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Longitudinal Jerk Estimation of Driver Intentions
for Advanced Driver Assistance Systems

Andrea Bisoffi, Francesco Biral, Mauro Da Lio, and Luca Zaccarian

Abstract

This work aims at estimating the longitudinal jerk of the vehicle as it is acted by a human driver, in the context of preventive
safety. A reliable estimate is needed to infer the current driver intention in an advanced driving assistance system developed by
the authors. The derived intention-oriented model for the longitudinal dynamics is embedded into an enhanced Kalman filter that
provides the user with a knob to trade off between responsiveness of the estimate and noise rejection. The scheme is fit for
on-line usage, relies on signals commonly available on the CAN bus of modern vehicles, and requires a very limited number of
parameters. Its effectiveness is validated on experimental data, and compared with alternative approaches.

I. INTRODUCTION

JERK, the time derivative of acceleration, plays an important role in human movement. In particular, it was shown (see,
e.g., [1], [2]) that jerk minimization is one of the rationales behind human movement planning (also related to minimum

variance control under proportional neural noise [3]). Minimizing the jerk yields the smoothest trajectory that accomplishes
the given kinematic goals [1, p. 1689].

From robotics to automotive, jerk minimization is reasonably sought by human drivers when they determine their trajectory
(see [4], [5]), possibly weighting also the maneuvering time in their objective [4, Simulations]. In particular, it was shown
experimentally in [5, §4.3.2] that voluntary driving maneuvers (such as braking and steering) synchronize with bursts in the
jerk signal. [6] exploited the informativeness of the jerk about the strategy behind a driver maneuver to formulate a new vehicle
control, starting from the jerk behaviour of an expert driver.

Based on these results, an Advanced Driver Assistance System (ADAS) called co-driver [7] was devised within the European
project interactIVe [8] in order to assess the level of risk of the current maneuver pursued by the driver, and to issue suitable
warnings. Using the information from the environment, the co-driver hypothesizes a set of different (short-term, high-level)
driving maneuvers, each of which maps to a different jerk evolution. Then the co-driver assumes by a mirroring process that
the current driver maneuver is the one in the set whose jerk has the least mismatch [7, §III.D.6), Eq. (26)] with the jerk
associated to the driver, called driver intentional jerk. In this way, the co-driver infers on line the driver intention (in the sense
of [9]) and assists the driver if needed.

Accurate estimates of the driver intentional jerk are hence decisive because they improve the driver intention inference based
on the comparison with the co-driver hypotheses, reducing the probability of false or missed alarms.

The previous discussion sets out the main motivation for this work. Our objective is to obtain an on-line estimate of the
longitudinal jerk as it is acted by the typical human driver, in the context of preventive safety, away from the maneuvrability
limits.

We discuss below the possible approaches to estimate the driver intentional longitudinal jerk. Although a jerk sensor has
been proposed (its working principle is described in [10, §4]), a more viable solution is to obtain the jerk by suitably filtering
the longitudinal acceleration, like in [11, §IV.B] or [6, §5.2], together with the improved methods [12], [13]. Alternatively, one
could use high-gain techniques applied to numerical differentiation, as in [14] and [15].

However, the longitudinal acceleration of a vehicle includes not only the effect of pedal actions, to which the intention is
strongly related, but also the driveline dynamics, vehicle vibrations, the road slope and so forth, which are to be considered as
noise with respect to driver intentions. Therefore, we need to combine the acceleration measurement (preliminarily deprived of
the road slope and static biases) with the gas and brake pedal signals, which are the closest expression of the driver intention.
Then, a natural solution to achieve a virtual driver-intentional-jerk sensor is Kalman filtering (see, e.g., [16] and [17], where
the schemes are tested in simulations).

We further enrich our Kalman formulation by a “high”-gain-inspired scaling, through the scaling parameter `. Whereas
“high”-gain approaches [18] typically take ` large (“high”) to overcome nonlinear effects, here we just exploit their key idea
of moving through scaling the location of all the eigenvalues of the error dynamics, which were initially placed with a Kalman
approach. In this way, ` acts as a tuning knob allowing easily for trade-offs between convergence rate of the estimation error
and sensitivity to noise. Our approach relies strongly on physical considerations, wich justify a dynamical model for the driver
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intentional jerk. For this reason, an enhanced Kalman filter seems to be a more promising first approach than other statistical
filtering. Investigating these alternative approaches in the present context is left as future work.

The paper is organized as follows. In Section II we present a suitable model for the driver intention based on pedal signals.
Section III builds the scheme that estimates the driver intentional jerk, based on a “high”-gain enhancement of a Kalman
formulation. Section IV validates our estimation scheme on experimental data from a road test, by comparison with other
possible solutions and for different drivers.

A preliminary version of this work was presented in [19], where we investigated the feasibility of this approach only in
the case of traction, and the validation was performed on a much smaller data set. On the other hand, here we generalize
our filtering scheme to include the case of braking, and use directly pedal signals that are conceptually closer to the driver
intention. To use these signals effectively, we add an identification part in Section IV-A. Thanks to the larger amount of data
(also from different drivers), a more thorough validation of the generalized scheme is then possible in Sections IV-B, IV-C
and IV-D.

II. LONGITUDINAL VEHICLE DYNAMICS AND DRIVER INTENTION

In this section we first present a standard model for the longitudinal vehicle dynamics, and then we show how to reformulate
it in such a way that the driver intentions are suitably considered. The obtained equations represent the model-based part of
the enhanced Kalman formulation of the next section.

A. Model for the longitudinal vehicle dynamics

From Newton’s equation, the longitudinal dynamics of a vehicle reads

Mv̇ = τTe − Fb −Mg sin(α)︸ ︷︷ ︸
=:Fs

−CrMg cos(α)︸ ︷︷ ︸
=:Ff

− 1
2ρSCxv

2︸ ︷︷ ︸
=:Fa

(1a)

where v is the longitudinal velocity of the vehicle, Fb is the brake force, τTe is the force actuated by the engine on the wheels
via the gearbox and the driveline, through the transmission coefficient

τ :=
1

rr
ηgηdτgτd. (1b)

In (1a), Fs, Ff and Fa are respectively the dissipative forces due to slope α, friction, and aerodynamic drag. All the remaining
terms are constant physical parameters that are listed in Table I.

Table I
PHYSICAL PARAMETERS FOR THE LONGITUDINAL DYNAMICS.

Parameter Symbol

Vehicle mass M
Rolling radius rr
Gearbox efficiency ηg
Driveline efficiency ηd
Gearbox transmission ratio τg
Driveline transmission ratio τd
Gravity g
Rolling friction coefficient Cr

Air density ρ
Reference area S
Drag coefficient Cx

In urban and extra-urban roads not involving extreme mountain routes, the road slope α can be assumed to be sufficiently
small, which allows us to approximate (1a) with

Mv̇ = τTe − Fb −Mgα− CrMg − 1
2ρSCxv

2. (2a)

The measured quantities are the acceleration (from an accelerometer) and the longitudinal velocity (from the odometers),
which are respectively given by

y1 = v̇ + g sin(α) + d̄a ' v̇ + gα+ d̄a (2b)
y2 = v. (2c)

The accelerometer measurement in (2b) is partially corrupted by the road slope gα and the (possible) static misalignment
of the sensor d̄a. Measuring the longitudinal velocity through odometers in (2c) neglects possible slip phenomena, but since
they lie beyond the actuation capabilities of humans and then they can not be associated to driver intentions, we accept this
approximation.
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B. Acceleration model for driver intention

In the following we are considering a vehicle operating with a robotized gearbox and an electronic clutch. In this setting,
the driver acts on the gas pedal position pr and on the cylinder brake pressure pb. pr is converted to a torque request Tr. Most
of the time, the actuated torque Te coincides with Tr (neglecting the much faster engine dynamics), but the engine control
unit may enforce Te 6= Tr, based on the whole state of the engine/powertrain (for instance, to smooth out gear shifts).

The objective of this work is to estimate the driver intentional jerk. So, we proceed in two steps: first we derive an intention-
oriented acceleration model building on the signals Tr and Fb. Second, we trace back these two signals respectively to pr and
pb, from which Tr and Fb originate, and which we can easily access.

Define the dissipative force Fd as the following sum

Fd(v) := Fs + Ff + Fa(v) = Mgα+ CrMg + 1
2ρSCxv

2 (3)

and the logical variable σ as

σ(t) :=

{
1 if the driver is braking at time t,
0 otherwise.

(4)

This leads to two intention-oriented acceleration sub-models. When the driver is not braking (σ = 0), that is, s/he is accelerating
or not pressing any pedal, the only relevant intention arises from the torque request Tr. If Tr were actuated directly by the
engine with no in-between interposition, we would obtain an intentional acceleration v̇i,0 as

Mv̇i,0 = τTr − Fd(v) (σ = 0). (5a)

We write Fd(v) (and not Fd(vi,0)) because the driver is able to compensate approximately for these macroscopic dissipative
effects through part of its action Tr (this compensation through his/her control action is linked to feedback linearization [20,
§2.4.3]).

Conversely, when the driver is braking (σ = 1), the only relevant intention arises from the braking force Fb and for a
standard driver this intention is mutually exclusive with the torque request Tr. The direct application of only Fb then leads to
the intentional acceleration v̇i,1 as

Mv̇i,1 = −Fb − Fd(v) (σ = 1). (5b)

For all times, then, the intentional acceleration ai is

ai := (1− σ)v̇i,0 + σv̇i,1. (6)

In (6) we first substitute (5a)-(5b) and then (2a) to eliminate Fd defined in (3), as follows:

Mai = τTr(1− σ)− σFb − Fd(v)

= τTr(1− σ) + Fb(1− σ)− τTe +Mv̇.
(7)

As a second step to obtain an intention-oriented acceleration model, we introduce now in (7) the gas pedal position pr and
the cylinder brake pressure pb that are directly generated by the driver. pb represents well the driver intentions in the context of
preventive safety and for a typical human driver because away from maneuvrability limits the anti-lock braking system does
not intervene and the driver has full authority on the brake. We assume the linear dependencies

Fb := cbpb (8a)
Tr := crpr, (8b)

which write (7) as
v̇ = ai − τ

M crpr(1− σ)− 1
M cbpb(1− σ) + τ

M Te. (9)

Section IV-A is devoted to the identification of the two coefficients cb and cr, and the results in terms of fitting show the
admissibility of the linear dependencies (8a).

C. Complete model of the driver intention

We aim at building a state equation that can be used for the model-based part of a Kalman-like filter.
Define

u := − τ
M crpr(1− σ)− 1

M cbpb(1− σ) + τ
M Te, (10a)

where pr, pb, Te are measurable on the CAN bus of the vehicle, which is a common feature in modern vehicles, and where
τ is a known function of time because it depends on constant parameters and on the current gear.

With (10a), (9) becomes
v̇ = ai + u. (10b)
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As jerk is the time derivative of acceleration, the driver intentional acceleration ai and the intentional jerk ̄i satisfy

ȧi = ̄i. (10c)

Note that (10c) does not include the contribution of the lateral acceleration in the longitudinal jerk (that is, Ωay where Ω is
the yaw rate and ay is the lateral acceleration in the vehicle fixed frame). This is deliberately done since we aim at estimating
the driver intentional jerk. From this viewpoint the driver controls the longitudinal force and its rate of change via the throttle
and brake pedals. However, the longitudinal force is fixed with the vehicle frame (that is, when the vehicle rotates also the
force rotates with it) so we can say that the driver acts on the time derivative of the acceleration in the fixed vehicle frame
and consequently only on the second time derivative of the velocity.

The accelerometer offset oa is defined as
oa := gα+ d̄a,

that is, it comprises the static misalignment of the accelerometer and the slope of the road, both corrupting the longitudinal
acceleration measurement in (2b). Regarding the dynamics of oa, ˙̄da = 0 is true except from very slow drifts (for example,
due to temperature). Since the slope is slowly time varying compared to the other mechanical quantities v, a etc., we also
write α̇ = 0. Therefore,

ȯa = 0. (10d)

Finally, we present the equation for the driver intentional jerk. Many studies show that human sensorimotor control is highly
optimized, and driven with good approximation by the minimization of the squared jerk [1]–[3], [21]. This principle holds
not only for body movements, but also for objects controlled by humans, and cars in particular [4], [5]. Minimization of the
squared jerk comes together with minimization of its derivative, because intentional actions are band-limited. We can then
assume that human movements aim at minimizing also the squared jerk derivative, by writing

˙̄i = 0, (10e)

and incorporating the unknown value of ˙̄i into model noise. We set a high value for the variance of the corresponding noise in
the Kalman formulation of Section III-A (the fourth term of matrix Q in (21)). Indeed, each state equation in Kalman filters is
complemented with a noise term whose variance characterizes the (un)reliability of the corresponding equation (e.g., a higher
variance for (10e) than for (10c) reflects that (10e) is less reliable than (10c))1. The approach in (10e) is conceptually the
same as the one used when using Kalman filtering solutions for the estimation of the road slope [22]–[25], based on which
we wrote (10d).

The choice of state equations (10b)–(10e) calls naturally for the state vector xi := [ v ai oa ̄i ]
T , which in turn reformulates

(2b) and (2c) as

y1 = ai + oa + u (10f)
y2 = v, (10g)

thanks to the definition of oa. The consideration after (10e) about equation reliability apply also here. We associate a higher
variance to (10f) than to (10g) as the former neglects, for instance, pitch motions.

Finally, equations (10) can be represented through the linear dynamical system

ẋi = Axi +Bu (11a)
y = Cxi +Du, (11b)

where subscript i stands for intention and [
A B
C D

]
:=

 0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

1
0
0
0

0 1 1 0
1 0 0 0

1
0

 . (11c)

III. STATE ESTIMATION IN AN ENHANCED KALMAN APPROACH

We proceed in two steps. First, we tune a standard Kalman filter for model (11) in Section III-A; second, we build upon
this filter and provide in Section III-B a tuning knob to allow the user to choose between responsiveness in the estimation and
noise rejection.

The design of the observer is sound by virtue of the observability [20, Chap. 15] of the pair (C,A) in (11c). We note that
if we had chosen α and d̄a as separate state variables (instead of the sum oa = gα + d̄a) together with the state equations
α̇ = 0 and ˙̄da = 0, we would have lost the observability property for the (alternative) corresponding matrices because the
contributions of α and d̄a can not be singled out from the output (2b). Nonetheless, distinguishing between α and d̄a is not
necessary for the current application.

1In this quite standard way (see [20, p. 225]), we use the noise variances of the Kalman filter as design parameters.
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A. Kalman formulation

According to the standard Kalman formulation, the state and output equations in (11) are corrupted, respectively, by the
noise terms ∆x and ∆y , as

ẋi = Axi +Bu+ ∆x (12a)
y = Cxi +Du+ ∆y, (12b)

where the covariance matrices of ∆x and ∆y are, through the expected value E[·],

Q := E[∆x∆T
x ], R := E[∆y∆T

y ]. (13)

The observer structure for (12) is then

˙̂xi = Ax̂i +Bu+ L[y − Cx̂i −Du] (14)

where x̂i is the estimate of state xi. The difference between the last two states defines then the estimation error x̃i := xi− x̂i,
whose dynamics reads, in the absence of the external perturbations ∆x and ∆y ,

˙̃xi = (A− LC)x̃i. (15)

Given the plant matrices A and C and the covariance matrices Q and R, solving an algebraic Riccati equation [20, Chap. 23]
yields a gain LK that “places” the eigenvalues of A− LKC in (15) in a specific location.

If we selected L = LK in (14), the positive definiteness of Q and R would imply that all the eigenvalues of A−LKC have
negative real part. Our proposed selection of L is described next, and will result in a suitable scaling of the error dynamics (15).

B. “High”-gain enhancement

From the estimation error x̃i := [ ṽ ãi õa ˜̄i ]
T , we define the “high”-gain scaled error and the (inverse of the) diagonal matrix

L as

e :=


ṽ
ãi
`
õa
`
˜̄i
`2

 =


1

1
`

1
`

1
`2

 x̃i =: L−1x̃i. (16)

The scalar parameter ` in L is the tuning knob that allows the user to choose between responsiveness in the estimation and
noise rejection. In other words, if ` is large, the convergence rate of the estimate is increased (for instance, if LK was tuned
too conservatively); if ` is small, it improves the filtering action of the observer with respect to measurement noise. This role
of ` is justified theoretically in the rest of this section, and is illustrated on experimental data in Section IV-B.

Remark 1: The name “high”-gain is motivated by the fact that a similar scaling in the inverse powers of a coefficient `
takes place in high-gain observers (for a full perspective on high-gain observers see, e.g., [18]). Historically, the parameter `
was chosen large (or “high”) to dominate over the effect of uncertain or known nonlinearities. y

Our proposed selection for the observer gain L in (14) builds on the LK that stems from the Kalman formulation, and is
parametrized by ` as

L :=

[
1
`
`
`2

]
LK [ 1

` ] . (17)

We can then write the dynamics for the scaled error e in (16). From (16) and (15), we get

ė = L−1(A− LC)Le.

By the definition of L in (17) and the peculiar structure of A and C in (11c), it follows immediately that L−1(A− LC)L =
`(A− LKC), and hence

ė = `(A− LKC)e. (18)

Equation (18) demonstrates that the eigenvalues of the scaled error dynamics are exactly the eigenvalues “placed” with
the Kalman approach in Section III-A for the matrix A − LKC, scaled altogether in the complex plane by the factor `.
Moreover, error x̃i undergoes the same change in its dynamics because it is related to e by the similarity transformation
in (16). Therefore, once the baseline gain LK is fixed, tuning ` allows for shifting in the left-hand half plane the whole set of
the observer eigenvalues to the right (better noise rejection) or to the left (better estimate responsiveness) with respect to their
original positions: this shifting is obtained by one parameter only. The effect of this trade-off will be evident in Figure 4.

Remark 2: The intuition behind the error scaling in (16) is the customary one adopted in the high-gain literature. Since (a
subpart of) state matrix A corresponds to a triple integrator, subsequent states are in a simple integral relation. Then, scaling
the error x̃i as in (16) implies that also the roots of the characteristic polynomial of its dynamics are scaled through `. oa is
scaled conveniently in the same way as ai because they are algebraically related in (10f). y
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Figure 1. Signals
[
y1

]
F and aID for a typical portion of the validation half of the data. (The pink areas correspond to braking, the blue ones to gear shifts.)

IV. EXPERIMENTAL VALIDATION

We validate our estimation approach on experimental data collected on a road test.
The test route was designed in a sufficiently rich manner and includes most of the possible road scenarios, such as urban

arteries, extra urban roads, motorways, roundabouts, ramps, and intersections. The route starts from Centro Ricerche Fiat in
Orbassano (Turin, Italy), drives through Piossasco, arrives at Pinerolo, and heads back to Orbassano on a partially different
road. The total length is 53 kilometers of public roads and is driven by an ordinary driver in around 42 minutes.

The parameters needed for the proposed intentional jerk estimation amount to M , τ , cb and cr. The total mass of the vehicle
is M = 1550 kg, the trasmission coefficient τ is for the different gears τ1 = 41, τ2 = 22, τ3 = 14, τ4 = 10, τ5 = 8, and the
remaining cb and cr are identified in Section IV-A. We note that we do not need to identify the parameters of the dissipative
forces Fd in (3) because we assumed that the typical driver is able to compensate for them, as we discussed after (5a).

The performance of our intentional jerk estimate is analyzed on experimental data in Sections IV-B-IV-D, but we emphasize
that the filtering scheme can be utilized on line in the same form because neither the scheme nor the presented results entail
any noncausal filtering.

A. Identification of coefficients cb and cr
We address here the identification of cr and cb, which we left in Section II-B: we consider first cb and then cr.
As to cb, when we substitute (2b) in (2a) with Fb = cbpb from (8a), we obtain

M(y1 − d̄a)− τTe + cbpb=−CrMg − 1
2ρSCxv

2 =: −κ1 − κ2v
2, (19)

where y1 and v are measured signals, Te and pb are known from the CAN bus of the vehicle, M is a known parameter. Note
that the gravitational term gα cancels out after the substitution, and in (19) we neglect d̄a as compared to the other terms only
for the purposes of this identification section. Then we are left with cb, κ1, κ2 to identify.

Since we are interested in identifying the slow dynamics and the measurement y1 is noisy, we filter (19). For a generic
signal w define its filtered version

[
w
]

F := 1
1+s/(2πfLP)w with fLP = 5 Hz, so that (19) becomes

M
[
y1

]
F =

[
τTe
]

F − cb
[
pb
]

F − κ1 − κ2

[
v2
]

F. (20)

Stacking all sampled values of the filtered signals, (20) results in a linear system in the unknowns cb, κ1, κ2. We solve it
in the least squares sense minimizing the mismatch between M

[
y1

]
F and the right-hand side in (20). As standard practice in

identification, we divide the acquired data in two halves, and obtain the least square solution on the first half, to validate it on
the second half. The identification leads to the values cb = 189 N/bar, κ1 = 131 N, κ2 = 0.283 kg/m. We present in Figure 1
the evolution of

[
y1

]
F compared to aID := 1

M

([
τTe
]

F − cb
[
pb
]

F − κ1 − κ2

[
v2
]

F

)
as an illustration of the validation of the

identified coefficients.
[
y1

]
F and aID match well.

Although we divided the data in two halves for simplicity, much less data would have been needed to identify the coefficient
cb, which is the only relevant parameter for our estimation scheme. Indeed, in Figure 2, we represent how the identified
coefficient cb varies as the amount of identification data (in minutes of acquisition) grows larger. 20 minutes (of data) correspond
to taking the first half of the data as was done above, and the blue dashed lines correspond to ±5% of the value of cb at 20
minutes. It is clear then from the figure that some minutes of data suffice for a suitable identification of cb resulting in a small

enough value of the Root Mean Square Error RMSE :=
√

1
N

∑N
k=1

([
y1

]
F(ti)− aID(ti)

)2
, where t1 and tN refer respectively

to the beginning and the end of the validation data.
As to cr, we obtain it through the signals Tr and pr that are plotted as blue points in Figure 3. Their distribution justifies

the selection of the linear dependence in (8a). By least squares fitting again, we find cr = 3.25.
As a final remark on this section, the identification part is proposed in order not to have to rely on sensitive data such as

engine/brake maps and is completely indipendent of the estimation scheme for the intentional jerk.
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B. Performance of our estimation scheme
The covariance matrices in (13) were chosen as

Q =

[
10−2

10−4

10−1

1

]
, R =

[
1

10−2

]
. (21)
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Figure 5. From left to right, shot i-th corresponds to the i-th magenta box in Figure 4.

We present in Figure 4 the results of our estimation scheme in (14) with state x̂i := [ v̂ âi ôa ˆ̄i ]
T , for different choices

of `. All along the figure, pink areas represent times when the driver is braking, whereas blue areas represent times when
a gear change occurs (darker blue when the clutch is disengaged from the engine, lighter blue when it is in the process of
re-engagement).

At the top of the figure, the estimated velocity v̂ is barely distinguishable from the measurement y2 (black) as expected,
thanks to the intrinsic reliability of (10g), which also motivates the low value at the bottom corner of R in (21). The portion
of data has been chosen sufficiently varied, as the velocity evolution shows. In the middle-top trace, we present the signals
pb (bluish-green) and pr (dark pink) that serve as input u to (14) in addition to Te (see (10a)). The plotted signals y2, pb, pr
should help interpret and motivate the intentional acceleration and jerk at the bottom.

In the middle-bottom trace, we present the estimated intentional acceleration âi. âi differs noticeably from y1 as the former
aims at taking into account the driver intention, whereas the latter incorporates the vehicle dynamics. In particular, all the gear
shifts (blue areas) that impact on y1 are suitably rejected in âi: see in particular the significant one at 1467 s. This suggests
indirectly that the time derivative of y1, that is, the actual jerk, is in general not a good candidate to infer intentions. The
evolution of âi bears actually more resemblance to a suitably weighted sum of pr and −pb. This sum is further compared with
âi in Section IV-C.

From (10c), the intentional jerk ˆ̄i descends directly from âi, and based on the bottom part of Figure 4, we justify its ability
to capture changes in (high-level) driving maneuvers. More specifically, we consider the most relevant bursts in the evolution
of the estimated intentional jerk, in the magenta boxes. For each one of them, an image in Figure 5 captures the most relevant
moment of the corresponding scenario. The first box corresponds to a situation where after driving along a straight exit ramp,
the driver is on a curve that intersects a major road. Its first reaction is braking because s/he has to give way, but as soon as
s/he realizes that the major road is free, s/he changes its goal and switches to a strong acceleration to join the major road.
Right after that, in the second magenta box, the driver sees that the major road is taking a sharp bend, and even if the velocity
is increasing and the gas pedal is being pressed, ˆ̄i is anticipating this abrupt change, that is confirmed shortly afterwards by a
brake intervention. The third box is also related to an intersection, but the driver is now on a single-lane main road, and sees
to his/her right another car coming from a ramp in front of him/her. His/her reaction at 1485 s is to brake, but soon after s/he
realizes that the other driver is coming at (significantly) higher speed, s/he changes the goal back to accelerating: this maneuver
is witnessed by the intentional jerk wobble from negative to positive. The fourth box refers to a roundabout. The driver arrives
sufficiently close to the roundabout at 1543 s after a straight road segment. S/he then brakes in order to be able to stop and
give way, as in the negative burst of ˆ̄i. When s/he realizes that no car is coming from his/her left in the roundabout, s/he
accelerates again, as in the first positive burst of ˆ̄i. The second positive burst corresponds to exiting the roundabout. As for
the examples in Boxes 1-2 and 4, we notice that the influence of the road map is indirect since the road map first influences
the driver, who then converts it into different evolutions of the pedal signals based on the path s/he wants to travel. Encoding
the road information as a dynamical system and including it in the model-based observer is an interesting but nontrivial task
and is left as future work.

Interestingly, one could associate the described jerk bursts to changes in the high level maneuver that the driver wants to
pursue. For instance, for the third magenta box, the negative burst of ˆ̄i can be related to a transition from a free-flow maneuver
(the driver had no vehicle in front of him/her) to a follow-object one [7, §III.D.4)] when s/he notices the car to his right.
Again, when the other car distances the driver due to the significantly higher velocity, the driver may revert to the free-flow
maneuver [7, §III.D.4)], which corresponds to the positive burst in ˆ̄i.

Although the portion of the data set was purposedly chosen to highlight a number of events to corroborate the validity of
our estimation scheme, we note that the baseline value for the intentional jerk ˆ̄i is zero, consistently with the minimization
of the jerk squared [4], [5].

Finally, we note that the smoothing effect of the parameter ` is especially evident for the signal ˆ̄i: a large value (` = 3)
makes the estimate more reactive but also more prone to noise, whereas a small value (` = 1) achieves the converse, bearing
a possibly significant delay for its use in intention inference. In order to have a causal estimate, this delay is the intrinsic
price to pay for a smoother filtered signal, as discussed after (18). A good trade-off can be obtained with ` = 2. Note that
we can design the diagonal elements of Q and R in (21) based on high level considerations, that is, how trustworthy the
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Figure 6. (First plots from the top) v̂ for the intention and the kinematic model, and y2. (Second) pb and pr . (Third) âi for the intentional model in blue,
â for the kinematic model in turquoise, aPi using the pedals in purple, and y1 in black. (Fourth) ôa for the intention and the kinematic model, in blue and
turquoise. (Fifth) ˆ̄i for the intentional model in blue, ˆ̄ for the kinematic model in turquoise, ̄Pi using the pedals in purple.
(Left column plots) Sub-segment of Figure 4. (Center) Short uphill segment. (Right) Straight segment.

corresponding equation is as discussed after (10e), and then refine this choice by `. In this sense, ` overcomes partially the
commonly perceived limitation that matrices Q and R in (13) are unknown in most cases.

C. Comparison with other solutions

We compare now the performance of our estimation scheme with two other possible solutions for estimating the intentional
jerk. These solutions are shown to agree with our scheme, although having some limitations.

The first one is a kinematic model for the vehicle with state equations

v̇ = a, ȧ = ̄, ȯa = 0, ˙̄ = 0 (22a)

and output equations
y1 = a+ oa, y2 = v. (22b)

Model (22) can be used straightforwardly in place of (10) in the enhanced Kalman formulation of Section III (for more details,
see [19]), and was implemented in [7, Eq. (27)] to discriminate which one of the maneuvers hypothesized by the co-driver
was the most likely one to be pursued by the driver him/herself. However, when the objective is to estimate the intentional
jerk (see beginning of Section II-B), the mere use of y1 (without the term u in (10a)) is in principle misleading because y1

reflects the actuated torque Te (and not Tr), and the whole vehicle dynamics.
The second solution disregards the compensation of the dissipation effects by the driver, and equates directly the pedal

actions with the intentional accelerations (cf. (5)), that is,

Mv̇Pi,0 = τcrpr, Mv̇Pi,1 = −cbpp, (23a)

where superscript P denotes that this approach is based only on pedals. With (4), and parallel to (6), we write

aPi := (1− σ)v̇Pi,0 + σv̇Pi,1, (23b)

and using the jerk definition ̄Pi = ȧPi , we have from (23a) and (23b) that

̄Pi = (1− σ) τM crṗr − σ 1
M cbṗb,

almost everywhere, as the transmission coefficient τ is a piecewise constant signal. Even not differentiating τ , the presence of
noise in pr and pb requires an approximate time differentiation as in

̄Pi = (1− σ) τM crp
◦
r − σ 1

M cbp
◦
b (23c)

where p◦{r,b} = s
1+s/(2πfD)p{r,b} and fD was chosen as 2 Hz.
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We choose three illustrative cases in Figures 6 to show that the two solutions (22)-(23) agree with our estimation, although
they have some limitations. Specifically, we take for our solution the previous optimal value of ` = 2, and to have a fair
comparison we tune with the same parameter the enhanced Kalman version based on the kinematic model (22). The pedal
solution is already determined completely by (23b) and (23c).

Figure 6 (left column) shows agreement between our solution and the kinematic model (22) (more precisely, the enhanced
Kalman scheme based on it), and underscores the main limitation of approach (23), which is prone to errors induced by
numerical differentiation. Note that the spikes are due entirely to pr and, more evidently, to pb, and are still present in spite
of (heavy) filtering of differentiation (fD = 2 Hz above). On the other hand, our solution has a similar reactiveness to change,
without spikes.

Figure 6 (center column) shows the driver reaction when driving on a short uphill segment. The presence of an increasing
road slope is well witnessed by the variable ôa of both the enhanced Kalman formulations, and tan

(
oa
g

)
· 100 is depicted in

the fourth plot from top of Figure 6 (center column). The driver is aware of the slope when determining his/her action, but
since the segment is short, s/he decides not to intervene on the pedals even though this would lead to a decrease in his/her
cruise speed, and this causes a small negative jerk. In this sense, our solution conforms better with the situation with respect
to the differentiation of the pedals. The kinetic model suffers from the gear shift induced by the increased slope.

Figure 6 (right column) is associated to a slightly inclined straight segment, and shows the main limitation of the kinematic
model (22) in estimating the driver intentions. Indeed, (22) includes altogether all the effects related to the longitudinal
dynamics, most notably the deceleration/acceleration induced by the powertrain during a gear shift. This gives rise to the jerk
bursts at 1513 and 1522 s, that may be mistakenly associated to a change of intentions of the driver. If this kinematic estimation
scheme is approximately taken as equivalent to a jerk measurement, its limits in estimating the driver intentions suggest then
that there is no simple way such as a (possibly costly) sensor that can be used as ground truth to validate the quality of our
estimate, which must then be assessed by considering the context the driver is in, as we did in Sections IV-B-IV-C.

D. Comparison with different drivers

We finally use our estimation scheme to obtain the intentional jerk for six different drivers. The driving style clearly affects
the jerk evolution because it affects the pedal positions pr and pb in the first place, which are inputs for our estimation
scheme. The results presented here show that we can capture the driver intentions through the proposed jerk estimate and it is
emphasized that different driving styles lead to distinct jerk estimates, as shown below.

We consider for the different drivers the same road portion of Figure 4. In order to compare the evolutions effectively, we
parametrize the data with respect to the curvilinear coordinate s, instead of time t. The results are shown in Figure 7. The first
three drivers are on the left, and the second three are on the right. The traces associated to the same driver are in the same
color, as specified in the legends, and we group in a same plot the evolutions of some variables relative to the first three and
the second three drivers (the velocity v, the gas pedal position pr, the cylinder brake pressure pb, the estimated intentional
acceleration âi and the estimated slope tan( ôag ) · 100), whereas we devote a single plot to the evolution of the estimated jerk
ˆ̄i for each driver. All evolutions in dark blue (corresponding to the sixth driver) coincide with the ones of Figure 4 for ` = 2,
after reparametrizing them with the curvilinear coordinate s.

As in the previous sections, we propose the measured variables v, pr and pb for illustration at the top of Figure 7. In
the central part of Figure 7 we show the estimated intentional accelerations âi for each driver triplet, which present similar
evolutions induced by the road profile. The estimated slope of the road as a function of the curvilinear coordinate s coincides
significantly for the six drivers, showing the reliability of our estimation scheme. The same enhanced Kalman filter was adopted
for all the six drivers, with Q and R as in (21) and ` = 2, which was deemed the optimal value in Section IV-B. With these
parameters, the evolutions of the estimated jerk are in the bottom part of Figure 7, where we surround with magenta boxes
the same road sub-portions highlighted in Figure 4 and 5. A total length of 2.3 km is analyzed.

We can now comment in detail the jerk evolutions. The descriptions of the scenarios in the boxes were provided in
Section IV-B. Based on those, we can see that in the first box all the drivers present a very similar evolution of the estimated
jerk that is associated to first decelerating (and possibly triggering a full stop maneuver as for driver 5) to give way at the exit
ramp, and then accelerating again to adapt to the higher speed of the main road. The second driver is the one anticipating the
most the deceleration phase. In the second box we also witness for all the drivers a similar negative burst in the jerk due to
the sharp bend. The scenario in the third box is quite peculiar to the sixth driver, because of the maneuvre of the vehicle in
front of him/her (refer to Section IV-B), so no strong similiarities among the estimated jerks of the drivers are expected and
found. Finally, in the fourth box (corresponding to a roundabout) the sixth and third drivers present a very similar pattern (a
negative jerk burst for the stop and then two positive ones for the entrance and exit from the roundabout). Such a pattern is
to be seen also for the second and the fifth driver by noticing that, again, the second driver tends to anticipate significantly
the deceleration phase as in the first box. If we look more generally at the whole evolution, the first driver (and partially the
fourth) uses the pedals quite aggressively as we see from the light blue trace in the second and third left plots from the top.
This produces, in turn, a similarly nervous intentional acceleration and jerk evolution, where many bursts consistently appear.
On the other hand, the fifth driver uses the pedals much more smoothly, keeping them constant on large intervals of time or
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Figure 7. Evolution for different drivers of the measured variables (v, pr , pb) and the estimated variables (intentional acceleration âi, slope ôa, intentional
jerk ˆ̄i) with respect to the curvilinear coordinate s. A separate plot is allocated to the ˆ̄i of each of the six drivers in the part below, and the traces in the
part above associated to the same driver are in the same color (as specified in the legends).

varying them in an approximately linear fashion. This consistently results in a much more limited jerk evolution. The third
and sixth drivers present intermediate jerk evolutions between these two extreme cases.

Summarizing, we emphasize that the driving style has no role in the design of our estimation scheme, which is the core
interest of the present work, and that different driving styles are successfully detected by our estimator, which can then be
used to infer driver intentions.

V. CONCLUSIONS AND FUTURE WORK

This work addressed the problem of estimating the longitudinal jerk of a vehicle as it is acted by the typical human driver.
We provided first an analytical justification for the intention-oriented model of the longitudinal dynamics, and then showed the
effectiveness of the proposed enhanced Kalman scheme on experimental data, comparing it with alternative approaches and
for different drivers.

Future work will consider placing this scheme directly in the advanced driver assistance system that uses the jerk estimate
to infer the driver intention. The scheme is indeed ready for an on-line implementation because it does not use any noncausal
information. It could also be generalized to estimate the intentional lateral jerk. Other possible directions for future work
may include: substituting the enhanced Kalman approach with a different filtering paradigm (like particle filters), using the
information from the road map directly in the filter, and employing the jerk estimate to carry out naturalistic driving studies
and to find the average distribution of the longitudinal jerk for different people and roads, or to classify different driving styles
as in [26].
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