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Abstract

In this paper, a control scheme is elaborated in order to perform the station keeping of a geostationary satellite equipped
with electric propulsion while minimizing the fuel consumption. The use of electric thrusters imposes to take into account
some additional non linear and operational constraints that make the overall station keeping optimal control problem
difficult to solve directly. That is why the station keeping problem is decomposed in three successive control problems.
The first one consists in solving a classical optimal control problem with an indirect method initialized by a direct
method without enforcing the thrusters operational constraints. Starting from this non feasible solution for the genuine
problem, the thrusters operating constraints are incorporated in the second problem, whose solution produces a feasible
but non optimal control profile via two different ways. Finally, the third optimizes the commutation times thanks to a
method borrowed to the switched systems theory. Simulation results on a realistic example validate the benefit of this
particular control scheme in the reduction of the fuel consumption for the geostationary station keeping problem.

Keywords: GEO Station Keeping, electric propulsion, fuel optimal control problem, Pontryagin Maximum Principle,
Switched Systems Theory

1. Introduction

Due to orbital disturbing forces, any satellite in Geo-
stationary Earth Orbit (GEO) drifts outside its station
keeping (SK) window (a rectangular box of a given geo-
graphical longitude and latitude range). Performing an
accurate SK strategy is therefore necessary to compensate
for the induced environmental secular and periodic distur-
bances and to this end GEO spacecraft are equipped with
electric and/or chemical thrusters.

Chemical propulsion systems have been and are still
widely used. For these propulsion systems with high thrust
capabilities, SK control laws are usually designed assum-
ing an impulsive idealization of the thrust, as described for
example in [1, 2, 3]. This type of propulsion is still used
for the derivation of autonomous SK laws (see for instance
the references [4, 5, 6, 7, 8]). The idea of using electric
propulsion for station keeping dates back to the sixties.
The references [9, 10, 11] describe generalities about the
SK of a GEO satellite, and the reference [12] designs a
control strategy in a simplified case. Some theoretical de-
velopments have then been conducted in the eighties. The
reference [13] analyses the effect of electric North/South
correction with constraints on the firing times while [14]
model the secular evolution of the satellite and perform
station keeping with a fixed number of thrusts. [15] de-
rive a control strategy distinguishing short and long hori-
zons. The reference [16] proposes a new configuration with

thrusters mounted on the anti-nadir face of the satellite
and derives a correction strategy while analyzing the ef-
fect of the orbital disturbances. This system is patented
by [17] and used in [18]. Nowadays the electric propulsion
is a viable alternative to the chemical one, in particular
in the case of SK of GEO satellite ([19]), despite limiting
thrust operations constraints: large on board power needs,
mission requirements restricting the duration of use of the
electric power system, impossibility to perform SK maneu-
vers at eclipse epochs, minimum elapsed time between two
consecutive firing, on-off profile of the thrusters, thrust al-
location. Indeed, the bigger specific impulse of electric
thrusters leads to consequent savings in fuel consumption
and a reduction of the satellite mass, enabling increased
payload capacity and improved satellite lifetime.

Considering these technological and operational fea-
tures, optimal control strategies for electric SK taking var-
ious constraints into account have to be carefully designed.
The problem of fuel-optimal station keeping is in general
expressed as an optimal control problem (OCP). Several
types of techniques for solving the resulting optimal sta-
tion keeping control problem exist. When the thrust is
considered as impulsive or when simple models are used
to describe the disturbing forces, analytical solutions pro-
vide control laws, as in [20]. Otherwise, it is necessary
to resort to numerical methods, such as direct collocation
based methods as described in [21, 22, 23, 24, 25, 26].
For this family of approaches, the state and the control
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variables are discretized to transcript the original opti-
mal control problem into a non linear programming prob-
lem. Conversely, indirect methods rely on the derivation
of necessary optimality conditions expressed via the so-
called Pontryagin Maximum Principle (PMP) and on the
numerical solution of the two-points boundary value prob-
lem obtained from these optimality conditions. In order
to counteract uncertainties affecting the control law, the
use of Model Predictive Control algorithms is proposed in
[27, 28]. To deal with on-off models of thrusts, the refer-
ences [29, 30] use the Pulse Width Modulation technique to
generate rectangular profiles from a continuous one. [31]
has formulated a method based on differential inclusion,
and a first avenue for the use of decomposition methods
to solve the problem is given in [32].

In the reference [33], the two first steps of a decomposi-
tion technique for solving the station keeping control prob-
lem is presented. For the first step, an indirect method
based on the application of the PMP with mixed control-
state constraints is applied to solve a simplified optimal
SK control problem, without considering the hard con-
straints on the control law (thrust constraints such as la-
tency between two bursts of the same thruster and no si-
multaneous thrusting for instance). In a second step, a
numerical approach is used to enforce all the thrust con-
straints left apart at the first step, thanks to dedicated
equivalence schemes. If the operational constraints are re-
spected, the spacecraft trajectory is composed of thrusting
arcs separated by coasting arcs. Thus, the control profile
switches from a time interval where all thrusters are off to
a time interval for which one thruster is on, and vice-versa.
Therefore, the system can be viewed as a switched system
composed by one subsystem per thruster and one subsys-
tem describing the dynamics during coasting arcs. The
reference [34] takes advantage of the method proposed by
[35] consisting in computing the optimal switching times of
switched systems thanks to a time change of coordinates.
The idea of the proposed paper is hence to demonstrate
the benefit of solving the station keeping problem with a
three-step method. The two first steps are the ones of
[33] and the third step optimizing the switching times be-
tween coasting arcs and actuated arcs highly improves the
fuel consumption. Therefore, the proposed contribution
describes the three-step decomposition method in a uni-
fied framework, allowing to illustrate the benefit of this
three-step method on a realistic example.

2. Problem statement

2.1. Geostationary Spacecraft Dynamics

The motion of a spacecraft orbiting the Earth on a Geo-
stationary Earth Orbit (GEO) can be described with the
equinoctial orbital elements as defined in [36]:

xeoe =
[
a ex ey ix iy `MΘ

]T ∈ R6, (1)

where a is the semi-major axis, (ex, ey) the eccentricity
vector, (ix, iy) the inclination vector, `MΘ = ω+Ω+M−Θ
the mean longitude with Ω the right ascension of the as-
cending node, ω the perigee’s argument, M the mean
anomaly and Θ(t) the right ascension of the Greenwich
meridian. The dynamics of the spacecraft may be repre-
sented by the following non linear state-space model:

dxeoe

dt = fL(xeoe, t) + fG(xeoe, t)u. (2)

fL ∈ R6 is the Lagrange contribution part of the ex-
ternal disturbing forces. For a GEO spacecraft, the main
disturbing forces are the non-spherical part of the Earth
gravitational potential that mainly affects the mean longi-
tude `MΘ, the solar radiation pressure (SRP) that mainly
affects the eccentricity vector (ex, ey) and the gravitational
attraction of the sun and the moon that mainly affects the
inclination vector (ix, iy) (see [37]). These forces are de-
scribed in detail by the CNES ORANGE model (cf.[38]) or
in the reference [2]. fG ∈ R6×3 is the Gauss contribution
part for the disturbing forces that do not derive from a
potential. In the case of a GEO spacecraft, this contribu-
tion consists in the acceleration produced by the thrusters
that can be viewed as a disturbing one.
u =

[
uR uT uN

]T ∈ R3 is the control vector ex-
pressed in the local orbital RTN frame (also written
RSW ) defined in [2] by (see Figure 1):

• N is the unit vector along the kinetic momentum;

• R is the unit vector along the direction Earth’s center
- satellite;

• T completes the right-handed orthogonal direct basis.
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Figure 1: Geocentric inertial reference frame (G,XG, YG, ZG) and
local orbital frame (S,R, T,N).

In order to deal with the station keeping problem, the
station keeping point is defined as:

xsk =
[
ask 0 0 0 0 `MΘsk

]T (3)
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where ask is the synchronous semi-major axis and `MΘsk

is the station mean longitude.
The relative dynamics equations are developed by lin-

earization of Equation (2) about the station keeping point
(3) evolving on an ideal circular geostationary keplerian or-
bit. By denoting x = xeoe − xsk, the relative state model
for the SK problem reads:

dx
dt = A(t)x+D(t) +B(t)u, (4)

where the matrices A ∈ R6×6, B ∈ R6×3, C ∈ R3×6 and
D ∈ R6 are defined as follows:

A(t) =
∂

∂xeoe

(
fL(xeoe(t), t)

)∣∣∣∣∣
xeoe=xsk

, (5)

B(t) = fG(xsk, t), (6)
D(t) = fL(xsk, t). (7)

The geographical coordinates of the satellite:

yeoe = T (xeoe, t)xeoe, (8)

are of interest because the station keeping problem consists
in constraining them in the vicinity of the station keeping
geographical position ysk =

[
rsk 0 λsk

]t where rsk is
the synchronous radius and λsk is the station keeping ge-
ographical longitude. The relative geographical position
with respect to the station-keeping position is denoted by:

y = yeoe − ysk = T (xsk, t)x = C(t)x, (9)

and is obtained by linearizing Equation (8) with respect
to the station keeping geographical position.

After the linearization, the station keeping requirements
on the latitude and the longitude of the spacecraft are ex-
pressed by constraining the relative geographical position
with respect to the centre of the SK window: ∀t ∈ [t0, tf ],∣∣∣[0 1 0]C(t)x(t)

∣∣∣ 6 δ and
∣∣∣[0 0 1]C(t)x(t)

∣∣∣ 6 δ, (10)

with δ being the half width of the SK window in the lati-
tude and longitude directions and [t0, tf ] the optimisation
horizon. A trajectory satisfying the SK constraints (10) is
called a SK-feasible trajectory (see Figure 2).

2.2. Electric Propulsion System
The considered satellite is equipped with four electric

thrusters mounted on the anti-nadir face, each of them
having an orientation defined by a cant angle θ and a slew
angle α. These angles define the North-East, the South-
East, the North-West and the South-West directions of
thrust. The satellite dynamics can be stated considering
the four thrusts provided by the four engines as control
variables. The control u(t) expressed in the local orbital
frame is a linear combination of the four thrusts such that
u = ΓF , where Γ = [Γ1 | Γ2 | Γ3 | Γ4] ∈ R3×4 and F =

XG

YG

ZG

δ

δ

λsk

Greenwich
Meridian

Θ(t)
ysk

δϕ
δλ

Figure 2: Station Keeping window.

[F1 F2 F3 F4]T ∈ [0, Fmax]4. The thrust direction vectors
Γj ∈ R3 are defined such that:

Γj =
1
m

[
− sin θj cosαj − sin θj sinαj − cos θj

]T
,

(11)
where the cant and slew angles θj and αj respectively are
defined exactly as in [17] (see Figure 3).

Figure 3: Orientation of the four thrusters.

For the sake of simplicity, the thrust vector is normalized
by the maximum level of thrust Fmax. It is thus possible
to write F = Fmax F̃ with F̃ ∈ [0, 1]4. As the thrust
profile is made of a series of on-off thrusts, the rectangular
signal of the jth thrust of the thruster i is parametrized
by the date ti,j corresponding to the middle instant of the
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thrust and by its half width duration denoted ∆ti,j (see
Figure 4). The control function is thus rewritten as:

F̃ (t) = F̃

(
t, {tij ,∆tij} i=1,...,4

j=1,...,Pi

)
,

=



P1∑
j=1

1[t1
j
−∆t1

j
,t1

j
+∆t1

j ](t)
P2∑

j=1
1[t2

j
−∆t2

j
,t2

j
+∆t2

j ](t)
P3∑

j=1
1[t3

j
−∆t3

j
,t3

j
+∆t3

j ](t)
P4∑

j=1
1[t4

j
−∆t4

j
,t4

j
+∆t4

j ](t)


.

(12)

where Pi is the number of thrusts of thruster i.

∆ti,j

ti,j

t

F̃i

1

Figure 4: Parametrization of the jth thrust of the thruster i.

Technological operational constraints inherent to the
proposed actuation system are defined by:

(i) thrusters cannot have simultaneous thrusts;

(ii) a thrust must last at least Tl : 2∆ti,j > Tl;

(iii) two successive thrusts of a given thruster must be sep-
arated by an interval of latency equal to Ts;

(iv) two thrusts of two different thrusters must be sepa-
rated by an interval of latency equal to Td.

The restricted power available on-board prevents two
thrusters from being active simultaneously and the mini-
mum time latency between two thruster firings is imposed
in order to allow an efficient battery recharge (see [32]).
The constraint for the time latency between the thrust

k of thruster i and the thrust l of thruster j is mathemat-
ically expressed as:

|ti,k − tj,l| − (∆ti,k + ∆tj,l) > Ki,j , (13)

for k = 1 . . . Pi and l = 1 . . . Pj , where Ki,j = Ts if i = j
(constraint (iii)) andKi,j = Td otherwise (constraint (iv)).
In addition, some other convenient constraints force the
thrusters to be active during the resolution time interval:

ti,j −∆ti,j > t0 and ti,j + ∆ti,j 6 tf . (14)

A trajectory satisfying the operational constraints for
the considered electric propulsion system is called opera-
tionally feasible.

2.3. Fuel-optimal Station Keeping Control Problem
The main goal of the station keeping system is to main-

tain the longitude and the latitude of the satellite in a box
defined by its size δ by acting on the orbital parameters
via the 4 thrusters while reducing the fuel consumption to
extend the operational lifetime of the satellite. The asso-
ciated optimal control problem is in general defined over a
fixed horizon for the computation of optimal control laws.
The performance index to minimize in a Station Keeping
operation is naturally defined as:

J =
∫ tf

t0

4∑
thruster i=1

Pi∑
j=1

(
|uRij (t)|+ |uTij (t)|+ |uNij (t)|

)
dt

(15)

= Fmax

∫ t0

ti

4∑
thruster i=1

||Γi||1
Pi∑

j=1

|F̃i,j(t)|dt (16)

= 2Fmax

4∑
thruster i=1

||Γi||1
Pi∑

j=1

∆ti,j , . (17)

Removing the constant multiplicative terms that does
not affect the optimal solution, the objective function may
be reduced to:

J̃ =
4∑

i=1

Pi∑
j=1

∆ti,j . (18)

Considering all the constraints described above, the
minimum-fuel SK problem to solve may be summarized
as the following optimal control problem:

Problem 1. Find the sequence of dates {ti,j} and dura-
tions {∆ti,j}, for i = 1 . . . 4, j = 1 . . . Pi solutions of the
minimization problem:

min
ti,j ,∆ti,j

J̃ =
4∑

i=1

Pi∑
j=1

∆ti,j ,

s.t.



ẋ(t) = A(t) x(t) +D(t)

+B̃(t)F̃
(
t, {tij ,∆tij} i=1,...,4

j=1,...,Pi

)
,

x(t0) = 0,
|[0 1 0]C(t)x(t)| 6 δ, |[0 0 1]C(t)x(t)| 6 δ,

2∆ti,j > Tl, ti,j −∆ti,j > t0, ti,j + ∆ti,j 6 tf ,

|ti,k − tj,l| − (∆ti,k + ∆tj,l) > Ki,j ,

(19)
with B̃(t) = FmaxΓB(t). ◦

The Problem 1 raises some difficult mathematical issues.
Firstly, due to the parametrization of the rectangular func-
tions by ti,j and ∆ti,j , the dynamics define transcendental
equations to be satisfied for the problem to solve. Sec-
ondly, the state constraints and the logical actuation con-
straints make the previous optimal control problem diffi-
cult to handle with existing methods. In addition, if the
optimal number of thrusts per thruster is not known a
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priori, the problem to solve is a very challenging nonlinear
mixed integer programming problem. For all these rea-
sons, traditional solvers often fail to find a solution to the
Problem 1.

The proposed paper aims thus at finding an efficient
way to solve the fuel optimal station keeping problem by
splitting the overall problem in a sequence of subproblems.
The proposed resolution method consists in three different
steps:

(A) The thrusters constraints (13) and (14) are removed
so that only an optimal control problem (OCP) with
state and control constraints remains. This particular
OCP is tackled via a hybrid approach relying on an
indirect method initialized by a direct method solu-
tion dedicated to the search of adjoint variables as de-
scribed in [39] and [40]. The PMP is applied to derive
the first order necessary optimality conditions and the
associated Two Points Boundary Value Problem (TP-
BVP). This TPBVP is then solved via a collocation
method. In order to recover an on-off profile from the
continuous solution obtained, a threshold parameter
ς =

[
ς1 ς2 ς3 ς4

]
∈ R4 has to be chosen. At the

end of this step, the state trajectory fulfills the SK
requirements but may not be operationally feasible.

(B) As the result of the first step produces a control law
that does not necessarily respect the thruster oper-
ational constraints, a second part is needed in order
to obtain modified solutions compatible with actua-
tion constraints (i)-(iv) and (14). The resulting state
trajectory is operationally feasible but not necessarily
SK-feasible.

(C) The solution of step (B) being very sensitive to the
threshold parameter ς chosen at step (A) the pro-
posed third part optimizes the switching times for
each thruster with the objective to reduce the fuel
consumption. This step is based on an optimization
technique stemming from the switched systems theory
(see [35]) and takes advantage of the decomposition
of the overall systems into several subsystems: one for
each thruster being on and one when all the thrusters
are off. The ensuing trajectory is both operationally
and SK-feasible.

To sum up, instead of solving the overall SK problem at
once, this problem is split into three smaller and simpler
subproblems that are easier to solved in general. Section
3 will be devoted to the first part described above: solu-
tion of the simplified OCP via the hybrid method. Then
in Section 4, the thrusters constraints are enforced via the
resolution of a second minimization problem called equiv-
alence scheme. In Section 5, the switching times for each
thrust are optimized using the switched systems theory,
noticing that a system with a bang-bang control profile
can be considered as being made up of two subsystems
switching from one with control on to one with control off,

and vice-versa. A commutation between a coasting arc
and a fired arc is therefore interpreted as a commutation
between the two subsystems.

3. Solution of the simplified OCP (step (A))

Removing the operational actuation constraints (13)
and (14) allows to simplify the original optimal control
problem. In particular, the thrust functions F̃i are not
modeled a priori as rectangular functions parametrized by
ti,j and ∆ti,j and the simplified OCP to be solved reads
as :

Problem 2. Find the functions t 7→ F̃i(t), i = 1, . . . , 4,
solutions of the minimisation problem:

min
F̃ (t)∈[0;1]4

J̃ =
∫ tf

t0

4∑
i=1

F̃i(t)dt, (20)

with the constraints:
ẋ(t) = A(t) x(t) +D(t) + B̃(t)F̃ (t),
|[0 1 0]C(t)x(t)| 6 δ, |[0 0 1]C(t)x(t)| 6 δ,

x(t0) = 0, x(tf ) = 0,
(21)

◦

Problem 2 is a minimum-fuel linear OCP defined on a
fixed horizon with constraints both on the state and the
control vectors. This problem is solved with the PMP.

The state geographical constraints are handled through
the following additional state variable whose dynamics is
given by (see the reference [41] for instance):

ẋ7(t) = ψ(t, x(t)) =
4∑

i=1

1
2 ψ2

i

[
1+sign(ψi(t, x(t)))

]
, (22)

with :

ψ1(t, x(t)) = C2(t)x(t)− δ, (23a)
ψ2(t, x(t)) = −C2(t)x(t)− δ, (23b)
ψ3(t, x(t)) = C3(t)x(t)− δ, (23c)
ψ4(t, x(t)) = −C3(t)x(t)− δ, (23d)

where Cl(t) is the lth line of the matrix C(t).
The Hamiltonian of the system is:

H(x(t), F̃ (t), λ(t)) =
4∑

i=1
F̃i(t) + µ1 ψ(x(t))

+ λ(t)t
[
A(t) x(t) +D(t) + B̃(t)F̃ (t)

]
, (24)

where λ(t) ∈ R6 is the adjoint vector, and µ1 is a constant
parameter. Choosing the value of this parameter allows to
give more importance for minimizing the fuel consumption
or enforcing of the SK constraints.
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Applying the PMP described in [42] and [41], the mini-
mization condition:

H
(
x∗(t), F̃ ∗(t), λ∗(t)

)
= min

u∈[0,1]4
H (x∗(t), u(t), λ∗(t))

(25)
leads to the following first order necessary switching con-
dition for the optimal control:

∀i = 1, . . . , 4, F̃ ∗i (t) =
{

1 if 1 + [λ∗T (t)B̃(t)]i < 0,
0 if 1 + [λ∗T (t)B̃(t)]i > 0,

(26)
where [h]i stands for the ith component of a generic vector
h. The previous necessary condition can be rewritten using
the switching function:

v 7→ fs(v) = 1
2
[
(1− sign v1) . . . (1− sign v4)

]T
, (27)

leading to the optimal control:

F̃ ∗(t) = fs

(
1 + λT (t)B̃(t)

)
, (28)

where 1 is a vector of ones.
The switching function:

fs(1 + λT B̃) = 1
2
[
1− sign

(
1 + λT (t)B̃(t)

)]
(29)

defines a non continuous piecewise constant control profile.
As the TPBV Problem 3 is solved with the bvp4c function
of Matlab that requires to have continuous functions, the
method described by [43] is used in order to approximate
the discontinuous control profile into a continuous one. fs

is thus approximated by:

fs(v) ≈ f̃s(v,M) = 1− 1
π

arctan
(
Mv + π

2

)
, (30)

where M is a parameter controlling the slope of the ap-
proximating switching function.

The two-point boundary value problem is built from
the canonical equations of Hamilton and the transversality
conditions and is defined as Problem 3

Problem 3. Find the functions x and λ solutions of the
minimization problem:

ẋ(t) = A(t)x(t) +D(t) + B̃(t)f̃s(1 + λT B̃,M),

λ̇(t) = −A(t)Tλ(t)− µ1
dψ
dx(x(t)),

x(t0) = 0, x(tf ) = 0, λ(t0) and λ(tf ) free.

(31)

◦

This TPBVP is initialized by a direct collocation
method, as described in the references [45] and [46] for in-
stance, and then solved with an homotopy method in order
to gradually increase the slope of the switching function
by increasing accordingly the value of the parameter M of
the approximated switching function.

A threshold parameter ς =
[
ς1 ς2 ς3 ς4

]T ∈ R4

transforms the continuous profile into a discontinuous one
as the Figure 5 shows. The decision variables, the mid-
dle times of the thrusts and their half-width durations are
recovered. This transformation permits to extract from
the on-off profile the number of thrusts for each thrusters
Pi, i = 1, . . . , 4. According to Figure 5, it is clear that
the value of the parameter ς has a direct influence on the
associated half width thrust duration.

t

Fi

ςb

ςa

∆ti,j;a

∆ti,j;b

ti,j

Figure 5: Effect of the threshold parameter ς on the half-width du-
ration of the thrusts.

As the solution of Problem 3 does not satisfy in general
the operational actuation constraints described in Section
2.2, the next section proposes an additional step for which
an auxiliary problem enforces the actuation constraints on
a new and equivalent control law, while preserving the
structure and the overall effect of the thrust.

4. Enforcing the operational thrusters constraints
(step (B))

The solution of the TPBV Problem 2 consists in a series
of rectangle signals naturally resulting from the applica-
tion of the PMP. However, this control law does not respect
the actuation constraints left apart in the step (A). For
instance, simultaneous activation of two different thrusters
may occur. The aim of this second part is to find an equiv-
alent control law ensuring that the resulting trajectory will
be operationally feasible. Two different notions of equiva-
lent control laws will be used hereafter.

The first notion of equivalence between two control laws
relies on the fuel consumption argument: the goal is to
compute a raw control profile that has the same fuel con-
sumption as the profile obtained by solving the TPBV
problem. Let F̃BV P be the control obtained by solving
Problem 3. Finding a Consumption Based Equivalent
(CBE) control for the satellite is then equivalent to solve
Problem 4 defined as follows:

Problem 4. Find the ti,j and the ∆ti,j , i = 1, . . . , 4,
j = 1, . . . , Pi minimising:

min
ti,j ,∆ti,j

4∑
i=1

∣∣∣∣∣∣‖F̃BVP,i(t)‖1 − 2
Pi∑

j=1
∆ti,j

∣∣∣∣∣∣ , (32)
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subject to the constraints:
2∆ti,j > Tl,

|ti,k − tj,l| − (∆ti,k + ∆tj,l) > Ki,j ,

ti,j −∆ti,j > 0, ti,j + ∆ti,j 6 T.

(33)

◦

This problem is a non linear optimization problem where
‖F̃BVP,i(t)‖1 is the L1 norm of the ith component of the
solution of Problem 3.

The second way to obtain an equivalent control respect-
ing the actuation constraints is to define an "effect-based"
equivalent (EBE) control. As the dynamics equation is
given by Equation (4), the state vector at time t is given
by:

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ) [D(τ) +B(τ)Γu(τ)] dτ,

(34)
where Φ(t, t0) is the state transition matrix, implicitly de-
fined by the homogeneous differential equation Φ̇(t, t0) =
A(t)Φ(t, t0), Φ(t0, t0) = Id (see [47]).
To get a control profile that has the same effect at time

tf as the solution of Problem 3 and that respects the ac-
tuation constraints, the Problem 5 defined as follows has
to be solved:

Problem 5.

min
ti,j ,∆ti,j

6∑
i=1

[∫ tf

t0

[
Φ(T, τ)B̃(τ)F̃BVP(τ)

]
i
dτ

−
4∑

k=1

Pk∑
j=1

∆tk,j

∫ tk,j+∆tk,j

tk,j −∆tk,j

[Φ(T, τ)B̃(τ)]idτ

]2

, (35)

such that the constraints (33) are satisfied. ◦

Both Problems 4 and 5 can be solved by classical non
linear optimization solvers.

The state trajectories obtained from the control profiles
solutions of Problems 4 and 5 are very sensitive to the
threshold parameter ς chosen at the end of the step (A).
For some values of ς, the computing trajectory may be
operationally feasible but not restricted to the SK win-
dow. The benefit of the step (B) is to provide a se-
quence of thrusting/coasting arcs admissible for the op-
erational constraints (i)-(iv). This sequence is described
by {U} = {U1, . . . , UK}, with:

Uk ∈




0
0
0
0

,


1
0
0
0

,


0
1
0
0

,


0
0
1
0

,


0
0
0
1


 , (36)

assuming that there are K intervals over which the thrust
is constant.

The middle time of the thrust ti,j and the half width
durations of the thrusts ∆ti,j are ranked in the increasing

thrust middle times order t1, . . . , tP , assuming that there
are P thrusts, and transformed to the commutation times
as: {

s2k−1 = tk −∆tk,
s2k = tk + ∆tk,

, k = 1, . . . , P. (37)

In this case, the following equality holds : K = 2P + 1.
In order to guarantee both the operationally and the

SK-feasibility of the state trajectory, a step (C) relying on
the switched systems theory with the results of step (B)
as initialization is used to enforce all the constraints while
reducing the consumption.

5. Optimization of the Commutation Times with
the Switched Systems Theory (step (C))

The reference [35] presents a technique to optimize
the commutation times between the different subsystems.
This method resorts to a time change of coordinates and
a parametrization of the commutation times. The control
profile computed at the end of the step (B) is an on-off
control profile. The idea of this step is to notice that a
bang-bang profile is a sequence of commutations between
a system for which the control is on and another system
for which the control is off. Hence, the date when the
thruster switches on or switches off can be seen as a com-
mutation between the subsystem for which the control is
on to the subsystem for which the control is off, or vice-
versa. This remark applies to the four thrusters of the
considered satellite. Hence the method proposed by [35]
will be applied in order to optimize the commutations be-
tween the coasting and the firing arcs. To this end, it is
mandatory to assume that the order of the sequence of the
active subsystems is an operationally feasible one. As the
control profile computed at the end of step (B) is opera-
tionally feasible, this firing sequence can be used. Seeking
these on and off times is equivalent to find the optimal
commutation times between the subsystems.

Noting that each firing arc is separated by a coasting
arc, the odd commutation times thus correspond to the
beginning of a thrust and the even ones to the ending of a
thrust. The notation of the commutation times is extended
to s0 = t0 and s2P +1 = tf . Therefore, minimizing the
fuel consumption is equivalent to minimize the length of
the intervals on which the thrusters are on. Hence the
objective function is written as:

JC({sk}) = Fmax

P∑
i=1

(s2i − s2i−1). (38)

The state constraints are handled by mean of the pe-
nalization term described by Equation (22) added to the
objective function. The new objective function for the step
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(C) of the decomposition method reads thus:

J̃C(x, {sk}) = Fmax

P∑
i=1

(s2i − s2i−1)

+ µ3

2P +1∑
k=1

(sk − sk−1)
∫ k

k−1
ψ(t(τ), x)dτ, (39)

with µ3 a parameter that balance the objective function
between the fuel consumption minimization and the stay
in the SK window.

As in the reference [35], the time change of coordinates
is used to parametrize the switching times:

t = sk + ∆k(τ − k) if t ∈ [sk, sk+1], (40)

with ∆k = sk+1 − sk. The system dynamics is rewritten
with the new time variable:

dx(τ)
dτ =



∆2k−2

[
A(t(τ))x(τ)

+D(t(τ))
]

if τ ∈ [2k − 2, 2k − 1],

∆2k−1

[
A(t(τ))x(τ) +D(t(τ))

+B(t(τ))ΓFmaxUk

]
if τ ∈ [2k − 1, 2k],

...
∆2P

[
A(t(τ))x(τ) +D(t(τ))

]
if τ ∈ [2P, 2P + 1],

(41)
for k = 1, . . . , P . The state vector can now be consid-
ered as a function of the new time variable τ and of the
switching times sk: x = x(τ, {sk}).
The station keeping OCP reads thus in the switching

systems framework:

Problem 6. Find the optimal, switching sequence
{sk}, k ∈ {1, . . . , 2P}, with P fixed, solution of the min-
imisation problem:

min
x,{sk}

JC(x, {sk}) = Fmax

P∑
i=1

(s2i − s2i−1)

+µ3

2P +1∑
k=1

(sk − sk−1)
∫ k

k−1
ψ(t(τ), x)dτ,

s. t.

ẋ(τ) =



∆2k−2

[
A(t(τ))x(τ) +D(t(τ))

]
if τ ∈ [2k − 2, 2k − 1],

∆2k−1

[
A(t(τ))x(τ) +D(t(τ))

+B(t(τ))ΓFmaxUk

]
if τ ∈ [2k − 1, 2k]

x(0) = 0,
s2k − s2k−1 > Tl,

s2k+1 − s2k > Tg,

(42)
with Tg = Ts for the firing arcs of the same thruster and
Tg = Td for the firing arcs of two different thrusters. ◦

As the switching times determine the structure of the
control profile, the state trajectory is recovered by propa-
gation of the system dynamics from the initial condition.

Problem 6 can be solved with a descent algorithm. To
this end, it is necessary to compute the derivative of the
performance index in order to obtain the descent direction.
The computation of this derivative requires to distinguish
the odd and the even commutation times:

dJC

ds2l−1
= −Fmax

+ µ3

∫ 2l−1

2l−2
ψ(t(τ), x(τ)dτ − µ3

∫ 2l

2l−1
ψ(t(τ), x(τ))dτ

+ µ3(s2l−1 − s2l−2)
∫ 2l−1

2l−2

[
(τ − 2l + 2)

∂ψ

∂t
(t(τ), x(τ))

+
∂ψ

∂x
(t(τ), x(τ))

∂x

∂s2l−1
(τ)
]
dτ

+ µ3(s2l − s2l−1)
∫ 2l

2l−1

[
(−τ + 2l + 2)

∂ψ

∂t
(t(τ), x(τ))

+
∂ψ

∂x
(t(τ), x(τ))

∂x

∂s2l−1
(τ)
]
dτ,

(43)
and :

dJC

ds2l
= Fmax

− µ3

∫ 2l+1

2l

ψ(t(τ), x(τ)dτ + µ3

∫ 2l

2l−1
ψ(t(τ), x(τ))dτ

+ µ3(s2l+1 − s2l)
∫ 2l+1

2l

[
(−τ + 2l + 1)

∂ψ

∂t
(t(τ), x(τ))

+
∂ψ

∂x
(t(τ), x(τ))

∂x

∂s2l−1
(τ)
]
dτ

+ µ3(s2l − s2l−1)
∫ 2l

2l−1

[
(τ − 2l + 1)

∂ψ

∂t
(t(τ), x(τ))

+
∂ψ

∂x
(t(τ), x(τ))

∂x

∂s2l−1
(τ)
]
dτ.

(44)
As the switching times {sk} are independent of the time

variable τ , the derivatives of the state vector with respect
to the commutation times verify the following relation:

d
dτ

(
∂x(τ)
∂sk

)
=

∂

∂sk

(
dx(τ)

dτ

)
. (45)

It is thus possible to derive a dynamic equation for
∂x(τ)
∂tk

by differentiation of the dynamics equation of the state
vector x(τ) with respect to the commutation time sk.
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Hence the function τ 7→
∂x(τ)
∂sk

is obtained by integrating
the following dynamics equations:

d
dτ

(
∂x(τ)
∂s2l−1

)
=

•(s2k−1 − s2k−2)A(t(τ))
∂x(τ)
∂s2l−1

if τ ∈ [2k − 2, 2k − 1], k 6= l,

•(s2k − s2k−1)A(t(τ))
∂x(τ)
∂s2l−1

if τ ∈ [2k − 1, 2k], k 6= l,
•A(t(τ))x(τ) +D(t(τ))

+ (s2l−1 − s2l−2)
[

(τ − 2l + 2)
(
∂A(t)
∂t

x(τ)+

∂D(t)
∂t

)
+A(t(τ))

∂x(τ)
∂s2l−1

]
if τ ∈ [2l − 2, 2l − 1],

• −
[
A(t(τ))x(τ) +D(t(τ)) +B(t(τ))Ul

]
+ (s2l − s2l−1)

[
(−τ + 2l + 2)

(
∂A(t)
∂t

x(τ)

+
∂D(t)
∂t

+
∂B(t)
∂t

Ul

)
+A(t(τ))

∂x(τ)
∂s2l−1

]
if τ ∈ [2l − 1, 2l],

(46)

and

d
dτ

(
∂x(τ)
∂s2l

)
=

•(s2k−1 − s2k−2)A(t(τ))
∂x(τ)
∂s2l

if τ ∈ [2k − 2, 2k − 1], k 6= l,

•(s2k − s2k−1)A(t(τ))
∂x(τ)
∂s2l

if τ ∈ [2k − 1, 2k], k 6= l,
• − [A(t(τ))x(τ) +D(t(τ))]

+ (s2l+1 − s2l)
[

(−τ + 2l + 1)
(
∂A(t)
∂t

x(τ)+

∂D(t)
∂t

)
+A(t(τ))

∂x(τ)
∂s2l

]
if τ ∈ [2l, 2l + 1],

•A(t(τ))x(τ) +D(t(τ)) +B(t(τ))Ul

+ (s2l − s2l−1)
[

(τ − 2l + 1)
(
∂A(t)
∂t

x(τ)

+
∂D(t)
∂t

+
∂B(t)
∂t

Ul

)
+A(t(τ))

∂x(τ)
∂s2l

]
if τ ∈ [2l − 1, 2l].

(47)

The derivative of the penalization function with respect
to the state vector is:

∂ψ

∂x
(t, x(τ)) =

2C2(t) [C2(t)x(t)− δ]
[
sign

(
C2(t)x(t)− δ

)
+ 1
]

+ 2C2(t) [C2(t)x(t) + δ]
[
sign

(
− C2(t)x(t)− δ

)
+ 1
]

+ 2C3(t) [C3(t)x(t)− δ]
[
sign

(
C3(t)x(t)− δ

)
+ 1
]

+ 2C3(t) [C3(t)x(t) + δ]
[
sign

(
− C3(t)x(t)− δ

)
+ 1
]
,

(48)
and its derivative with respect to time is:

∂ψ

∂t
(t, x(τ)) =

2
dC2(t)

dt x [C2(t)x(t)− δ]
[
sign

(
C2(t)x(t)− δ

)
+ 1
]

+ 2
dC2(t)

dt x [C2(t)x(t) + δ]
[
sign

(
− C2(t)x(t)− δ

)
+ 1
]

+ 2
dC3(t)

dt x [C3(t)x(t)− δ]
[
sign

(
C3(t)x(t)− δ

)
+ 1
]

+ 2
dC3(t)

dt x [C3(t)x(t) + δ]
[
sign

(
− C3(t)x(t)− δ

)
+ 1
]
.

(49)
The ensuing optimization problem is solved with an in-

terior point algorithm.
Putting all the three steps (A), (B) and (C) together,

the SK problem can therefore be solved according to Al-
gorithm 1.

6. Numerical Results

The proposed three-step decomposition method is ap-
plied on a realistic example and its benefit on the reduc-
tion of the fuel consumption while enforcing both the op-
erational and SK constraints is demonstrated.

The considered satellite weights 4850 kg and is equipped
with the 4 electric thrusters propulsion system described in
Section 2.2 with thrusters in the North-East, North-West,
South-East and South-West directions. This satellite has
to be controlled in order to remain close to its geostation-
ary position at a fixed longitude λsk and a fixed latitude
ϕsk = 0. The station keeping is performed over the time
horizon defined by t0 = 0 and tf = 1 week using the three-
step technique described in this paper.

6.1. Solution of step (A)

The slope parameter M for the approximated switching
function is increased from 100 to 104 and the parameter µ1
is chosen to be 1.104. On the Figure 6 depicting the contin-
uous control profile, it is possible to notice that the opera-
tional constraints are not respected, as the thrusters 1 and
3 have simultaneous firings as well as the thrusters 2 and 4.
Therefore, the step (A) is not sufficient to solve the whole
station keeping problem. The Table 1 shows that these two

9



Algorithme 1 Solve the minimum fuel SK problem
Require: x(t0) the initial position
Ensure: the trajectory is operationally and SK-feasible

{Step (A): SK problem without the operational con-
straints}

1: Remove the operational constraints (i)-(iv) from Prob-
lem 1

2: F̃i(t)i=1,...,4,t∈[t0,tf ] ← the optimal control for the SK-
feasible trajectory computed by an indirect method
initialized by a direct method (see the reference [33])

3: ς ← threshold parameter to transform the continuous
control profile in a rectangle profile

4: {ti,k,∆ti,k, {Uk}} ← the middle times ti,k and the half
durations ∆ti,k of the thrusts,

{Step (B): equivalence schemes}
5: {t?i,k,∆t?i,k} ← the middle times and half durations

computed by the CBE or the EBE.

{Step (C): commutation times optimization with the
switching systems technique}

6: {sk} ← the commutation times computed from
{t?i,k,∆t?i,k}

7: {s(0)
k } ← {sk}

8: {s?
k} ← the solution of Problem 6 with an interior

point algorithm

different values of the threshold parameter lead to differ-
ent number of thrusts per thrusters. The two considered
threshold parameters are ςa =

[
0.8 0.8 0.8 0.8

]T and
ςb =

[
0.9 0.9 0.9 0.9

]T . It is therefore mandatory to
finely tune the value of this parameter as the number of
thrust will remain fixed for the steps (B) and (C).
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Figure 6: Continuous control profile at the end of step (A).

It is possible to find in the literature some rules of thumb
for geostationary SK strategies, in particular in [1], [2] and
[3]. In these references, the effect of the perturbing forces
on the orbit is studied, and some general SK laws are de-

Thruster Threshold
ςa ςb

1 7 5
2 6 4
3 5 3
4 4 3

Table 1: Number of thrusts per thrusters for the the extracted on-off
control profile at the end of step (A) with two values of the threshold
parameter, ςa and ςb.

rived. The North-South effect of the Sun and the Moon
attractions are the most pregnant forces that must be cor-
rected each half-orbit, once in the North direction and half
an orbit later in the South direction. The East-West drift
is meanwhile corrected by setting different thrust dura-
tions for each thrusters. This SK strategy was successfully
used in an industrial context in [17]. The control profile
of Figure 6 shows that the two South thrusters have a
thrust at the beginning of each day, and the two North
thrusters have a thrust half a day later. On the control
profile, the thrusts have always different durations in or-
der to compensate for the East-West drift. The physical
rule of thumb can thus be recovered from a systematic
optimization process.

6.2. Solution of step (B)
The trajectory obtained at the end os step (A) is SK-

feasible but not operationally feasible. Therefore, the
step (B) is mandatory in order to enforce the opera-
tional constraints. As described in the Section 4, the
recovery of the middle time of the thrust and their half
duration are very sensitive to the threshold parameter
ς. Examples are given and some of them exhibit an
operationally feasible but not SK-feasible state trajec-
tory, depending of the value of ς. For ςa, the trajectory
computed after the CBE and EBE schemes are opera-
tionally feasible but not SK feasible (see Figure 7). Fig-
ures 8 displays the state trajectory computed with the
CBE scheme and ςc =

[
0.89 0.89 0.93 0.93

]T and
the state trajectory computed with the EBE scheme and
ςd =

[
0.95 0.9 0.95 0.95

]T . In these two cases, a fine
tuning of the threshold parameter leads to operationally
and SK-feasible trajectory.

Despite the fact that some of the trajectories are not
SK-feasible, the aim of this step is just to enforce the op-
erational constraints since an operationally feasible initial
solution is mandatory for the step (C), whose aim is to
enforce the SK constraints.

6.3. Solution of step (C)
The step (C) optimizes the commutation times of the

control profile solution of step (B). The firing sequence
from the step (B) is supposed to be the optimal one, and
its commutation times have to be optimized. For both
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Figure 7: Trajectories in the (λ, ϕ) plane after the step (B).
— : CBE scheme with ςa,
- - : EBE scheme with ςa.
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Figure 8: Trajectories in the (λ, ϕ) plane after the step (B).
— : CBE scheme with ςc,
- - : EBE scheme with ςd.

equivalence schemes of the step (B), this step manages to
minimize the fuel consumption while enforcing the opera-
tional as well as the SK constraints. For the two state tra-
jectories of Figure 8 computed with ςc and ςd, the step (C)
reduces the fuel consumption, as the Table 2 shows. Fig-
ures 9 and 10 display the control profile optimized thanks
to the switching system framework. On these Figures, it
appears clearly that the length of the thrusts have been
reduced, implying a decrease of the consumption. Figures
11 and 12 illustrate the fact that even if the trajectory re-
sulting from step (B) is not SK-feasible, the optimization
of the commutation times performed in step (C) manages
to enforce the SK constraints, The Figures 13 and 14 show
that this step reduces the consumption as well.

For these computations, µ3 = 108. As the integration of
the dynamics equation (41) and its time derivatives with
respect to the switching times (46) and (47) are numer-
ically integrated with large steps in order to reduce the
computation time, some margins have been taken and the
size of the SK window has been reduced by 10%.
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Figure 9: Control profiles :
— : after the step (B) with ςc and the CBE scheme,
- - : after step (C).
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Figure 10: Control profiles :
— : after the step (B) with ςd and the EBE scheme,
- - : after step (C).
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Figure 11: Trajectories in the (λ, ϕ) plane :
— : after the step (B) with ςa and the CBE scheme,
- - : after step (C).

In Table 2, several values of the threshold parameter ς
used at the end of the step (A) are given, as well as the
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Figure 12: Trajectories in the (λ, ϕ) plane :
— : after the step (B) with ςa and the EBE scheme,
- - : after step (C).
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Figure 13: Control profiles :
— : after the step (B) with ςa and the CBE scheme,
- - : after step (C).

stemmed number of thrusts P . This Table 2 shows clearly
the fuel consumption reduction between the steps (B) and
(C).

7. Conclusion

In this paper, a decomposition of the overall station
keeping optimal control problem under many operational
constraints is used to take into account some difficult con-
straints inherent to the use of electric propulsion. As a
first step, a classical optimal control problem is solved
with state constraints using a precise indirect method ini-
tialized by a collocation based direct method. As a sec-
ond step, two ways of dealing with the thrusters opera-
tional constraints are proposed resulting in two different
fuel consumption results. As a third step, an optimiza-
tion of the commutation times coming from the theory of
the switched systems is used in order to optimize the on
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Figure 14: Control profiles :
— : after the step (B) with ςa and the EBE scheme,
- - : after step (C).

and off times of the firing sequence obtained at the end of
the second step. In fact, the system can be naturally de-
composed into several subsystems, one per thruster whose
control is on and one corresponding to a coasting arc. As
demonstrated by the numerical examples, the threshold
parameter used in the first step has a high impact on the
control profile computed at the second step, so that the
resulting trajectory may not be SK-feasible in some cases.
However, as this trajectory is operationally feasible, the
third step objective is to enforce both the operational and
the SK constraints. Despite these positive results, some
issues remain open. The state constraints are taken into
account with a penalization function, but alternative for-
mulations of the first order necessary conditions coming
from the Pontryagin Maximum Principle exist and should
be considered. Furthermore, in the last step, the dynamics
and its time derivative have to be numerically integrated,
once per commutation time. This leads to long resolution
time, that could be lowered using semi-analytic integration
tools for instance.
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