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Abstract: We present a novel solution algorithm for a specific set of linear equations arising in
large scale sparse interconnections, such as the PageRank problem. The algorithm is distributed,
exploiting the underlying graph structure, and completely asynchronous. The main feature of
the proposed algorithm is that it ensures that the consistency constraint (the sum of the solution
components summing to one) is satisfied at every step, and not only when convergence is reached,
as in the case of the different algorithms available in the literature. This represents an important
feature, since in practice this kind of algorithms are stopped after a fixed number of steps. The
algorithm is based on two projection steps, and represents a variation of the classical Kaczmarz
method. In this paper, we present a completely deterministic version, and prove its convergence
under mild assumptions on the node selection rule. Numerical examples testify for the goodness
of the proposed methodology.
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1. INTRODUCTION

The problem of computing in a distributed manner the
solution of linear equation has a very long history, dating
back to the work of Gauss and Jacobi (Saad, 2003). In
recent years, the advent of large-scale networks, such as
the world-wide web, or large networks of wireless devices,
has largely renewed the interest in such techniques, see e.g
the recent work of Mou et al. (2015) and the references
therein.

A paradigmatic example of this type of problems is the
computation of the Google PageRank (Brin and Page,
1998), see also Langville and Meyer (2006). In this case,
the size of the network corresponds to the size of the entire
web, which is said to be composed of over 8 billion pages.
For this reason, centralized computation is proving exces-
sively cumbersome (it is reported that the computation,
based on power method, can take more than a week), and
distributed computation techniques have been presented,
see e.g. Ishii and Tempo (2010); Nazin et al. (2011); Fercoq
et al. (2013). These techniques move the computational
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load to the webpages, which autonomously compute their
PageRank value based on exchanged information with the
neighboring pages. The reader is referred to Ishii and
Tempo (2014) for a nice survey and to You et al. (2017)
for some recent developments.

These methods have been recently improved, and the
algorithms recently proposed enjoy important features,
such as exponential convergence and the possibility of
asynchronous updates, see You et al. (2017). Moreover,
special attention is devoted to algorithms able to work on
time-varying graphs.

Mathematically, the PageRank x can be seen as the so-
lution of a (large) linear equality Hx = g, subject to an
equality constraint (namely the components of the vector
x should sum up to one), which we refer to as consistency
constraint. The present paper is motivated by the simple
observation that all distributed methods with exponential
convergence currently share a common characteristic: the
consistency constraint is only guaranteed when the algo-
rithm has reached convergence. Since, in practice, the algo-
rithm is stopped after a finite number of iterations, it is of
interest to satisfy the consistency constraint at every step.
Hence, we propose a distributed asynchronous algorithm
that, starting from an initial condition that satisfies the
above mentioned consistency constraint, preserves global



consistency at every step and exponentially converges to
the optimal solution.

2. PROBLEM STATEMENT AND DEFINITIONS

In this paper, we propose an algorithm to find the (unique)
solution to the following linear equation:

Hx? = g H :=

h
T
1
...

hTn

 , g :=

g1

...
gn

 , (1)

where H ∈ Rn×n and g ∈ Rn satisfy the next assumption.

Assumption 1. Matrix H is invertible and has a real eigen-
value λH corresponding to a left eigenvector 1, namely
1TH = λH1T .

Clearly, under Assumption 1 there exists a unique x∗ ∈ Rn
solving (1). Another consequence of this assumption is that
the solution x? to (1) satisfies:

1Tx? = λ−1
H 1T g, (2)

namely the sum of its elements is equal to the sum of the
elements of g multiplied by λ−1

H .

We are interested in problems with the following character-
istics: i) the size n is very large, ii) the matrix H is sparse.
To best represent the sparsity requirement, for each row
hk of H, let us introduce the following selection vector:

sk :=

sk,1...
sk,n

 , sk,i :=

{
1, if hk,i 6= 0,

0, if hk,i = 0.
(3)

Such a vector satisfies a few useful properties, such as:

diag(sk)hk = hk, 1Thk = sTk hk 1T sk = sTk sk. (4)

As mentioned in the Introduction, an example where this
type of large scale sparse problems arise is the PageRank
computation, which is briefly reviewed next.

Example 1. (PageRank computation). Consider a set of
indexed pages with labels 1, 2, . . . , n. Let nj be the number
of outgoing links of page j. Define, the matrix A whose
(i, j) entry is

ai,j =

{
1/nj if page j links to page i

0 otherwise.

Let m ∈ (0, 1) be a constant whose value is usually taken
to be 0.15. Also, let 1 be the vector of dimension n having
all entries equal to 1. The PageRank problem is defined as
finding the unique solution of

x = (1−m)Ax+
m

n
1.

Equivalently, we want to solve the set of equations

Hx? = g

where
H = I − (1−m)A and g =

m

n
1.

The solution of such a set of equations always sums to one;
i.e., 1Tx? = 1, thereby providing λH = m.

1 2

34 5

As an illustrative example, consider the following network.

Matrix A is given by

A =


0 1 0 0 0

1/3 0 0 1/2 0
1/3 0 0 1/2 1
1/3 0 0 0 0
0 0 1 0 0

 (5)

Then, we have

H =


1.0 −0.85 0 0 0
−0.283 1.0 0 −0.425 0
−0.283 0 1.0 −0.425 −0.85
−0.283 0 0 1.0 0

0 0 −0.85 0 1.0


♦

We formalize next the exact problem at stake.

Problem 1. Find an iterative algorithm whose output z
corresponds to an asymptotic estimate of x?, enjoying the
following properties:

(1) exponential convergence: the estimate z converges ex-
ponentially to x? in some deterministic or stochastic
sense.

(2) distributedness: at each iteration, the algorithm, only
depends on one row hk, gk of H, g and only on the
elements of the estimate z corresponding to nonzero
entries in hk (namely on zk and diag(sk)z) and
similarly for possible additional variables;

(3) sparsity: at each iteration, the algorithm only updates
the elements of the estimate z corresponding to
nonzero entries in hk (namely (I − diag(sk))(z+ −
z) = 0) and similarly for possible additional variables;

(4) consistency: at each iteration, the estimate z satis-
fies the consistency property in (2) (namely 1T z =
λ−1
H 1T g).

Remark 1. It should be noted that properties (1)–(3) are
shared by other algorithms recently presented in the liter-
ature. For instance, the randomized algorithm presented
in You et al. (2017) enjoys almost sure exponential con-
vergence. On the other hand, we are not aware of any
algorithm which guarantees consistency. As previously dis-
cussed, this represents a very important feature. Indeed, in
practice this kind of algorithms are usually stopped after
a fixed number of steps, and one may not be sure that
convergence has been reached completely. This becomes
even more crucial in the case of time varying graphs (as
the world-wide-web surely is). In this case, the PageRank



will be slowly changing, and hence one would like to be
sure that at each time instant the current PageRank value
is consistent. To this end, we remark that the proposed
solution methodology can be extended to the case of time-
varying graphs.

The solution we propose is a modification of the projection
algorithm proposed by Kaczmarz (1937) whose distributed
version has become rather popular in the last years with
the introduction of randomized distributed version, see for
instance Strohmer and Vershynin (2008); Liu and Wright
(2016) and references therein.

3. PROPOSED ALGORITHM AND ITS PROPERTIES

To solve Problem 1 we introduce two variables z ∈ Rn,
and b ∈ Rn, which are updated at each iteration of
the algorithm according to the following discrete-time
dynamics:

z+ = z − Lκ
(
b+

hκ
|hκ|2

yκ

)
b+ = b− Lκb+

sκs
T
κ

|sκ|2
hκ
|hκ|2

yκ,
z(0) = λ−1

H g, b(0) = 0,

(6)
with

Lκ := diag(sκ)− sκs
T
κ

|sκ|2
, yκ := hTκ (z − b)− gκ, (7)

and where the sequence j ∈ Z≥0 7→ κ(j) ∈ {1, . . . , n} char-
acterizes the selection of rows of H sequentially considered
by the algorithm. Note that the initialization z(0) requires
knowledge of λH , which is indeed globally known, e.g., in
the PageRank problem of Example 1, where λH = m.

We first establish below good properties of the proposed
algorithm in terms of the last three items of Problem 1.

Proposition 1. Algorithm 6 satisfies items 2 to 4 of Prob-
lem 1.

Proof. Proof of item 2. First note that scalar yκ in (7)
only depends on the elements of z and b corresponding
to nonzero entries of hκ (due to the scalar product), and
on gκ. Similarly, Lκb only depends on those elements due
to the effect of the selection matrix sκ. The remaining
elements of the algorithm only depend on sκ (which is a
function of hκ) and on hκ itself.

Proof of item 3. First notice that (I−diag(sκ))Lκ = 0 and
(I − diag(sκ))sκ = 0 because diag(sκ) diag(sκ) = diag(sκ)
and diag(sκ)sκ = sκ. Then sparsity follows from the next
derivations:

(I − diag(sκ))(z+ − z) =

− (I − diag(sκ))Lκ

(
b+

hκ
|hκ|2

yκ

)
= 0

Proof of item 4. Due to the specific selection of the initial
condition in (6), we have 1T z(0) = λ−1

H 1T g. Moreover,
using 1TLκ = 0, we have for all j ≥ 0,

1T z(j + 1) = 1T z(j)− 1TLκ(j)

(
b(j) +

hκ(j)

|hκ(j)|2
yκ(j)

)
,

= 1T z(j)

which establishes the result by induction. ♦

Proving the first item of Problem 1 requires additional
assumptions on persistence of excitation from the selection
signal κ(·) appearing in (6).

4. CONVERGENCE ANALYSIS

To suitably study the exponential convergence of (6), it is
convenient to use the following error coordinates:

(e1, e2) := (z − b− x?, z − x?), (8)

where the definition of e1 is motivated by the fact that yκ
in (7) can be expressed as yκ = hTκ (z − b)− hTκx? = hTκ e1.

The arising error dynamics can be conveniently computed
from (6) and corresponds to:

e+
1 = z − b− x? − Lκ

hκ
|hκ|2

yκ −
sκs

T
κ

|sκ|2
hκ
|hκ|2

yκ

(7)
= e1 − diag(sκ)

hκ
|hκ|2

yκ

(4)
=

(
I − hκh

T
κ

|hκ|2

)
e1 (9)

e+
2 = z − x? − Lκ

(
e2 − e1 +

hκ
|hκ|2

hTκ e1

)
= (I − Lκ)e2 + Lκ

(
I − hκh

T
κ

|hκ|2

)
e1, (10)

which reveals a convenient cascaded structure.

It is evident that exponential convergence to zero of e2 =
z−x? requires convergence to zero of e1. To this end, and
due to the relatively simple time-varying dynamics in (9),
it is quite evident that the selection signal κ(·) must be
“rich” enough in terms of persistence of excitation, to be
able to drive e1 to zero. In particular, note that matrix(
I − hκh

T
κ

|hκ|2

)
is a projection matrix with one eigenvalue

equal to 0 and n − 1 eigenvalues equal to 1. The key
to convergence to zero of e1 is that κ persistently spans
all possible directions in the invertible matrix H (see
Assumption 1). This requirement is formalized in the next
assumption that implies the follow-up full rank property.

Assumption 2. There exists a scalar N ∈ Z>0 such that,
for each k ∈ {1, . . . , n},

(1) there exists j ∈ {0, . . . , N} such that κ(j) = k;
(2) for each j1 ∈ Z≥0 satisfying κ(j1) = k, there exists

j2 ∈ {1, . . . , N} such that κ(j1 + j2) = k.

Note that Assumption 2 corresponds to some kind of
reverse dwell time condition about the recurrence of each
one of the n rows of H within the selection performed
by signal κ. With this assumption in place we can prove



∆V1 := V1(j + 1, e+
1 )− V1(e1) = (e+

1 )T (λ1I −M(j + 1))e+
1 − eT1 (λ1I −M(j))e1

= λ1

(
(I − Γκ)e1︸ ︷︷ ︸

=e+1

)T (I − Γκ)e1 − eT1 e1

)
+ eT1 M(j + 1)e1 − (e+

1 )TM(j + 1)e+
1 − eT1 ∆M(j)e1

= eT1 (−I + Π∞ + Γκ + λ1Γ2
κ − 2λ1Γκ)e1 + eT1 (ΓκM(j + 1)Γκ − ΓκM(j + 1)−M(j + 1)Γκ)e1

= −eT1 (I −Π∞ + (λ1 − 1)Γ2
κ − ΓκM(j + 1)Γκ + ΓκM(j + 1) +M(j + 1)Γκ︸ ︷︷ ︸

=Q(j)

)e1.

the following rank condition, which is a key tool for our
Lyapunov construction.

Given the decentralized nature of the algorithm developed,
we also need assumptions on the “connectivity” of the
distributed update scheme.

Assumption 3. Construct an undirected graph G where
node i is connected to node j whenever there exists a
k such that hk,i 6= 0 and hk,j 6= 0. We assume G to be
connected.

Lemma 1. Under Assumptions 2 and 3, there exists a
symmetric matrix Σ > 0 such that, for all j ∈ Z≥0,

0 < Σ ≤ 1

N

j+N−1∑
k=j

hκ(k)h
T
κ(k)

|hκ(k)|2
, (11)

0 < Σ ≤ 11T +
1

N

j+N−1∑
k=j

Lκ(k), (12)

where 1 denotes the vector whose components are all equal
to 1.

Proof. Proof of (11) The immediate implication of As-
sumption 1 is that every N consecutive steps, the algo-
rithm selects at least once each row of H. As a conse-

quence, since matrices
hκ(k)h

T
κ(k)

|hκ(k)|2
are all positive semidefi-

nite, denoting by S the right hand side of (11), for each
j ∈ Z≥0, we have:

NS :=
N

N

j+N−1∑
k=j

hκ(k)h
T
κ(k)

|hκ(k)|2

≥
n∑
i=1

hih
T
i

|hi|2
.

Since matrix H is full rank by assumption, then there
exists a scalar h̄ > 0 satisfying h̄ ≥ |hi| for all i. Then
we obtain:

h̄2NS ≥
n∑
i=1

hih
T
i =: S̄,

where the sum S̄ at the right hand side is necessarily full
rank because non-singularity of H implies that for each
vector x̄ 6= 0 there exists at least one index j ∈ {1, . . . , n}
such that hTj x̄ 6= 0 (otherwise we would have Hx̄ = 0 and
H could not be full rank). Then, for that same generic
vector x̄ we would get

x̄T S̄x̄ = x̄T
n∑
i=1

hih
T
i x̄ ≥ |hTi x̄|2 > 0,

which implies that S̄ is positive definite. As a consequence,
we may select Σ = 1

h̄2N
S̄ and prove the claim.

Proof of (12). Following similar steps to the ones above,
to prove (12) it is sufficient to show that the following
matrix

1

n

n∑
k=1

Lk,

has rank n − 1 whose zero eigenvalue corresponds to the
eigenvector 1.

To this end define the matrix Tk := I − Lk. Given the
definition of Lk, Tk is symmetric, doubly stochastic, all
entries are nonnegative and

Tk(i, j) > 0⇔ i = j or (hk,i 6= 0 and hk,j 6= 0)

Further define

T :=
1

n

n∑
k=1

Tk = I − 1

n

n∑
k=1

Lk.

The matrix T is symmetric, doubly stochastic and
T (i, j) > 0 if and only if (i, j) is an edge of the graph
G in Assumption 3. Given the fact that G is assumed to
be strongly connected and the diagonal entries of T are
strictly positive, this implies that T is a double stochastic
primitive (and hence irreducible) matrix. Therefore i) the
spectral radius ρ(T ) = 1, ii) T has an eigenvalue equal to
one and all other eigenvalues have magnitude strictly less
than one and iii) the eigenvector associated with eigenvalue
one is 1. This immediately implies that

1

n

n∑
k=1

Lk = I − T

is a positive semidefinite matrix with exactly one eigen-
value equal to zero with corresponding eigenvector 1. ♦

Based on Lemma 1, we can prove the following result.

Theorem 1. Consider algorithm (6) under Assumptions 1
and 3. There exist scalars K > 0 and µ ∈ [0, 1) such that,
for any selection function κ satisfying Assumption 2, the
sequence generated from (1) satisfies:

|z(j)− x?| ≤ Kµj |z(0)− x?| (13)

Proof. We prove the theorem by focusing on the error dy-
namics already derived in (9)–(10), which has a convenient
cascaded structure.

Exponential convergence of e1. Let us first consider the
upper subsystem (9) and prove the exponential conver-



gence to zero of e1. To this end, define the following matrix
function of the algorithm iteration j ∈ Z≥0:

Π(j) :=
1

j

j−1∑
i=0

(
I −

hκ(i)h
T
κ(i)

|hκ(i)|2

)
=

1

j

j−1∑
i=0

(
I − Γκ(i)

)
,

(14)
and note that, by Lemma 1 (see equation (11)), we have
that there exist a symmetric matrix Σ > 0 and a scalar
σ1 > 0 such that:

Π∞ := lim
j→∞

Π(j) ≤ I − Σ < I, (15)

− σ1I ≤M(j) := j(Π(j)−Π∞) ≤ σ1I. (16)

Consider now the following Lyapunov function candidate:

V1(j, e1) := eT1 (λ1I −M(j))e1, (17)

where λ1 > σ1, so that, also using (16), the following
uniform quadratic bound holds:

c1|e1|2 ≤ V1(j, e1) ≤ c|e1|2, ∀j, e1, (18)

which clearly implies that the Lyapunov function is uni-
formly positive definite. We perform the following prelim-
inary calculation to compute the variation of V1 at each
step of the algorithm:

∆M(j) := M(j + 1)−M(j)
= I − Γκ(j) − (j + 1− j)Π∞
= I −Π∞ − Γκ(j).

Then, using the property Γ2
κ = Γκ and the fact that Γκ is

symmetric, we may compute the bounds given at the top
of the page. Consider now inequality (15), which clearly
implies the existence of a (small) positive scalar ε1 > 0
such that I − Π∞ > 2ε1I and then, also using (16), we
may bound matrix Q(j) given at the top of the previous
page as follows:

eT1 Q(j)e1 ≥ 2ε1|e1|2 + (λ1 − 1− σ1)|Γκe1|2 − 2σ1|e1||Γκe1|

=

[
|e1|
|Γκe1|

]T [
2ε1 −σ1

−σ1 λ1 − 1− σ1

] [
|e1|
|Γκe1|

]
,

which clearly reveals that picking λ1 > 0 large enough, it
is possible to obtain

∆V1(j, e1) ≤ −ε1|e1|2. (19)

Then, using standard Lyapunov theory, the bound above
can be combined with (18) to obtain an exponential bound:

|e1(j)| ≤ K1

√
(1− ε1)

j
|e1(0)|. (20)

for some positive constant K1.

Exponential convergence of e2. Let us now consider the
evolution of the second error variable e2. To this end,
consider the following coordinate change, where U2 is any
orthonormal basis of the orthogonal complement to the
subspace generated by the vector 1 having all its elements
equal to 1:

η :=

[
η1

η2

]
:=

[
n−1/21T

UT2

]
e2,

e2 =
[
n−1/21 U2

]
η.

(21)

Let us first note that since sκ has all its elements either
equal to zero or to 1, then we have 1T sκ = |sκ|2, which

implies 1TLκ = sTκ − |sκ|2
sTκ
|sκ|2 = 0. Then we obtain from

expression (10),

1T e+
2 = 1T e2 + 1TLκ(−e2 + (I − Γκ)e1) = 1T e2, (22)

which implies, for all j ∈ Z≥0,

η1(j) = n−1/21T e2(j) = n−1/21T e2(0)

= n−1/2(1T z(0)− 1Tx∗) = 0,
(23)

where we used property (2) and the initial condition in (6).

Let us now consider the evolution of variable η2 in (21),
which corresponds to

η+
2 = UT2 (I − Lκ)e2 + UT2 Lκ (I − Γκ) e1. (24)

Using the following identities

UT2 (I − Lκ)
[
n1/21 U2

]
η︸ ︷︷ ︸

=e2

= UT2 (I − Lκ)U2η2 + n1/2 (UT2 1− UT2 Lκ1)η1︸ ︷︷ ︸
=0

,

dynamics (24) can be written as:

η+
2 = UT2 (I − Lκ)U2η2 + d

= (I − UT2 LκU2)η2 + d,
(25)

where we used UT2 U2 = I and where |d| ≤Md|e1| for some
scalar Md, because the input matrices multiplying e1 at
the right hand side of (24) are bounded.

Consider now inequality (12) established in Lemma 1. Pre-
and post-multiplying both sides by U2 and its transpose,
we obtain:

0 < UT2 ΣU2 ≤ UT2 11TU2︸ ︷︷ ︸
=0

+
1

N

j+N−1∑
k=j

UT2 Lκ(k)U2, (26)

which reveals that dynamics (25) and its property (26)
share the same structure as the one of dynamics (9) and its
property (11). As a consequence, we may follow exactly the
steps of the first part of the proof and obtain a Lyapunov
function V2 satisfying,

c2|η2|2 ≤ V2(j, η2) ≤ c2|η2|2, ∀j, η2, (27)

∆V2(j, η2) ≤ −ε2|η2|2 + ζ|η2||d|+ ζ|d|2, (28)

where ζ := λ2 + σ2, and these constant come from similar
constructions to the one used to analyze the dynamics of
e1. Consider now the following overall Lyapunov function:

V (e1, η2) := θV1(e1) + V2(η2),

where θ will be selected large enough. Combining the
bounds in (19) and (28), and recalling that |d| ≤ Md|e1|,
we obtain

∆V ≤ −ε1θ|e1|2 − ε2|η2|2 + ζMd|η2||e1|+ ζM2
d |e1|2,

so that we may pick θ large enough to dominate the last
bad quadratic term, and complete squares to dominate the
mixed term, thereby obtaining:

∆V ≤ −ε2

2
(|e1|2 + |η2|2), (29)

which implies, by standard discrete-time Lyapunov theory,
that there exist positive scalars KV and µV < 1 satisfying:

|η2(j)|2 ≤ |e1(j)|2 + |η2(j)|2

≤ KV µ
j
V (|e1(0)|2 + |η2(0)|2).
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Fig. 1. Magnitude of error for a highly linked network.

Using (21) we obtain |η2(0)| ≤ |e2(0)|, because [ n−1/21 U2 ]
is a unitary matrix. Then we may use the initial conditions
in (6) and the definitions in (8) to obtain

|η2(j)|2 ≤ KV µ
j
V (|e1(0)|2 + |e2(0)|2)

≤ KV µ
j
V (|z(0)− b(0)− x∗|2 + |z(0)− x∗|2)

≤ 2KV µ
j
V |z(0)− x∗|2.

(30)

Let us now consider (21) and (23), which imply

|e2(j)|2 = |η1(j)|2 + |η2(j)|2 = |η2(j)|2, (31)

where we used again the fact that [ n−1/21 U2 ] is unitary.
Then we may concatenate bounds (30) and (31), together
with e2 = z − x∗, to prove (13) with K =

√
2KV and

µ =
√
µV . ♦

5. NUMERICAL EXAMPLES

In this section, we apply the proposed algorithm to PageR-
ank problems. Note that in the case of PageRank, the pro-
posed communication scheme requires each page to collect
the page rank values of incoming links. This is exactly the
same setup discussed in Ishii and Tempo (2010). In our
first numerical example, a network of n = 1000 pages is
considered where each page has between 260 and 347 pages
linking to it; i.e., we have a highly linked set of pages.
The evolution of the distance to the optimum is depicted
in Fig. 1. As expected, one has exponential convergence
to the solution x∗ and all iterations are consistent; i.e.,
1T z(k) = 1 for all k. Next, we consider a network with
much less connectivity. More precisely, we again have
n = 1000 pages but now each page has only between 12
and 41 pages linking to it. The evolution of the magnitude
of the error for this network is shown in Fig. 2. Again, as
expected, one has exponential convergence to the optimum
and all the iterations are consistent. However, the fact that
the network now has a much lower level of connectivity
leads to a slower convergence rate.

6. CONCLUDING REMARKS

In this paper we considered the problem of solving a set
of decentralized linear equalities together with a global
consistency constraint. An algorithm is proposed that
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Fig. 2. Magnitude of error for a lowly linked network

i) converges exponentially to the feasible set and ii) at
every iteration, the estimate satisfies the global consis-
tency constraint. The proposed algorithm is decentralized
and allows for “massive” parallel implementation. More
precisely, as long as none of the equalities has common
variables they can be updated in parallel. Numerical per-
formance was demonstrated using PageRank examples.
Effort is now being put in extended the type of global
constraints that can be handled.
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