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Robust time-sub-optimal control of the saturated double
integrator applied to attitude stabilization

Mirko Brentari, Paolo Bosetti, Rafal Goebel, and Luca Zaccarian

Abstract

This paper proposes a robust time-sub-optimal controller for the double integrator with saturated input, based
on a hybrid blend of a local and a global controller. The scheme makes use of two hysteresis mechanisms in order
to provide robustness to unmodelled dynamics and measurement noise. Rigorous certificates of the stability of
the proposed controller are given, by exploiting the properties of hybrid dynamical system established in recent
works of Teel et al. Attitude stabilization with the proposed control strategy is then illustrated by simulations.
The method shows its effectiveness in stabilizing the attitude, preventing the typical chattering and robustness
issues emerging with classical time-optimal implementations.

I. INTRODUCTION

Chains of integrators with saturated input are fundamental dynamical processes. The control of them
is widely investigated by the control community, see [1], [2], etc. Among many control strategies, time-
optimal controllers are capable of a finite time stabilization of such plants in minimum time, see for
example [3], [4].

Time-optimal control with bounded controls is well-known to yield bang-bang and hence discontin-
uous open-loop and feedback controls [5]. A classical example of this is the second-order integrator
ẋ1 = u, ẋ2 = x1, with u ∈ [−1, 1], which is one of the most fundamental systems in control applications,
and has many mechatronic applications [6] [7]. There, the time-optimal feedback that drives states to the
origin takes on the value −1 above the curve x2 = signx1 x21/2, and the value 1 below that curve, and
is thus discontinuous along that curve. Open-loop controls switch from one value of the control to its
negative upon reaching this “switching curve”. The computation of the curve, thanks to the Pontryagin
Maximum Principle, boils down to backward integration of the optimal dynamics, and the same idea
applies to higher-order integrators. More advanced methods, for example Groebner bases, have been
tested in computation of the switching surfaces for the third-order integrator [8] and can be used for
more involved linear dynamics [9].

The discontinuity of the time-optimal feedback raises the issue of its robustness. Essentially, the
discontinuity, measurement error and/or unmodelled dynamics may lead to frequent switching/chattering
and loss of performance. One early proposal to deal with this [10], for the second-order integrator,
involves smoothing of the bang-bang behavior along the switching curve and linear control near the
origin, resulting in sub-optimal behavior. Similarly, replacing the switching curve and the two regions,
above and below it, by three regions has been considered in discrete-time [7] and applied to disk-
drive control. Similar ideas are followed for the third-order integrator in [2], [11]. Alternatively, some
robustness can be introduced through hysteresis [12], suggesting a hybrid formulation of the feedback.
For a related discussion of robustness etc. aspects of time-optimal and other stabilizing controllers for
the second-order integrator, see [13].

This paper builds on the ideas considered before, like hysteresis implementation of the switching
surface and application of linear feedback near the origin, and, for the second-order integrator, formulates
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a sub-time-optimal feedback in the hybrid dynamical system framework of [14]. The use of hybrid
controllers for improving performances of continuos time plants have been already investigated for
example in [15] and, for reset control systems, in [16]. One advantage of using this framework is that
it easily allows for modeling of hysteresis-type switching of various controllers, for example a local
(in this case, linear) and a global one; see [14] and, for example, [17]. The resulting model is, in
fact, simpler than one resulting from continuous interpolation of the original discontinuous feedback.
Another advantage is that robustness of asymptotic stability follows from general results in [14], if the
data meets mild regularity conditions (the functions modeling the feedback are continuous, and the set
where different functions apply are closed).

The paper is organized as follows. Section II discusses the switching sets needed for the synthesis
of the time-optimal control of the saturated double integrator. Section III uses these sets to design a
hybrid sub-time-optimal feedback control law with hysteresis. Section IV describes the blending of this
sub-time-optimal control with a local linear feedback. In Section V, an application of the designed
control law to a 3D attitude dynamics is presented. Section VI draws some conclusions and presents
future perspectives of this work. All the proofs are omitted due to space constraints.

II. SWITCHING SETS

Let us consider the following double integrator dynamical system with state x = [x1 x2]
> ∈ R2:

ẋ =

[
ẋ1
ẋ2

]
=

[
q
x1

]
=: Ax+ b q =

[
0 0
1 0

]
︸ ︷︷ ︸

:=A

x+

[
1
0

]
︸︷︷︸
:=b

q (1a)

together with bounded input q:
q ∈ [−1, 1] . (1b)

A. Implicit Formulation
Let τm be a sequence of times:

τm := (t1, t2, . . . , tm) (2)

and Tm be the set of any τm such that τm is a sequence of nondecreasing times:

Tm := {τm | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm} (3)

Definition 1: From [18], given τm ∈ Tm, let Om+ (respectively, Om−) be the set of states x for which
there exists τm = (t1, t2, . . . , tm) ∈ Tm, such that the backwards solution xb to (1) starting at the origin,
with input q toggling between −1 and 1 at (backwards) times −ti, i = 1, . . . ,m, and finally toggling
from xb(−t−m) = 1 to xb(−t+m) = −1, reaches the point xb(−tm) = xb(−t−m) = xb(−t+m) = x.

By definition, we assume:
O0+ := O0− := {0}. (4)

Sets Om+ and Om+ can be computed applying recursively the variation of constants formula [19,
Chap. 1.6] to dynamics (1) in reverse time starting from O0 (i.e., the origin).

We define Om as:
Om := Om− ∪ Om+ (5)

Theorem 1: ([18, Theorem 5.4]): The system (1) has, for every initial condition, a unique time-optimal
control, which is bang-bang (i.e., it takes only the extreme values) and switches at most 1 time.

Theorem 1 implies, among other things, the following:
Proposition 1: Let us define the following sets:

U+ := O2+ \ O1, U− := O2− \ O1 (6a)



Then, given a generic initial condition x0 for system (1), x0 ∈ U+ (respectively, x0 ∈ U−) implies that
the time optimal control takes the value q = −1 (respectively, q = 1) for an initial time interval of non
zero length.

Moreover, it holds that U+ ∩ U− = ∅ and

U+ ∪ U− = R2 (6b)
Proposition 1 essentially establishes that sets U+ and U− are a pair of regions covering almost all

the state-space of plant (1) where it is straightforward to make the right selection of input q towards a
time-optimal stabilization of the origin. In particular, it is underlined that the complement of U+ ∪ U−
(namely O1) corresponds to a set of measure zero wherein the time-optimal selection of input q becomes
more involved and requires distinguishing between multiple nontrivial subcases.

This paper provides an illustration for the double integrator of a suggestive feedback control approach
where we only specify the feedback law in U+ ∪U− (or a slightly smaller set), where the feedback law
easily comes from Proposition 1, and to define a hysteresis zone in a slightly inflated region around O1

wherein, rather than understanding the exact time-optimal feedback, we make use of a memory variable
persisting with the feedback action previously selected. The advantage of this approach is that it does
not require to determine the value of the time optimal input in O1.

B. Representation of U+ and U−
In this section, we will provide an explicit formulation of U+ and U−. By backward integration of

the dynamics (1), it is possible to develop

O1+ =
⋃
t1≥0

{[
−t1,

t21
2

]>}
=
⋃
x1≤0

{[
x1,

x21
2

]>}

O1− =
⋃
t1≥0

{[
t1, −

t21
2

]>}
=
⋃
x1≥0

{[
x1, −

x21
2

]>}
.

(7)

An explicit representation is then

O1+ =

{
x ∈ R2

∣∣∣∣∣x2 − x21
2︸ ︷︷ ︸

:=ϕ+(x)

= 0, x1 ≤ 0

}

O1− =

{
x ∈ R2

∣∣∣∣∣x2 + x21
2︸ ︷︷ ︸

:=ϕ−(x)

= 0, x1 ≥ 0

}
.

(8)

It is now straightforward to express the union O1 as

O1 := O1+ ∪ O1− =
{
x ∈ R2

∣∣ ϕ(x) = 0
}
, (9)

where

ϕ(x) :=

{
ϕ+(x) , if x1 ≤ 0

ϕ−(x) , if x1 ≥ 0 .
(10)

is continuous since ϕ+([
0
x2
]) = ϕ−([

0
x2
]), ∀x2. Following the same procedure (backward integration),

O2+ and O2− can now be computed based on

T2 = {τ2 | 0 ≤ t1 ≤ t2} (11)



as follows:

O2+ =
⋃

t2≥t1≥0

{[
t2 − 2t1, −

t22
2
− t21 + 2t1t2

]>}

O2− =
⋃

t2≥t1≥0

{[
2t1 − t2,

t22
2
+ t21 − 2t1t2

]>}
.

(12)

Some computations show that

O2+ =
{
x ∈ R2

∣∣ϕ(x) ≥ 0
}
, O2− =

{
x ∈ R2

∣∣ϕ(x) ≤ 0
}
.

Based on these considerations, for n = 2 it holds that

U+ =
{
x ∈ R2

∣∣ ϕ(x) > 0
}
, U− =

{
x ∈ R2

∣∣ ϕ(x) < 0
}
. (13)

III. HYBRID FRAMEWORK FOR ROBUST TIME-OPTIMAL CONTROL

In this section we exploit Proposition 1 and description (13) to design an ε-modification of the
feedback law ensuring global convergence to an ε-small neighborhood of the origin for the double
integrator (1).

Rather then treating q in (1) as an input, we perform this by choosing an overall state:

ξ := col(x, q) ∈ R2 × {−1, 1} (14)

and note that x ∈ U+ and q = 1 (respectively, x ∈ U− and q = −1) implies that q should toggle.
Consequently, we represent our hybrid stabilizer in terms of the set D0 from which q should toggle
between +1 and −1 via the trivial jump map q+ = −q. In particular, based on Propositions 1 and
description (13), one notices that both in U+ and in U−, the product qϕ(x) is always negative, and
therefore that such a set D0 could be selected as:

D0 = {ξ|ϕ(x)q > 0} , (15)

which is not a closed set. Since we are interested in robust stabilizers, and [14] shows that closed
jump/flow sets ensure robustness of stability, rather than selecting D0 in (15), we prefer to introduce
a hysteresis mechanism related to the choice of a (small) scalar ε > 0 and the following ε-dependent
closed loop:

ξ̇ =Ac ξ ξ ∈ C := {ξ| ϕ(x)q ≤ ε}
ξ+ =Ad ξ ξ ∈ D := {ξ| ϕ(x)q ≥ ε} (16a)

where, with I2 being the 2× 2 identity matrix,

Ac :=

[
A b
0 0

]
∈ R3×3

Ad :=

[
I2 0
0 −1

]
∈ R3×3 .

(16b)

In system (16), matrix Ac simply encodes equation (1a), while Ad encodes the toggling mechanism of
q. Finally, as commented above, set D encodes the fact that a switch should happen whenever qϕ(x) > 0
(because this means that x ∈ U−∪U+ and q has the wrong sign), possibly allowing for some “erroneous”
feedback when |ϕ(x)| ≤ ε.

Remark 1: The advantage of this ε-modified law is to introduce a hysteresis zone around O1, the
set where characterizing the time-optimal feedback could require extra care. Indeed, the selection of a
positive ε gives several advantages. It permits to synthesize a time-sub-optimal control law based on the
knowledge of only the two sets U+ and U−. Moreover, it prevents the possibility of Zeno solutions (i.e.,



solutions with persisting jumps) [14, Definition 2.5], corresponding to having a control q that switches
infinitely fast, causing a chattering phenomena and possibly damage of the actuators. Moreover, this
ε-inflation makes the controller robust to unmodeled dynamics or sufficiently small measurement noise.
The smaller is the hysteresis amplitude ε, the closer the input is to the optimal one, but the less robust
is the control scheme. Therefore, the parameter ε represents a controller tuning parameter, acting as a
trade-off between time optimality and robustness.

For clarity, the phase portrait of system (16) is depicted in Figure 1.
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Fig. 1: Flow set C and jump set D and phase portrait of (16).

Observe that the hysteresis introduced by the parameter ε > 0 introduces a neighborhood of O1

where solutions can flow assuming any of the two values of q. All solutions exhibit an “eye-shaped”
steady-state limit cycle whose orbit can be described by:

λ := {x| v(x) = ε} (17)

where v(x) is the following scalar function:

v(x) :=


x21
2

+ x2 if x2 ≥ 0

x21
2
− x2 if x2 ≤ 0

, (18)

Stability properties is established for a set where the input q is “don’t care” and the state x belongs to
some compact neighborhood Ax of the origin. In particular, our main result below establishes stability
properties of the following bounded attractor, also depicted in green in Figure 1:

A := Ax × {−1, 1} := {x| v(x) ≤ ε} × {−1, 1} . (19)

Theorem 2: Attractor (19) is UGAS for (16).

IV. BLEND WITH A LOCAL LINEAR FEEDBACK

In this section, the blending of the controller developed in Section III with a local linear feedback is
addressed. The local controller is chosen as a linear a state feedback kx inducing the closed loop:

ẋ = Acl x := (A+ b k>)x , (20)

where k ∈ R2 can be any gain vector such that matrix Acl is Hurwitz. For example, vector k can be
selected as an LQR gain.

This controller can be incorporated in hybrid system (16) by modifying the matrix Ac previously
defined in (16b) as follows:

Ac =

[
A+ (1− |q|)b k> b

0 0

]
∈ R3×3 . (21)



With the latter, the local controller is activated whenever the logic variable q is set to zero. In particular,
the new dynamics evolves in the set ξ ∈ Rn×{−1, 0, 1} extending the previous set ξ ∈ Rn×{−1, 1}
in (16).

A strategy for choosing whether the local controller or the global controller of Section III has to be
applied is needed. For this purpose, the uniting global and local controller strategy presented in [14,
Example 1.7] and [17] is adopted, where we use q as a supervisor variable. In particular, when |q| = 1
the global controller is active, whereas when q = 0 the local controller is activated by virtue of (21).
Following [14, Example 1.7], given scalars 0 < ρ < 1 and ` ∈ R+ to be chosen later, if P = P> > 0
is any matrix solving the continuous time Lyapunov equation

(A+ bk>)
>
P + P (A+ bk>) < 0, (22)

we define the set where we would like to switch from the local to the global controller as:

Dl :=
{
ξ
∣∣q = 0, x>Px ≥ `

}
. (23a)

Also, we define the set where we would like to switch from the global to the local controller as:

Dg :=
{
ξ
∣∣|q| = 1, x>Px ≤ ρ`

}
. (23b)

The overall jump dynamics is the following one:

ξ+ ∈ G(ξ) , ξ ∈ Du := Dl ∪ Dg ∪ D , (24a)

where the jump map G(ξ) corresponds to:

G(ξ) =

=



{[
x

±(1− |q|)

]}
if ξ ∈ (Dl ∪ Dg) \ D[

x

−q

]
if ξ ∈ D \ (Dl ∪ Dg){[

x

±(1− |q|)

]}
∪
{[

x

−q

]}
if ξ ∈ D ∩ (Dl ∪ Dg) ,

(24b)

where
{[

x
±(1− |q|)

]}
:=

{[
x

(1− |q|)

]}
∪
{[

x
−(1− |q|)

]}
. The overall flow equation is enabled on

the closed complement of Du, and from (16) corresponds to:

ξ̇ = Ac ξ , ξ ∈ Cu := Rn × {−1, 0, 1} \ Du, (24c)

with Ac defined in equation (21).
The proposed scheme is completed by a suitable selection of the scalars ` and ρ in (23) ensuring

that the local feedback k>x has smaller norm than 1 (i.e., it is below the saturation level) as long as
x>Px ≤ `. This property is established in the next lemma.

Lemma 1: Given P = P> > 0 and a gain k ∈ Rn, if ` = (k>P−1k)−1, then

x>Px ≤ `⇒ |k>x| ≤ 1. (25)
Based on Lemma 1, we can prove the following statement, which requires that set A is sufficiently

small (ε is sufficiently small) or scalar ` is sufficiently large (k is sufficiently small).
Theorem 3: Given P and k satisfying (22) and ` = (k>P−1k)−1, if ρ ∈ (0, 1) and ε are such that
A ⊂ int(Dg) and A is UGAS for system (16), then A0 := {0}× {−1, 0, 1} is UGAS for system (24).



To check the condition A ⊂ int(Dg) we may use an auxiliary bounding box B of the attractor A
(such that A ⊂ B) such that B ⊂ int(Dg) is easier to check. In particular, according to Figure 2, we
suggest the following selection, whose effectiveness is established in the corollary below.

B := {ξ| |x1| <
√
2ε, |x2| < ε} . (26)

Corollary 1: Given P and k satisfying (22) and ` = (k>P−1k)−1, if

max{a>Pa, b>Pb} < ρ` (27)

with a = [
√
2ε, ε]> and b = [

√
2ε, −ε]> (i.e., the two vertices of the box B), then A0 is UGAS for

system (24).

A2

B

a = [
√
2ε, ε]>

b = [
√
2ε, −ε]>

Dg

x1

x2

Fig. 2: Bounding box B, attractor A2 and jump set Dg.

V. BOUNDED STABILIZATION OF THE ATTITUDE DYNAMICS

A. Linearized model and input selection
Consider the attitude dynamics of a rigid body parametrized by the unit quaternion q = [η ε>]>, where

η and ε = [ε1 ε2 ε3]
> are, respectively, the scalar and the vector component of the unit quaternion q: q̇ =

1

2

[
−ε>

ηI3 + S(ε)

]
ω

Jω̇ = S(Jω)ω + τ

(28)

where
S(x) =

[
0 −x3 x2
x3 0 −x1
−x2 x1 0

]
is the skew-symmetric cross-product operator acting on vector x = [x1 x2 x3]

> ∈ R3 and satisfying
S(a)b = a× b, J ∈ R3×3 is the inertia matrix of the rigid body, ω ∈ R3 is the angular velocity of the
rigid body expressed in the body frame, and τ = [τ1 τ2 τ3]

> ∈ R3 is the torque applied to the rigid body.
Each component of τ cannot be larger than scalar τ in norm, that is: τi ∈ [−τ , τ ] ∀ i ∈ {1, 2, 3}.

Linearizing dynamics (28) around the unit quaternion [1 0 0 0]> with zero angular velocity allows us
to write the attitude dynamics as follows:

ζ̇ =

[
0 0
I3 0

]
ζ +

[
I3
0

]
u (29a)

where the components ui of u, i = 1, 2, 3, must satisfy the normalized bound |ui| ≤ 1 and

ζ :=
1

τ

[
J 0
0 2J

] [
ω
ε

]
∈ R6 (29b)

From (29a), the linearized attitude dynamic around the unit quaternion with zero angular velocity can
be represented by three decentralized double-integrator subsystems. We will refer to ηi := [ζi ζ3+i]

> as
the i-th double-integrator subsystem.



In controller (24), the local linear feedback has been embedded in the definition of matrix Ac in (21),
whereas in a real implementation the linear local feedback has to be made explicit.

To this end, each component of the input torque τ of the attitude dynamics (28) is interconnected to
a realization of controller (24) as:

τi = τ((1− |q|)kηi + τq), (30)

where ηi is the state of the i-th double integrator subsystem of the linearized attitude dynamics (29)
defined above and k is a stabilizing gain.

B. Simulations
This section shows simulations of plant (28) interconnected with three realizations of controller (24),

leading to (30). The attitude dynamics data are chosen to fit with a commercial UAV:

J =

3.1887 0 0
0 3.2245 0
0 0 1.3850

 gm2 (31)

The torque saturation level τ has been set to 0.15Nm. The hysteresis parameter of the global controller
ε has been set to ε = 1 · 10−4, while the hysteresis parameter of the united and local paradigm ρ has
been set to ρ = 0.5. The local controller gain k has been selected from an LQR synthesis on plant (29)
and corresponds to k = [101, 100.00].

Two different initial conditions have been chosen. The first one, ζ01, is such that the system evolves
near the linearization point of plant (28). The second one, ζ02, starts far away from the linearization
point of the system. Such initial conditions are generated from a roll-pitch-yaw representation of the
attitude. The choice of roll-pitch-yaw corresponding to ζ01 and ζ02 are reported in Table I. The initial
angular velocity is supposed to be zero in both cases. The time responses are reported in Figures 3

ζ01 ζ02
roll −20◦ 20◦

pitch −20◦ 20◦

yaw 20◦ 90◦

TABLE I: Initial conditions Roll-Pitch-Yaw.

and 4. In both figures, the red line represents the evolution of the proposed control scheme with the
selection of ε and ρ reported above. In Figure 3, the thin black curve shows the evolution of the system
starting from ζ01 but having set the hysteresis parameter ε = 0. It is possible to notice that such a
selection turns into a chattering phenomena due to the unmodelled dynamics. Introducing the hysteresis
in the global controller successfully removes the curve chattering.

In Figure 4, the thin black curve shows the evolution of the system starting from ζ02, but having set
the hysteresis parameter ρ = 1. It is possible to notice how such a selection turns into a slightly different
chattering phenomenon in the first double-integrator subsystem with respect to the previous case (see
Figure 4a). Around 0.1s, the solution seems to “stick” for a while, before continuing to evolve. A
better understanding of this behavior is possible by looking at the phase portrait in Figure 5 comparing
selections ρ = 1 and ρ = 0.5. The light-red filled area represents the set Cg := {η1|η>1 Pη1 ≥ ρ`}
i.e., the set in which the global controller is active, while the light-blue filled area represents the set
Cl := {η1|η>1 Pη1 ≤ `} i.e., the set in which the local controller is active. During the red portion of
the orbit the global controller is active, while during the blue portion the local controller is active.
From Figure 5 on the left we see that the solution sticks on the boundary of the sets Cg and Cl, due
to the absence of a hysteresis zone between the two sets because of the selection ρ = 1, inducing high
frequency switching between the local and global controller. Instead, in Figure 5 on the right, we see that



an overlap of the sets Cg and Cl, produced with a selection of ρ = 0.5, (the light-purple filled doughnut)
prevents this kind of behavior, resulting in a hysteresis zone that produces a faster convergence.

Nevertheless, from ζ02 the unmodelled dynamics is so relevant that the hysteresis in the global
controller does not totally prevent the presence of unwanted switches.
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Fig. 3: Simulation results starting from ζ0 = ζ01. Red: proposed controller. Black: removing hysteresis
parameter ε.
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Fig. 4: Simulation results starting from ζ0 = ζ02. Red: proposed controller. Black: removing hysteresis
parameter ρ.

Both simulations show that the embedded hysteresis in the proposed control strategy is relevant in
the presence of unmodeled dynamics (and/or in the presence of measurements noise), and prevents or
reduces bad phenomena as chattering or sticking of the solution.

VI. CONCLUSIONS

In this paper, we proposed a robust hybrid time-sub-optimal controller for the double integrator with
saturated input. First, an analysis of the switching sets for the time-optimal control of a saturated double
integrator has been carried out. Based on this description, an implicit hybrid framework for robust time-
sub-optimal control has been introduced. A hybrid blend with a local linear feedback has been then
developed, which ensures global asymptotic stability of the origin.

Simulation results have shown the effectiveness of the proposed scheme for the attitude stabilization,
in the presence of relevant unmodelled dynamics. In particular, the hysteresis mechanism in the global



Cg

Cl

stick

−2 0 2

·10−2

−1

0

1

·10−3

ζ1

ζ
4

Cg

Cl

−2 0 2

·10−2

−1

0

1

·10−3

ζ1

ζ
4

Fig. 5: Phase portrait of the first double-integrator subsystem starting from ζ0 = ζ02: ρ = 1 (left),
ρ = 0.5 (right).

controller and in the uniting global and local strategy has been shown to prevent chattering and sticking
effects, producing clean and desirable evolutions.

Future research will include higher order systems, in particular the extension of the proposed scheme
on the saturated triple integrator and further illustrating the technological advantages of the proposed
stabilizers.
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