Bound-Constrained Polynomial Optimization Using Only Elementary Calculations - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Mathematics of Operations Research Année : 2017

Bound-Constrained Polynomial Optimization Using Only Elementary Calculations

Etienne de Klerk
  • Fonction : Auteur
  • PersonId : 978948
Monique Laurent
  • Fonction : Auteur
  • PersonId : 978950
Zhao Sun
  • Fonction : Auteur

Résumé

We provide a monotone nonincreasing sequence of upper bounds fHk(k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube in ℝn. The novelty with respect to the converging sequence of upper bounds in Lasserre [Lasserre JB (2010) A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21:864–885] is that only elementary computations are required. For optimization over the hypercube [0, 1]n, we show that the new bounds fHk have a rate of convergence in O(1/k−−√). Moreover, we show a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for polynomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at the cost of O(kn) function evaluations, while the new bound fHk needs only O(nk) elementary calculations.

Dates et versions

hal-01698348 , version 1 (01-02-2018)

Identifiants

Citer

Etienne de Klerk, Jean B Lasserre, Monique Laurent, Zhao Sun. Bound-Constrained Polynomial Optimization Using Only Elementary Calculations. Mathematics of Operations Research, 2017, 42 (3), pp.834 - 853. ⟨10.1287/moor.2016.0829⟩. ⟨hal-01698348⟩
55 Consultations
0 Téléchargements

Altmetric

Partager

More