

N
= ~x+

~ej,k
N
− ~ei,k

N
, ~D = ~d

)
.

Note that we have to restrict the sum on the rhs in order to consider the boundary cases. Mul-
tiplying (23) by zx11

11 . . . z
xJKK
JKK

, summing over ~x on both sides of the equality, we then obtain the
following expression:

g(
~d)(~z)

∑
~d′∈ZK

P (~d′|~d) +
∑
~x

zx11
11 . . . z

xJKK
JKK

P

(
~X

N
= ~x, ~D = ~d

) ∑
k,a,i,j

q
(dk)
k (j|i, a)yai,k(~x) (24)

=
∑
~d′∈ZK

P (~d|~d′) g(~d
′)(~z) +

∑
~x

zx11
11 . . . z

xJKK
JKK

∑
k,a,j

i/xi,k>0
j/xj,k<1

q
(dk)
k (i|j, a)yaj,k(~x+

~ej,k
N
− ~ei,k

N
)

· P

(
~X

N
= ~x+

~ej,k
N
− ~ei,k

N
, ~D = ~d

)
.

Below we will show that the second terms in both the LHS and the RHS of (24) are equal when
taking limits. We begin rewriting the second term in the LHS. By changing variables ~z → e−~s

(since in the limit we have that
~X
N is a continuous variable), we have that it is equal to

∑
~x

e−s11x11 . . . e−sJKKxJKK
∑
k,a,i,j

q
(dk)
k (j|i, a)yai,k(~x) · P

(
~X

N
= ~x, ~D = ~d

)
. (25)

We make the same change of variables in the second term in the RHS. Furthermore, the sums
in k, a, i, j are bounded, because of the hypothesis (1), the fact that yaj,k(.) is a proportion and
P is a probability. Thus, as a consequence of Fubini’s theorem, we can interchange the order of
summations:∑

k,a,i,j

∑
~x/xi,k>0
xj,k<1

e−s11x11 . . . e−sJKKxJKK q
(dk)
k (i|j, a) · yaj,k(~x+

~ej,k
N
− ~ei,k

N
)

· P

(
~X

N
= ~x+

~ej,k
N
− ~ei,k

N
, ~D = ~d

)
.

19



For each fixed k, i and j, we also make the change of variables ~x→ ~y +
ei,k
N −

ej,k
N ,

∑
k,a,i,j

∑
~y/yi,k<1
yj,k>0

e−s11y11 . . . e−sJKKyJKK
e−

∑
k si,k
N

e−
∑
k sj,k
N

· q(dk)k (i|j, a)yaj,k(~y)P

(
~X

N
= ~y, ~D = ~d

)

=
∑
~y

e−s11y11 . . . e−sJKKyJKK
e−

si
N

e−
sj
N

·
∑
k,a,j

i/yi,k<1
j/yj,k>0

q
(dk)
k (i|j, a)yaj,k(~y)P

(
~X

N
= ~y, ~D = ~d

)
. (26)

Comparing (25) and (26) there are two aspects that remain different. The first one is the restriction
of suming only when yj,k > 0 and yi,k < 1 in (26), but we can add the boundary cases which only
sum 0: note that when yj,k = 0, there would be a yaj,k(~y) = 0 multiplying, and when yi,k = 1, as
it’s a proportion in class k bandits, this means that yj,k = 0 and again there would be a yaj,k(~y) = 0

multiplying. The second aspect is the factor
e−

∑
k si,k
N

e−
∑
k sj,k
N

, which converges to 1 as N → ∞. Since

yaj,k(~x) ≤ 1, in the limit both terms are the same.
So we can conclude from (24) that

lim
N→∞

g̃(
~d)(~s)

∑
~d′∈ZK

r(~d′|~d) =
∑
~d′∈ZK

r(~d|~d′) lim
N→∞

g̃(
~d′)(~s), (27)

that is, limN→∞ g̃(
~d)(~s) satisfies the balance equations for ~D. Thus, limN→∞ g̃(

~d)(~s) = c(~s)φ(~d),

where c(~s) does not depend on ~d. When summing both sides over ~d, we obtain c(~s) = limN→∞ E
(

e−
~s ~X
N

)
,

that is, Equation (5) holds true. �

Proof of Lemma 4.2 In [12], the mean-field limit is obtained for a particle system living in a
rapidly varying environment. In particular, in [12, Theorem 2.2] the convergence result in the
transient regime is obtained, which would prove our lemma. Hence, to use the results obtained
in [12] we need to verify several the assumptions A0-A8 as made in that paper. We will do so
below.
Each bandit represents a particle, and a transition of a class-k bandit/particle from state j to state
i when in environment d occurs at rate

1

N

1∑
a=0

q
(d)
k (i|j, a)yπ,aj,k

(
~X(t)

N

)
, (28)

where yπ,aj,k

(
~X(t)
N

)
needs to be interpreted as the probability for a class-k bandit in state j to see

action a. Expression (28) is the equivalence of [12, Equation (3)].
In [12] a discrete-time setting is considered. In the model we consider, the transition rates are
uniformly bounded1, hence we can uniformize our system to obtain a discrete-time model [32,
Section 2.6]. Furthermore, we consider a multi-class particle system, while the results in [12] are
for an exchangeable system. As noted in [12, page 38], this is easily generalized to a multi-class
model, when adding a class description to the state of the bandit and having the class of the vector
of bandits at time 0 be determined by an exchangeable random vector.
We are left with verifying Assumptions A0-A8 as stated in [12]. Most of them are true by
definition, except for A0 and A2, which we discuss in the remainder of the proof.

1The transition rate out of state ( ~X, ~D) are
∑

i,k Xj,kq
(d)
k (i|j, a)/N+

∑
~d′ r(

~d′| ~D) ≤ C1+maxj,k
∑

i q
(d)
k (i|j, a) <

C1 + C2, where we use the assumption made on the environment in Section 3 and (1).
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[A0.] states a weak correlation between the bandits’ transitions. That is, let An,k(t) denotes the
event of the n-th class-k bandit to have a transition at time t. Then in A0 of [12] it is assumed that
P (An1,k1(t)An2,k2(t)) ≤ ρ(N)/N, with ρ(N) → 0. For our model this is satisfied, since bandits
behave independently from each other, hence this probability is equal to zero.
[A2.] states that the transition rates of the bandits are uniformly Lipschitz, using the total
variation between two empirical measures. That is, there exists a constant C such that for every
~x, ~z,

sup
j,k,d

{
Jk∑
i=1

|q(d)k (i|j, 0)yπ,0j,k (~x) + q
(d)
k (i|j, 1)yπ,1j,k (~x)− q(d)k (i|j, 0)yπ,0j,k (~z)− q(d)k (i|j, 1)yπ,1j,k (~z)|

}
≤ C sup

j,k
|xj,k − zj,k|. (29)

The LHS is equal to

sup
j,k,d

{
Jk∑
i=1

|q(d)k (i|j, 0)
(
yπ,0j,k (~x)− yπ,0j,k (~z)

)
+ q

(d)
k (i|j, 1)

(
yπ,1j,k (~x)− yπ,1j,k (~z)

)
|

}

≤ sup
j,k,d

{
Jk∑
i=1

q
(d)
k (i|j, 0)|yπ,0j,k (~x)− yπ,0j,k (~z)|+ q

(d)
k (i|j, 1)|yπ,1j,k (~x)− yπ,1j,k (~z)|

}
≤ C2 sup

j,k,d

{
|yπ,0j,k (~x)− yπ,0j,k (~z)|+ |yπ,1j,k (~x)− yπ,1j,k (~z)|

}
≤ C2 sup

j,k,d

{
|xj,k − zj,k|+ 2|yπ,1j,k (~x)− yπ,1j,k (~z)|

}
≤ C2(2C + 1) sup

j,k
|xj,k − zj,k|,

where we used (1) and (9). That is, (29) is satisfied. �

Proof of Lemma 4.4: Let π be a policy that satisfies Condition 4.3. We first prove that the
feasible set of the (LP) problem is non-empty.

Note that we have relative compactness for the sequence of random variables
(
~XN,π/N

)
N∈N

. In

case Jk < ∞ for every class k, this is valid because the random vectors live on a compact space.
In case Jk =∞ for some k, relative compactness comes from Condition 4.3 and [11, Theorem 6.1].
As a consequence, we can consider a subsequence of N (for ease of notation still denoted as N)

such that ~XN,π/N converges in distribution when N → ∞. Together with Condition 4.3 we can
then define the following limiting point ~y := (yπ,aj,k ), where

yπ,aj,k := E

(
lim
N→∞

lim inf
T→∞

1

T

∫ T

0

yπ,aj,k

(
~XN,π(t)

N

)
dt

)
.

It is important to note that this limit can depend on the subsequence of N considered. For ease
of notation, we are not writing this dependence. We will first prove that ~yπ is a feasible solution
of the (LP) problem. Since at most N bandits are in the system, we have

lim
t→∞

XN,π
j,k (t)

t
= 0, for all j, k. (30)

Note that
∫ t
0
yπ,aj,k (

~XN,π(s)
N ) · Nds is the total aggregated amount of time spent on action a on

class-k bandits in state j during the interval (0, t]. Hence, we can write the following sample-path
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construction of the process XN,π
j,k (t):

XN,π
j,k (t) =XN,π

j,k (0) +

1∑
a=0

∑
i6=j

∑
d∈Z

N
q
(d)
k

(j|i,a)
N

(∫ t

0

1(Dk(s)=d)y
π,a
i,k

(
~XN,π(s)

N

)
·Nds

)

−
1∑
a=0

∑
i 6=j

∑
d∈Z

N
q
(d)
k

(i|j,a)
N

(∫ t

0

1(Dk(s)=d)y
π,a
j,k

(
~XN,π(s)

N

)
·Nds

)
, (31)

where Nq
(d)
k (j|i,a)/N (t) are independent Poisson processes having as rates q

(d)
k (j|i, a)/N , i, j =

1, . . . , Jk, k = 1, . . . ,K, a = 0, 1. By the ergodic theorem [18] and because of ~XN having an

invariant distribution (see Condition 4.3, item a), we obtain that 1
t

∫ t
0

1(Dk(s)=d)y
π,a
j,k (

~XN,π(s)
N ) ·Nds

converges to E
(
1(Dk=d)y

π,a
j,k (

~XN,π

N ) ·N
)
<∞ as t→∞, for all j, k, a, d,N . Because of Lemma 4.1

we further have

E

(
lim
N→∞

1(Dk=d)y
π,a
j,k

(
~XN,π

N

))
= φk(d)yπ,aj,k . (32)

Now, when dividing both sides in (31) by t, taking t→∞, and using that Nθ(at)/t→ aθ and (30)
hold, we obtain

0 =

1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (j|i, a)

N
E

(
1(Dk=d)y

π,a
i,k

(
~XN,π

N

)
·N

)

−
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (i|j, a)

N
E

(
1(Dk=d)y

π,a
j,k

(
~XN,π

N

)
·N

)

=

1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (j|i, a)E

(
1(Dk=d)y

π,a
i,k

(
~XN,π

N

))

−
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (i|j, a)E

(
1(Dk=d)y

π,a
j,k

(
~XN,π

N

))
. (33)

Letting N →∞, together with (32), we then obtain

0 =

1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

qdk(j|i, a)φk(d)yπ,ai,k −
1∑
a=0

Jk∑
i=0,i6=j

∑
d∈Z

qdk(i|j, a)φk(d)yπ,aj,k ,

=

1∑
a=0

Jk∑
i=1,i6=j

qk(j|i, a)yπ,ai,k −
1∑
a=0

Jk∑
i=0,i6=j

qk(i|j, a)yπ,aj,k , (34)

a.s., that is, ~yπ satisfies Equation (10). By definition, ~yπ satisfies
∑
k,j y

π,1
j,k ≤ α and yπ,aj,k ≥ 0.

Hence, ~yπ is a feasible solution of (LP). Note that the interchange of limit and summations to go
from (33) to (34) is possible because of the uniform integrability given by Condition 4.3.
It is left to prove Inequality (14). We have,

lim inf
N→∞

V N,π− (x)

= lim inf
N→∞

lim inf
T→∞

1

T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) · yπ,aj,k

(
~XN,π(t)

N

)
dt


≥ E

lim inf
N→∞

lim inf
T→∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) · yπ,aj,k

(
~XN,π(t)

N

)
dt

 ,
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where the inequality holds because of Fatou’s Lemma. So it would be enough to prove that

lim inf
N→∞

lim inf
T→∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yπ,aj,k (

~XN,π(t)

N
)dt ≥ v∗, (35)

almost surely.
Consider a fixed realization ω of the process. We first assume that the LHS in (35) is finite. We
then obtain that

lim inf
N→∞

lim inf
T→∞

1

T

∫ T

0

yπ,aj,k

(
~XN,π(t)

N

)
1(Dk(t)=d)dt

= lim inf
N→∞

E

(
1(Dk=d)y

π,a
j,k

(
~XN,π

N

))
(36)

= lim
Ni→∞

E

(
1(Dk=d)y

π,a
j,k

(
~XNi,π

Ni

))

= E

(
lim

Ni→∞
1(Dk=d)y

π,a
j,k

(
~XNi,π

Ni

))
= φk(d)yπ,aj,k , (37)

with Ni the subsequence corresponding to the liminf sequence and such that
~XN,π

N converges in

distribution. In the third step we used that ~XN,π/N is uniformly integrable and in the fourth

step we used (32) (this equation holds for any weakly converging subsequence of
~XN,π

N ). As a
consequence we obtain that

lim inf
N→∞

lim inf
T→∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yπ,aj,k (

~XN,π(t)

N
)dt

=

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) lim inf

N→∞
lim inf
T→∞

1

T

∫ T

0

yπ,aj,k (
~XN,π(t)

N
)dt

=

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

Cdk(j, a)φk(d)yπ,aj,k

=

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)yπ,aj,k ≥ v
∗,

where the last inequality holds because ~y is a feasible solution of the (LP) problem.
In particular, the above shows that v∗ < ∞, since we assumed in Section 3 that there exists a
policy for which the LHS in (35) is finite.
Assume now that the LHS of (35) is infinite. Then inequality (35) follows directly, since v∗ <∞.
This concludes the proof. �

Proof of Lemma 5.1: We consider four possible cases:

(1) If
(
α−

∑
(i,l)∈Sπk (j)

xi,l

)
< 0, then by definition (17) we have yprio,1j,k (~x) = 0.

If as well
(
α−

∑
(i,l)∈Sπk (j)

zi,l

)
< 0, then the LHS of (9) equals zero, hence (9) holds. If instead

23



(
α−

∑
(i,l)∈Sπk (j)

zi,l

)
≥ 0, then by definition (17),

|yprio,1j,k (~x)− yprio,1j,k (~z)| = min

α− ∑
(i,l)∈Spriok (j)

zi,l, zj,k


≤ α−

∑
(i,l)∈Spriok (j)

zi,l

<
∑

(i,l)∈Spriok (j)

(zi,l − xi,l)

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|.

In the remaining three cases, we can now assume that for both ~u = ~x, ~z, it holds thatα− ∑
(i,l)∈Spriok (j)

ui,l

 ≥ 0.

(2) If xj,k ≤ α −
∑

(i,l)∈Sπk (j)
xi,l and zj,k ≤ α −

∑
(i,l)∈Spriok (j) zi,l, then we obtain directly the

result |yprio,1j,k (~x)− yprio,1j,k (~z)| = |xj,k − zj,k| ≤ supi,l|xi,l − zi,l|.
(3) If xj,k ≤ α−

∑
(i,l)∈Spriok (j) xi,l and zj,k ≥ α−

∑
(i,l)∈Spriok (j) zi,l, then

|yprio,1j,k (~x)− yprio,1j,k (~z)| =
∣∣∣∣xj,k − α+

∑
(i,l)∈Spriok (j)

zi,l

∣∣∣∣. (38)

If, in addition, xj,k > α−
∑

(i,l)∈Spriok (j) zi,l, then since xj,k ≤ α−
∑

(i,l)∈Spriok (j) xi,l, we have

|yprio,1j,k (~x)− yprio,1j,k (~z)| = xj,k − α+
∑

(i,l)∈Spriok (j)

zi,l

≤
∑

(i,l)∈Spriok (j)

(zi,l − xi,l)

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|,

since
∑K
k=1 Jk is the number of states (i, l) bandits can be in. Instead, if xj,k ≤ α−

∑
(i,l)∈Spriok (j) zi,l,

then

|yprio,1j,k (~x)− yprio,1j,k (~z)| = α−
∑

(i,l)∈Spriok (j)

zi,l − xj,k

≤ zj,k − xj,k
≤ sup

i,l
|xi,l − zi,l|.
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(4) If xj,k ≥ α−
∑

(i,l)∈Spriok (j) xi,l and zj,k ≥ α−
∑

(i,l)∈Spriok (j) zi,l, then

|yprio,1j,k (~x)− yprio,1j,k (~z)| =
∣∣∣∣ ∑
(i,l)∈Spriok (j)

(zi,l − xi,l)
∣∣∣∣

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|.

Setting C =
∑K
k=1 Jk, we proved (9). �
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