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Unbiased observer synthesis using dynamic output
allocation

for discrete-time linear plants with redundant sensors

Andrea Cristofaro and Luca Zaccarian

Abstract

The problem of output redundancy in discrete-time linear plants is addressed, wherein the presence of
redundant sensors is motivated by unknown bias or faults affecting the measurement equation. In this context,
we focus on the design of a nonlinear estimation procedure consisting in a bias estimator together with a
linear Luenberger structure augmented with an adaptive weighted pseudo-inverse combination of the available
measurements. It is shown that the proposed scheme is characterized by higher performances compared to the
classical compensation of the observer output injection using the estimated bias. Simulation results are given to
illustrate the potential behind the proposed solution.

I. INTRODUCTION

Input redundancy has been widely investigated, to a large extent in the framework of control allocation
[1], [2], which is a modular setup where the properties of a redundant set of inputs are exploited
in order to state a constrained optimization scheme that incorporates both primary and secondary
control objectives. Conversely, output allocation, or dual redundancy, is a less studied problem yet
very interesting and many-sided. The Kalman filter and the extended Kalman filter [3], being estimation
methods aiming at the minimization of the covariance error, naturally benefit from the presence of a
redundant set of outputs. However, such redundancy is usually not explicitly analyzed and is used in a
passive way. As for the case of actuator redundancy, the presence of redundant outputs might be very
helpful in handling sensor faults and biased measurements. In this regard, some results pertaining safety
and reliability of marine systems have been proposed [4]. On the other hand, sensor fault detection
is a challenging problem, as there are no unquestionable methods to establish whether a sensor is
faulty or not, based on the measurement value. Several approaches have been proposed [5], such as
robust observers [6], [7], consensus based schemes [8], adaptive approximation [9] or statistical methods
[10]. Robust observers are typically designed for systems with structured faults by exploiting geometric
properties to achieve fault decoupling. The underlying idea of consensus methods is to put more trust in
the measurements on which the largest group of sensors agree, while adaptive approximation consists
in the online reconstruction of a fault estimate, typically by means of neural networks architectures.

The method presented in this paper arises instead from the elementary yet fundamental observation
that, among all the possible combinations of outputs, there is one which is less sensitive or even
insensitive to a given perturbation. On the other hand, as the perturbing signal is typically unknown
and unpredictable, such an optimal combination is also generally unknown. In the absence of faults and
external perturbations, an equivalent full-rank, lower dimensional output model can be extracted using
a weighted pseudo-inverse, where the weights indicate the burden on each individual sensor. The scope
of the paper is to propose an adaptation scheme for such weights, with the aim of defining dynamic
pseudo-inverses being able to asymptotically converge to an optimal combination of outputs, where
optimality has to be interpreted as the minimization of the perturbation effect in the output estimation
error of a given state observer. In other words, the introduction of dynamic pseudo-inverses allows
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to design a fault-tolerant adaptive observer with the nice property of being self-tuning. Moreover, the
asymptotic value of the adaptive weights is a clear indication of faults or biases presence, location and
relative magnitude. A similar paradigm has been introduced in [11] for continuous-time systems, and
the extension to discrete-time systems is presented here. We point out that this is not a mere revisiting
of the previous results in the discrete-time framework, since a completely different design procedure is
proposed here. In particular, the synthesis of two observers is proposed, to be used in cascade: the first
one is responsible of estimating the bias, while the second one reconstructs the state of the system by
selecting the best combination of outputs based on the estimated bias.

The paper is structured in five main sections. In Section II the problem is formally stated, and
the design of the bias estimator is addressed in Section III. A general architecture for the unbiased
state estimator using dynamic output allocation is exploited in Section IV, while a specific algorithm
to compute the adaptation scheme is proposed in Section V. Finally, in Section VI some numerical
examples illustrate the method performances and validate the theoretical results.

II. PROBLEM DEFINITION

Let us consider the linear time-invariant discrete-time plant

xk+1 = Axk +Buk
yk = Cxk + ϕ,

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are state, input and output of the plant, respectively, A, B, C are
matrices of appropriate dimensions and ϕ is an unknown but constant bias affecting the outputs of the
system.

For plant (1) we assume that the output y is redundant, in the sense that some measurements are
linear combination of the other ones. We also assume that the state of the plant is detectable from y
(otherwise no state estimation could be possible). Finally, we assume that the constant bias ϕ can be
detected from output y, which corresponds to requiring that matrix A cannot generate constant responses
(namely it has no eigenvalues in 1). These assumptions are formalized below.

Assumption 1: Plant (1) is such that the following holds:
1) Output Redundancy. The output is redundant namely there exists an integer q < p and matrices

Y ∈ Rp×q, H ∈ Rq×n such that q := rank(C) = rank(H), and C = Y H.
2) Detectability of x. Pair (C,A) is detectable (therefore also (H,A) is detectable);
3) Detectability of ϕ. Matrix A− I is nonsingular (namely, matrix A has no eigenvalue in 1).
While the first property (redundancy) characterizes the peculiar feature exploited in the scheme

proposed in this paper, and is not necessary for estimating x and ϕ, we emphasize that the two subsequent
items in Assumption 1 are indeed necessary to build a finite-time or asymptotic observer of x in the
presence of the unknown constant bias ϕ. This is easily seen by augmenting plant (1) with an exosystem
and realizing that item 3 is a necessary condition for detectability.

Regarding item 1, as long as q < p, there exists an infinite number of pairs (Y,H) with C = Y H .
Having selected one, we refer to such H as an extracted full rank (EFR) output matrix. For any selection
of that matrix, since we assume detectability in Assumption 1, in the absence of the bias ϕ, a full order
Luenberger observer can be designed:

x̂k+1 = Ax̂k +Buk + L(Hxk −Hx̂k) (2)

where L is a suitable output error injection gain ensuring that |xk − x̂k| → 0 as k tends to ∞.
The scope of this paper is to develop a design procedure for an unbiased observer, i.e. an observer

that, using the injection of the redundant output y, guarantees the same performance as the nominal
observer (2), despite the presence of the perturbation ϕ.



III. ASYMPTOTIC BIAS ESTIMATION

As a first ingredient of our scheme, we exploit Assumption 1 to design an asymptotic estimate ϕ̂ of
the bias ϕ. To this end, we first observe that ϕ always admits a decomposition of the following form:

ϕ = Y ϕY + ϕo, (3)

with ϕY ∈ Rp and where ϕo ∈ [span(Y )]⊥ satisfies Y Tϕo = 0. Vector ϕo can be readily extracted
from the output by projecting measurement yk onto [span(Y )]⊥ at any time k ∈ Z≥0, as follows:
ϕo = PY ⊥yk := (I − PY )yk, where we used the projection matrix PY := Y (Y TY )−1Y T .

Thanks to item 2 of Assumption 1, we can select a Luenberger gain M such that A−MH is a Schur
matrix (namely its eigenvalues all have magnitude smaller than one). Using this output injection gain,
we introduce an observer with the scope of estimating ϕY :

ξk+1 = Aξk +Buk +MPY (yk − Cξk). (4a)

The asymptotic estimate ϕ̂ of ϕ can be then determined as follows:

ηk := PY yk −Hξk (4b)
ϕ̂k := Y (I +H(I − A)−1M)ηk + PY ⊥yk, (4c)

where the output gain in (4c) is well defined due to item 3 of Assumption 1. The effectiveness of (4)
at estimating ϕ is established in the next proposition.

Proposition 1: If matrix A −MH is Schur, then the difference ϕ̂k − ϕ converges exponentially to
zero. In particular, setting εk := xk − ξk, the error dynamics reads as:

εk+1 = (A−MH︸ ︷︷ ︸
:=Acl

)εk −MϕY . (5)

Example 1: An unbiased observer can be readily designed by injecting directly the bias estimate
ϕ̂k, e.g. using an output injection of the form yk − ϕ̂k into (2). However, as it will be highlighted
in the present example, the resulting estimation is far from being accurate in the presence of noisy
measurements or time-varying biases.

Consider the following plant:

A =

 1 0 1
3 9 1
1 −1 3

 , B =

 1
5
−1

 ,
C =

[
1 1 0
1 1 0

]
, Y =

[
1
1

]
, H =

[
1 1 0

]
.

Referring to (2) and (4a), the gains of the observers x̂k and ξk are chosen as

M =

 31.8996
−18.9026

86.3395

 , L =

 27.3860
−14.9860

73.8200

 ,
with spec(A − MH) = {0} and spec(A − LH) = {0.1, 0.2, 0.3}. We notice that the considered
plant is unstable. i.e. spec(A) = {8.7534, 0.4861, 3.7605}: accordingly, a stabilizing feedback controller
u = −Kx̂ is designed, with gain K =

[
−1.0345 1.8357 −3.0558

]
and closed-loop poles spec(A−

BK) = {0.5, 0.6, 0.7}.
A constant bias ϕ is assumed to affect the output equation, with

ϕ =

[
1
2

]
, yk = Cxk + ϕ (6)



As clearly illustrated in Figure III, the estimation of the bias is fairly accurate in the absence of sensor
noise and provides a fast decay of the estimation error |e| = |x− x̂|. However, when a perturbed bias
is considered, i.e.

ϕk = (1 + 0.5w(k))ϕ (7)

where w(k) is a white noise process, a remarkable deterioration of performances occurs and is visible
at the top of Figure III. This is also strongly reflected in a poor estimation accuracy as shown at the
bottom of Figure III.

0 10 20 30 40 50 60 70 80
−4

−2

0

2

4

6

samples (k)

ϕ̂

 

 

estimated bias: component ϕ̂1

estimated bias: component ϕ̂2

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

samples (k)

|e
|

 

 

estimation error – without accommodation

estimation error – with estimated bias injection

Fig. 1. Example 1: Bias estimation (top) and state estimation error (bottom) without measurement noise.

IV. AN OBSERVER USING DYNAMIC PSEUDOINVERSES

Motivated by the drawback highlighted in the latter example, in this section we investigate the
design of enhanced observers by using the estimation of bias and simultaneously exploiting the sensor
redundancy with the aim of reducing the effect of noisy measurements and bias oscillation on the
estimation performance.
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Fig. 2. Example 1: Bias estimation (top) and state estimation error (bottom) with measurement noise.

A. Observer architecture and its properties
Similar to (2), given any gain matrix L such that A − LH is Schur, we construct the following

asymptotic observer:
x̂k+1 = Ax̂k +Buk + LΠ(zk)(yk − ŷk)
ŷk = Cx̂k

zk+1 ∈ G(zk, ϕ̂k),
(8)

where the additional state z ∈ Rq is selected to perform an on-line adaptation of matrix function G,
which corresponds to the weighted pseudoinverse

Π(z) := R(z)−1Γ(z) := (Y Tdiag(z)Y︸ ︷︷ ︸
=:R(z)

)−1 Y Tdiag(z)︸ ︷︷ ︸
=:Γ(z)

. (9)

The set-valued mapping G is a suitable ingredient of the design procedure, specified below. The goal
in the design of G is to ensure that z automatically selects the “best” information content among the
redundant measurements yk through Π(zk). To this end, we first observe that Π(zk) is scale invariant,
i.e. Π(zk) = Π(µzk) for any µ 6= 0, and for this reason it is helpful to restrict the vector zk to lie on the



unit sphere Sp−1. Moreover, we observe that map Π in (9) is only well defined if matrix R is invertible.
Due to this fact, we only focus on values of z evolving in the following set:

Zε := {z ∈ Sp−1 : | det(R(z))| ≥ ε}, (10)

which is compact because it is the intersection between the compact set Sp−1 and a closed unbounded
set.

We observe that for any pair z, v ∈ Rp the following identity holds diag(z)v = diag(v)z, and
therefore

Γ(z)ϕ = Γ(ϕ)z, (11)

where Γ has been defined in (9). By developing the output injection term in (8), we may appreciate the
importance of the term appearing in (8). Indeed, we get, also using (11),

LΠ(zk)(yk − ŷk) = LR(z)−1Γ(z)(Y Hx+ ϕ− Y Hx̂)
= LR(z)−1Γ(z)Y H(x− x̂) + LR(z)−1Γ(z)ϕ
= L(Hx−Hx̂) + LR(z)−1Γ(ϕ)z,

(12)

where we used R(z)−1Γ(z)Y = R(z)−1Y Tdiag(z)Y = I .
Combining equation (12) with observer (8) and plant (1), we can define the estimation error e := x−x̂,

whose dynamics can be written as:

ek+1 = (A− LH)ek + LR(zk)
−1Γ(ϕ)zk,

zk+1 ∈ G(zk, ϕ̂k),
(13)

showing a convenient structure only involving states e and z, and input ϕ̂.
The error dynamics (13) illustrates the effectiveness of the proposed solution in terms of providing an

observer that, in the presence of the unknown bias ϕ, structurally recovers the estimation error transient
experienced with unbiased dynamics (2). Such a recovery is however only possible if the perturbation
term R(z)−1Γ(z)ϕ becomes zero, at least asymptotically. This goal motivates the following property
that we state for the set-valued function G and that will be guaranteed by the construction proposed
later in Section V.

Property 1: Given the constant bias ϕ in (1), there exists a scalar ε > 0 such that the set-valued map
G is nonempty and locally bounded and outer semi-continuous relative to Zε×Rp. Moreover, for each
z ∈ Zε, G(z, ϕ) ⊂ Zε and

z+ ∈ G(z, ϕ) ⇒ (Γ(ϕ)z+ = 0) or (|Γ(ϕ)z+| < |Γ(ϕ)z|).
Property 1 ensures that, as long as G is fed with the correct bias signal ϕ, it produces a set of possible

selections for the next value of z, that leads to an improvement of the filtering action in (12), unless
its value is already zero. Based on Property 1, we can now state the following result, that is a second
important baseline result for the proposed scheme.

Proposition 2: Consider plant (1) observer (8) driven by the constant input ϕ̂k = ϕ for all k. If
function G is outer semi-continuous and satisfies Property 1 for a suitable ε > 0, then for any L
ensuring that A − LC is Schur, the compact set A2 := {(e, z) : Γ(ϕ)z = 0, e = 0} is globally
asymptotically stable for the ensuing error dynamics (13).

Our main result below follows from Propositions 1 and 2 after making the key observation that εk
converges exponentially to the unique equilibrium:

ε∗ := −(I − (A−MH))−1MϕY . (14)

Based on the above derivations, our goal is to focus on the following compact set:

A := {(ε, e, z) : Γ(ϕ)z = 0, ε = ε∗, e = 0} (15)



whose desirable stability properties are established in the main result below, whose proof is omitted
due to space constraints and is based on a discrete-time version of classical reduction theorems [12].

Theorem 1: Consider any pair of gains M and L such that A − LH and A −MH are Schur. If
function G is outer semi-continuous and satisfies Property 1 for a suitable ε > 0, then the compact set
(15) is globally asymptotically stable for the ensuing error dynamics (5), (13).

B. Scale invariance and low-pass filtering
As already mentioned, the weighted pseudoinverse Π(z) is invariant under scaling of z. On the other

hand, a quasi-invariance property with respect to the bias ϕ is also guaranteed. Indeed if Π(z) is the
optimal pseudoinverse for ϕ, i.e. Π(z)ϕ = 0, then Π(z) is optimal for the whole space span(ϕ). Such
a feature of the output allocation based observer (8) is a further advantage compared to the injection
corrected observer discussed in Example 1 in terms of transient performances.
To illustrate this fact, let us consider a time-varying perturbation term ϕk with ϕk = gkϕ, gk ∈ R \
{0} ∀k ∈ N. Due to the presence of the time-varying factor gk, the auxiliary observer ξk is no longer
capable to ensure convergence of ϕ̂k to ϕ. Moreover, since the gain M of a fast observer is typically
large, some overshoots are likely to arise in the estimated bias ϕ̂k, with a potential inaccuracy of the
observer x̂ and the associated output allocator. However, this problem might be overcome by introducing
a filter that processes the estimate ϕ̂k before this signal is fed to the observer (8) and the output allocator.

To this end, we propose an operative procedure with the aim of reducing the effect of high frequency
components of the factor gk on the computation of the optimal weights zk.

Algorithm 1 (Scaling & Filtering):
i) Project ϕ̂k onto the homogeneous space1 R̂p = {ζ ∈ Rp : ζp = 1} :

ϕ̂k ⇒ ϕ̂∗k := PR̂pϕ̂k = ϕ̂k/ϕ̂k,p.

ii) Low-pass filter the signal ϕ̂∗k:
ϕ̂∗∗k = (1− τ)ϕ̂∗∗k−1 + τϕ̂∗k,

where τ is a suitable filter parameter.
iii) Feed the processed signal ϕ̂∗∗k to the output allocator in (8):

zk+1 ∈ G(zk, ϕ̂
∗∗
k ).

V. A POSSIBLE SELECTION OF THE MAP G

An algorithm for generating a map G satisfying Property 1 is proposed. The underlying idea is to
evaluate the norm of Γ(ϕ)z along rank-one increments. In fact, denoting by y(i) the columns of Y T ,
the matrix R(z) = Y TΓ(z)Y can be written as a finite sum of rank-one matrices:

R(z) =

p∑
i=1

ziΥi, Υi = y(i)y
T
(i).

Let us denote by {ei}, i = 1, ..., p, the vectors of the canonical basis of Rp. Let z̄ be such that
det(R(z̄)) 6= 0, and consider the rank-one perturbation R(z̄ + ζei). By the Sherman-Morrison formula
[13] one has

R−1(z̄ + ζei) = R−1(z̄)− ζ R−1(z̄)ΥiR
−1(z̄)

1 + ζyT(i)R
−1(z̄)y(i)

,

1It is assumed without loss of generality that ϕ̂k,p 6= 0. The choice of rescaling the last component is arbitrary, any other non zero
component can be used.



that is clearly well-defined if and only if

1 + ζyT(i)R
−1(z̄)y(i) 6= 0.

For ε > 0, the (ε, z̄, i)-feasible set Λ(ε, z̄, i) is defined as

Λ(ε, z̄, i) = {ζ ∈ R : |1 + (ζ − z̄i)yT(i)R−1(z̄)y(i)| ≥ ε}.

More precisely, the decomposition Λ(ε, z̄, i) = Λ+(ε, z̄, i) ∪ Λ−(ε, z̄, i) holds with

Λ+(ε, z̄, i) := {ζ ∈ R : 1 + (ζ − z̄i)yT(i)R−1(z̄)y(i) ≥ ε}
Λ−(ε, z̄, i) := {ζ ∈ R : 1 + (ζ − z̄i)yT(i)R−1(z̄)y(i) ≤ −ε}.

(16)

As a matter of fact, as i varies in {1, ..., p}, the above objects form a family of 2p disjoint closed
sets. Set S(ϕ) := Γ(ϕ)Y Y TΓ(ϕ), whose entries are denoted by {sij}pi,j=1, and consider the family of
minimization problems

min
z∈p

F (z) = min
z∈p

zTS(ϕ)z

zT z
(17a)

subject to
z = z̄ + ζei, ζ ∈ Λ(ε, z̄, i). (17b)

Notice that the minimization problem (17) is equivalent to minimizing function |Γ(ϕ)z|2 with z restricted
to the projection on the unit sphere Sp−1 of the line generated by z̄ + ζei for all ζ ∈ Λ(ε, z̄, i). The
advantage of only focusing on a line search is that one can exploit the structure of the disconnected set
Λ in (16) and perform the ensuing one-dimensional optimization by evaluting increments zi along the
direction ei. By defining the projection operator Ei := I − eie

T
i , the function F in optimization (17)

can be rewritten as the scalar rational map

Fi(zi) := F (Eiz̄ + ziei)

=
siiz

2
i + 2zi

∑
j 6=i sij z̄j +

∑
j, 6̀=i sj`z̄j z̄`

z2
i +

∑
j 6=i z̄

2
j

,

or, more concisely, as Fi(zi) =
c2iz

2
i +c1izi+c0i
z2i +a0i

where c2i = sii, c1i = 2
∑

j 6=i sij z̄j, c0i =
∑

j, 6̀=i sj`z̄j z̄`,

and a0i =
∑

j 6=i z̄
2
j . Computing the first derivative yields

F ′i (zi) =
−c1iz

2
i + 2zi(c2ia0i − c0i) + c1ia0i

(z2
i + a0i)2

.

Noticing that (c2ia0i − c0i)
2 + c2

1ia0i ≥ 0, the equation F ′i (δ) = 0 always admits two real solutions

z◦i± =
−(c2ia0i − c0i)±

√
(c2ia0i − c0i)2 + c2

1ia0i

−c1i

(18)

provided that c1i 6= 0. Moreover, it can be verified that the minimum is always achieved in z◦i− . Whether
such solution is still consistent in the degenerate scenario c1i = 0 has to be addressed. It can be verified
computing the limit limc1i→0 z

◦
i− that the condition (c2ia0i − c0i) < 0 is necessary for feasibility to be

preserved when c1i = 0. On the other hand, exploiting the expression of these coefficients, the latter
inequality appears unlikely to be satisfied. To overcome such an issue, one might introduce artificial
restrictions on the admissible set of increments, e.g. allowing zi to vary in a compact set only. In
this regard, for a fixed K > 0 let us consider the sliding intervals I(K, z̄, i) := [−K|z̄i|, K|z̄i|] and,
accordingly, set

Λ±(K, ε, z̄, i) := Λ±(ε, z̄, i) ∩ I(K, z̄, i).



The boundary of this constrained feasible set is given by the collection of four singletons:

∂Λ±(K, ε, z̄, i) = {K|z̄i|,−K|z̄i|, δ+(ε, z̄, i), δ−(ε, z̄, i)} , (19)

where δ±(ε, z̄, i) :=
−1+z̄iy

T
(i)
R−1(z̄)y(i)±ε

yT
(i)
R−1(z̄)y(i)

.

Based on the computations above it can be inferred that, for any fixed i, the constrained minimum is
achieved either in z◦i− if the latter point lies inside the feasible set Λ+(K, ε, z̄, i)∪Λ−(K, ε, z̄, i), or in one
of the boundary points (19) otherwise. Evaluating such minimum and comparing the results as i varies
in {1, ..., p}, the preferred direction of increment zi for minimizing the norm of Γ(ϕ)z can be identified
by a finite number of operations: such a direction is then used to assign the update map z+ satisfying
Property 1. Summarizing, we can state the following algorithm and the subsequent proposition.

Algorithm 2: % Update algorithm for z
Input: z̄, ϕ
i = 1
While i ≤ p

If c1i 6= 0 & z◦i−∈ Λ±(K, ε, z̄, i)
then zmin(i) = z◦i−

else zmin(i)=arg min

{
Fi(K|z̄i|), Fi(−K|z̄i|),

Fi(δ+(ε, z̄, i)), Fi(δ−(ε, z̄, i))

}
i = i+ 1

end
i? = arg mini=1,...,p{Fi(zmin(i))}
ζ? = zmin(i?)
Output: i?, ζ?
The next proposition establishes desirable properties of Algorithm 2 to the end of satisfying Property 1.
Proposition 3: Consider the following definition of the update map G:

z+ =
z + (ζ? − zi?)ei?

|z + (ζ? − zi?)ei?|
where i? and ζ? are provided by Algorithm 2 with input z.
Then the sequence of weights zk satisfies for any k ∈ N the inequality |Γ(ϕ)zk+1| ≤ |Γ(ϕ)zk| together
with the feasibility condition det(R(zk)) 6= 0.

Remark 1: It is worth noticing that, implementing Algorithm 2 and using the recipe proposed in
Proposition 3, Property 1 is fulfilled under the fairly mild assumption that kerS(ϕ) is not fully contained
in {z : det(R(z)) = 0}, and by selecting ε > 0 and K > 0 sufficiently small and sufficiently large,
respectively. In fact, one can observe that the λ-level set of F (z), i.e. Eλ = {z : F (z) = λ} for some
λ ≥ 0, coincides with the set {z : zT (S(ϕ)− λI)z = 0} which is a convex cone, and then, invoking
a space separation principle, at least one direction zi can be found such that the gradient of F (z)
along such direction points toward a level set Eλ with F (z) > λ. Moreover, if the feasible set is made
sufficiently large by a suitable choice of the constants ε,K, a point z+ can always be intercepted on
the lower level set Eλ without violating the desired constraint det(R(z+)) 6= 0.

Remark 2: We point out that the proposed algorithm is only one possible scheme among many others.
However, one key advantage of the proposed choice is the possibility to recast the nonlinear constraint
det(R(z+)) 6= 0 into a finite bank of scalar convex constraints by means of the family of disjoint sets
Λ(ε, z̄, i), i = 1, ..., p, this allowing to implement a computationally efficient procedure for searching
the optimal weights z.



VI. EXAMPLE 1 REVISITED

Example 2: Consider again the linear plant of Example 1 under the same operative conditions. We
point out that the plant is output redundant, i.e. the given output matrix C corresponds to a configuration
where a pair of identical sensors is available. Using the estimated bias ϕ̂k obtained in Example 1, an
observer has been designed according to (13) where the update map G has been shaped based on
Algorithm 2 and Proposition 3. The tunable parameters in the algorithm have been selected as ε = 0.01,
K = 10. The behavior of the estimation error is depicted in Figure VI (top), where the asymptotic
settling to zero is appreciable. Moreover, in Figure VI (bottom), the convergence of dynamic weights
to the optimal values is illustrated.

In particular one has zk → zopt =

[
2/
√

5
−1/
√

5

]
and the optimal pseudoinverse is

Π(zopt) = [Y Tdiag(zopt)Y ]−1Y Tdiag(zopt) = [2 − 1]

with Π(zopt)ϕ = 0.

The perturbed case (7) has also been tackled with the output allocation scheme. To prevent a noisy
estimation response, the scaling and filtering algorithm proposed in Section IV-B has been implemented
to generate a filtered estimate ϕ̂∗∗k , whose high performances are depicted in Figure VI (top) and
compared to those of the observer with direct estimated bias injection discussed in Example 1. As
clearly visible in the figure, the effect of the bias is attenuated in the estimation error |xk− x̄k| when the
estimated bias is directly injected, while is almost fully compensated in the estimation error |xk − x̂k|
when output allocation is performed. Finally, the convergences of weights z∗∗k to the optimal values is
shown in Figure VI (bottom). It is worth to note that, due to noise, the evaluated optimal weights are
opposite to those obtained in the noise-free scenario. However, this fact does not provide any change
in terms of performances since the resulting optimal pseudo-inverse is the same.

VII. CONCLUSIONS

A novel robust estimation scheme has been proposed based on a pseudoinverse with adaptive weights
when designing linear Luenberger observers in the presence of redundant measurements for discrete-
time linear plants. The paper extends to the discrete-time setting some results originally obtained by the
authors in the case of continuous-time systems [11]. The proposed architecture, which combines two
different observers with interconnected purposes, is successful at rejecting constant biases affecting the
sensor measurements. The first observer is in charge of estimating the bias, and the second estimator
uses dynamic pseudoinverses to compute the best combination of sensors. One key advantage of the
method is that it does not require any knowledge on the structure of the perturbations, i.e. no matching
condition is involved. Moreover, the robustness of estimation performances with respect to measurement
noise is a desirable additional feature of the proposed approach.
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Fig. 4. Example 2: Estimation errors (top) and dynamic weights (bottom) with noise.


