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Global asymptotic stability
of a PID control system with Coulomb friction

Andrea Bisoffi, Mauro Da Lio, Andrew R. Teel and Luca Zaccarian

Abstract—For a point mass subject to Coulomb friction in
feedback with a PID controller, we consider a model based on
a differential inclusion comprising all the possible magnitudes
of static friction during the stick phase and having unique
solutions. We study the set of all equilibria and we establish
its global asymptotic stability using a discontinuous Lyapunov-
like function, and a suitable LaSalle’s invariance principle. The
well-posedness of the proposed model allows to establish useful
robustness results, including an ISS property from a suitable
input in a perturbed context. Simulation results are also given
to illustrate our statements.

I. INTRODUCTION

W ITHIN the control community, the interest in the
dynamical properties of friction had its peak in the

1990’s, and the control engineering reasons for this interest
are lucidly argued in [15, §1]. These properties have been
studied along a modeling direction in the Dahl model [9],
the LuGre model [4], [7], the models by Bliman and Sorine
[6] and the Leuven model [21]. In particular, when a mass
moves with steady velocity and the corresponding friction
force is measured, there is a small interval of velocities near
zero where the friction force decreases before increasing again
due to viscous friction and this behaviour is given the name
of Stribeck effect. In [6], considering friction dependent only
on the path, allows using the theory of hysteresis operators
[23] and the LuGre model itself proved to be amenable to
theoretical analysis, as [5] presents necessary and sufficient
conditions for the passivity of its underlying operator from
velocity to friction force.

In this work, we consider a point mass under Coulomb
friction and actuated by a proportional-integral-derivative
(PID) controller, which is a classical problem in the
(control-oriented) friction literature. However, we characterize
Coulomb friction as set-valued, obtaining a differential inclu-
sion for the whole system. Starting from proving uniqueness
of solutions, we prove through a Lyapunov-like function the
global asymptotic stability of the attractor having zero velocity,

Research supported in part by AFOSR grant FA9550-15-1-0155 and NSF
grant ECCS-1508757, by the ANR project LimICoS contract number 12 BS03
005 01, and by grant OptHySYS funded by the University of Trento.

A. Bisoffi and M. Da Lio are with Dipartimento di Ingegneria
Industriale, University of Trento, Italy {andrea.bisoffi,
mauro.dalio}@unitn.it

A. R. Teel is with the Department of Electrical and Computer En-
gineering, University of California, Santa Barbara, CA 93106, USA
teel@ece.ucsb.edu

L. Zaccarian is with CNRS, LAAS, 7 avenue du Colonel Roche, F-31400
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zero position and a bounded integral error. The use of a set-
valued mapping for the friction force can be seen as quite
natural and is taken into consideration in [6], [16], [22]:
in [22] it is applied to uncontrolled multi-degree-of-freedom
mechanical systems with unique solutions, in [16] to a PD
controlled 1 degree-of-freedom system. The combination of
set-valued friction laws and Lyapunov tools is also the subject
of [14, Chap. 5-6]. The mathematical challenges associated
with Coulomb friction are also extensively illustrated in [20]
and references therein.

Global asymptotic stability was proven in the Russian liter-
ature, as highlighted in [24], which exploits solution properties
like dichotomy. Additionally, it was proved (see [1, Thm. 1]
and the related works [2], [3]) that in our same setting of
PID control there exists no stick-slip limit cycle (the so-
called hunting phenomenon, see [1, p. 679] and [7, §V-A.];
see [1] and Remark 1 for the definitions of stick and slip).
On the other hand, we provide here an alternative proof of
global asymptotic stability, which we complement with various
robustness results. Our proof is based on the construction of
an intuitive Lyapunov-like function discussed in Section III,
which has an explicit expression, is not built from solutions
and can lead to compensation schemes recovering exponential
stability, or can be used for nonlinear control design in a
control Lyapunov function approach.

The properties established through Lyapunov tools for dif-
ferential inclusions and the regularity of our model imply
robustness of asymptotic stability. This, in turn, allows us
to prove an input-to-state stability (ISS) property for the
perturbed dynamics, establishing that more general friction
phenomena (including the Stribeck effect) cause a gradual
deterioration of the response, in an ISS sense. We regard this
work as a stepping stone to static friction larger than Coulomb
and to its description through hybrid systems [11], and to
proposing compensation schemes using hybrid friction laws.

The paper is structured as follows. We present the proposed
model and the main results in Section II. The novel Lyapunov-
like function that we introduce in this work, together with
its relevant properties, is presented in Section III. Section IV
illustrates our main results by simulation. The proofs are
reported at the end of the paper in Section V.
Notation. The sign function is defined as: sign(x) := 1 if
x > 0, sign(0) := 0, sign(x) := −1 if x < 0. The
saturation function is defined as: sat(x) := sign(x) if |x| > 1,
sat(x) := x if |x| ≤ 1. For c 6= 0, the deadzone function is
defined as dzc(x) := x− c sat

(
x
c

)
. |x| denotes the Euclidean

norm of vector x. The distance of a vector x ∈ Rn to a
closed set A ⊂ Rn is defined as |x|A := infy∈A |x− y|. 〈·, ·〉
defines the inner product between its two vector arguments.
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A function f : Rn → R is lower semicontinuous (lsc) if
lim infx→x0 f(x) ≥ f(x0) for each point x0 in its domain.

II. PROPOSED MODEL AND MAIN RESULTS

A. Derivation of the model

Consider a point mass m described by position s and ve-
locity v. The overall friction force ff acting on the mass com-
prises both Coulomb and viscous friction and is parametrized
(see [2, Eq. (3)], or similarly [15, Eq. (5)]) by a Coulomb
friction constant f̄c > 0 and by the viscous friction constant
αv > 0. The expression of ff reads then

ff (fr, v) :=


f̄c sign(v) + αvv, if v 6= 0

fr, if v = 0, |fr| < f̄c

f̄c sign(fr), if v = 0, |fr| ≥ f̄c
(1)

where fr is the resultant tangential force. The mass is actuated
by the PID control uPID

uPID(t) := −k̄ps(t)− k̄i
∫ t

0

s(τ)dτ − k̄d
ds(t)

dt

= −k̄ps(t)− k̄iei(t)− k̄dv(t),

(2)

where ei is defined to be the integral of the position error and
is the state of the controller, satisfying ėi = s and ei(0) = 0.

By Newton’s law, the mechanical dynamics is ṡ = v and
mv̇ = uPID − ff (uPID, v). The convenient definitions u :=
uPID−αvv

m , (kp, kv, ki) := (
k̄p
m ,

k̄d+αv
m , k̄im ) and fc := f̄c

m yield

ėi = s (3a)
ṡ = v (3b)

v̇ =


u− fc if v > 0 or (v = 0, u ≥ fc)
0 if (v = 0, |u| < fc)

u+ fc if v < 0 or (v = 0, u ≤ −fc)
(3c)

u = −kps− kvv − kiei, (3d)

where we used that uPID = mu for v = 0.
Model (3) arises from a relatively intuitive mechanical

description of the forces acting on the point mass. Despite the
discontinuous right hand side of (3), existence of solutions for
any initial condition can be proven through similar reasonings
to those in the proof of the subsequent Claim 1. For establish-
ing stability properties we use the monotone set-valued friction
law [14, Eq. 5.36], for which existence of solutions is struc-
turally guaranteed. By defining the overall state z := (ei, s, v),
this is equivalent to applying the Filippov [10] or Krasovskii
regularization to the discontinuous dynamics (3) and obtaining

ż ∈

 s
v

−kiei − kps− kvv

− fc
0

0
1

SGN(v) =: F̃ (z) (4a)

where the function SGN is a set-valued mapping defined as

SGN(v) :=

{
sign(v), if v 6= 0

[−1, 1], if v = 0.
(4b)

Note that model (4) recognizes that the Coulomb friction
can be selected as any force in the set [−f̄c, f̄c] when v

is zero and has magnitude f̄c and direction opposite to v
whenever v 6= 0. The following Lemma 1 establishes that no
artificial solution is introduced by such an enriched dynamics.
(Relative to (3) or (4), we consider a solution to be any locally
absolutely continuous function x that satisfies respectively
ẋ(t) = f(x(t)) or ẋ(t) ∈ F(x(t)) for almost all t in its
domain.) Indeed, once existence of solutions is proven for (3)
(by similar reasonings to those in Claim 1), uniqueness of
solutions for (4) implies that the unique solution to (4) must
necessarily be the unique solution to (3) because (3) allows for
only some selections of v̇ compared to those allowed by (4),
so that any solution to (3) is also a solution to (4).

Lemma 1: For any initial condition z(0) ∈ R3, system (4)
has a unique solution defined for all t ≥ 0. y
Proof. Existence of solutions follows from [10, §7, Thm. 1]
because the mapping in (4) is outer semicontinuous and locally
bounded with nonempty compact convex values (see also [11,
Prop. 6.10]). Completeness of maximal solutions follows from
local existence and no finite escape times, as (4) can be re-
garded as a linear system forced by a bounded input. To prove
uniqueness, consider two solutions z1 = (z1,ei , z1,s, z1,v), z2

both starting at z0 and define δ = (δei , δs, δv) := z1 − z2.
Then, δ(0) = 0 and, for almost all t ≥ 0,

δ̇(t) ∈Aδδ(t)− fc
[

0
0
1

](
SGN(z1,v(t))−SGN(z1,v(t)− δv(t))

)
Aδ :=

[
0 1 0
0 0 1
−ki −kp −kv

]
. (5)

Denote λδ the maximum singular value of Aδ . Therefore we
can write for almost all t ≥ 0

d
dt
|δ(t)|2

2 = δ(t)T δ̇(t) ≤ λδ|δ(t)|2 +M(t)

M(t) := max
f1∈fc SGN(z1,v(t))

f2∈fc SGN(z1,v(t)−δv(t))

δv(t)(f2 − f1).

Whether z1,v(t) and z1,v(t) − δv(t) are positive, zero or
negative, by trivial inspection of all the cases it can be shown
that M(t) ≤ 0 for all t ≥ 0. Therefore,

d
dt
|δ(t)|2

2 ≤ λδ|δ(t)|2 for almost all t ≥ 0,

where δ(0) = 0 implies δ(t) = 0 (i.e., z1(t) = z2(t)) for all
t ≥ 0 due to comparison theorems (like [13, Lem. 3.4]). �

B. Main results

The advantage in the use of the compact dynamics (4) is
that we may adopt Lyapunov tools to study the asymptotic
stability properties of the rest position under the following
standard assumption (see, e.g., [1]).

Assumption 1: The parameters in (3d) are such that

ki > 0, kp > 0, kvkp > ki. y
According to the Routh stability test, Assumption 1 holds

if and only if the origin of the dynamics in (4) with fc = 0 is
globally exponentially stable.

Under Assumption 1, one readily sees that all possible
equilibria of (4) correspond to (ei, s, v) = (ēi, 0, 0) with
|ēi| ≤ fc

ki
, that is, whenever the mass is at rest at zero position

and the size of the integral error ei is bounded by the threshold
fc
ki

. Any of these points is an equilibrium for (4) because
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in (4) a value can be selected from fc SGN(0) such that the
(unique) solution maintains ż identically zero. Note that here
we consider the problem of tracking a position setpoint so = 0,
but constant position setpoints so can be tracked because we
can shift the position coordinate to s− so and our results are
global. Denote then the set of the equilibria as

A :=

{
(ei, s, v) : s = 0, v = 0, ei ∈

[
− fc
ki
,
fc
ki

]}
. (6)

Proposition 1: Under Assumption 1, the attractor A in (6)
is 1) globally attractive and 2) Lyapunov stable for (4). y

The global attractivity of A is proven in Section V-B
(by a suitable discontinuous Lyapunov-like function and an
integral version of LaSalle’s invariance principle) and its
stability in Section V-C. Note that no smaller set could be
proven to be globally attractive because A is a union of
equilibria. Our results are presented for a symmetric Coulomb
friction fc SGN(v) in (4a), but all of them hold for a trans-
lated attractor in the case of asymmetric Coulomb friction
fc SGN(v) − f0, for any f0 ∈ R. This fact can be proven
by shifting by f0 the coordinate φ introduced in Section III.

With B denoting the closed unit ball, co the closed convex
hull of a set, and ρ : R3 → R≥0 a suitable continuous pertur-
bation function satisfying z /∈ A ⇒ ρ(z) > 0 and vanishing in
A, we have the following perturbation of dynamics F̃ in (4a):

ż ∈ coF̃ (z + ρ(z)B) + ρ(z)B. (7)

Our main result in Theorem 1 establishes the following two
relevant stability properties involving the solutions to (7).
Robust global KL asymptotic stability of A corresponds to
the existence of β0 ∈ KL such that all solutions to (7) satisfy
|z(t)|A ≤ β0(|z(0)|A, t) for all t ≥ 0 [11, Def. 7.18(a)], and is
equivalent to robust uniform global asymptotic stability of A,
namely the property that A is uniformly globally stable and
attractive for (7) (see [11, Def. 3.6]), thanks to [11, Thm. 3.40].

Theorem 1: Under Assumption 1, the attractor A in (6) is
robustly uniformly globally asymptotically stable and robustly
globally KL asymptotically stable. y
Proof. Theorem 1 follows from Proposition 1 thanks to [11,
Thm. 7.21], which applies because (4) is well-posed from the
regularity of F̃ [11, Thm. 6.30] and A is compact. �
From Theorem 1, arbitrarily small discrepancy in the friction
parameters do not destroy the established stability property.

A specific perturbation arises when selecting a constant
scalar ρv ∈ R and perturbing the friction effect as follows:

ż ∈
[ s

v
−kiei−kps−kvv

]
− fc

[
0
0
1

]
SGNρv (v) (8)

SGNρv (v) :=

{
[sign(v)− |ρv|, sign(v) + |ρv|], if |v| > |ρv|
[−1− |ρv|, 1 + |ρv|], if |v| ≤ |ρv|.

Note that the inflation of the set-valued mapping SGN in (4b)
is SGN(v+ |ρv|B) + |ρv|B, from (7). This inflation coincides
with SGNρv in (8), and in the special case ρv = 0, SGN0

clearly coincides with SGN. This perturbation is of interest
because it comprises the Stribeck effect, as discussed after the
statement of Proposition 2. Its proof, reported in Section V-D
to avoid breaking the flow of the exposition, exploits an
interesting consequence of the robustness result established in

v
Stribeck
fcSGNρv(v)

|ρv|fcSGN(v)

Fig. 1. Stribeck effect is included in the perturbation (8).

Theorem 1, namely the semiglobal practical robust asymptotic
stability of attractor A [11, Def. 7.18(b)] established in [11,
Lemma 7.20].

Proposition 2: Under Assumption 1, A in (6) is globally
input-to-state stable for dynamics (8) from input ρv . y

A consequence of Proposition 2 is that the Stribeck effect,
which is known to lead to persistent oscillations (the so-called
hunting phenomenon), produces solutions that are graceful
degradations in the ISS sense of the asymptotically stable
solutions to the unperturbed dynamics because Stribeck defor-
mations lead to graphs included in the graph of fc SGNρv (v),
as shown in Figure 1.

III. A DISCONTINUOUS LYAPUNOV-LIKE FUNCTION

To prove Proposition 1, we adopt a specific change of
coordinates x := (σ, φ, v) for (4), that is,

σ := −kis, φ := −kiei − kps, v := v. (9)

The change of coordinates is nonsingular thanks to Assump-
tion 1 (ki, kp strictly positive) and it rewrites (4) as

ẋ :=

σ̇φ̇
v̇

 ∈
 −kiv

σ − kpv
φ− kvv − fc SGN(v)


=

0 0 −ki
1 0 −kp
0 1 −kv


︸ ︷︷ ︸

=:A

σφ
v

−
 0

0
fc


︸ ︷︷ ︸

=:b

SGN(v)

=Ax− bSGN(v) =: F (x).

(10)

In the coordinates x introduced in (9), the attractor A in (6)
can be expressed as

A = {(σ, φ, v) : |φ| ≤ fc, σ = 0, v = 0}. (11)

Among other things, the simple expression of A in (11) allows
writing explicitly the distance of a point x to A as

|x|2A :=
(

inf
y∈A
|x− y|

)2
= σ2 + v2 + dzfc(φ)2 (12)

where dzfc(φ) := φ − fc sat(φ/fc) is the symmetric scalar
deadzone function returning zero when φ ∈ [−fc, fc]. Indeed,
the rightmost expression in (12) follows from separating the
cases φ < −fc, |φ| ≤ fc, φ > fc and applying the definition
given by the middle expression in (12).

For dynamics (10), we introduce the discontinuous
Lyapunov-like function:

V (x) :=

[
σ
v

]T [ kv
ki

−1

−1 kp

] [
σ
v

]
+ min
f∈fc SGN(v)

|φ− f |2

= min
f∈fc SGN(v)

[
σ

φ−f
v

]T
P
[

σ
φ−f
v

] (13a)
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Fig. 2. Top: solutions to (4) for different initial conditions. Center: phase portraits for the same solutions. Bottom: Lyapunov-like function V in (13) evaluated
along the same solutions. The left (resp., right) column corresponds to (kv , kp, ki) = (6.4, 3, 4) (resp., (1.5, 0.66, 0.08)), and both share fc = 1 m/s2.

where the matrix P is given by

P :=

[
kv
ki

0 −1

0 1 0
−1 0 kp

]
. (13b)

Function (13a) is rather intuitive because P in (13b) is a
solution to ATP + PA ≤ 0 for A defined in (10) and V
corresponds to the minimum quadratic form induced by P
when accounting for all possible values allowed by the set-
valued friction model. Note that for v 6= 0 the minimization
in (13a) becomes trivial because f can take only the value
fc sign(v). It is emphasized that function V is discontinuous.
For example, if we evaluate V along the sequence of points
(σk, φk, vk) = (0, 0, εk) for εk ∈ (0, 1) converging to zero,
V converges to f2

c , even though its value at zero is zero.
Nevertheless, function V enjoys a number of useful properties
established in the next lemma, which is a key step for proving
Proposition 1. Its proof is reported in Section V-A.

Lemma 2: The Lyapunov-like function in (13) is lower
semicontinuous and enjoys the following properties:

1) V (x) = 0 for all x ∈ A and there exists c1 > 0 such
that c1|x|2A ≤ V (x) for all x ∈ R3,

2) there exists c > 0 such that each solution x = (σ, φ, v)
to (10) satisfies for all t2 ≥ t1 ≥ 0

V (x(t2))− V (x(t1)) ≤ −c
∫ t2

t1

v(t)2dt. (14)

Remark 1: In [1] it is proven that if a solution is in a slip
phase in the nonempty time interval (ti, ti+1) (namely, for all
t ∈ (ti, ti+1), v(t) 6= 0) and the slip phase is preceded and
followed by a stick phase (namely, there exist δ > 0 such

that, for all t ∈ [ti − δ, ti] ∪ [ti+1, ti+1 + δ], v(t) = 0 and
|φ(t)| ≤ fc), then

|σ(ti+1)| < |σ(ti)|. (15)

Instead of using the explicit form of solutions as [1,
Lemma L2] depending on the nature of the eigenvalues of
A, (15) is easily concluded from (14), the definition (13a),
and |φ(ti)| ≤ fc, |φ(ti+1)| ≤ fc. y

Remark 2: Function V in (13) may lead to convenient
hybrid friction compensation schemes where the integral error
state is suitably reinitialized to reduce the length of the stick
phase, thereby possibly recovering exponential convergence
(see the discussion in Remark 3). This specific feature should
be enabled by the decoupled structure of V in the first line of
(13a), where only the last term depends on the state φ. Notably,
also the Lyapunov-like function previously proposed in the
Russian literature [24, Eq. (3.86)] is discontinuous, however
it is defined in terms of solutions and it is not clear how to
exploit it in control design. y

IV. ILLUSTRATION BY SIMULATION

Before we prove the results, we illustrate by simulation the
typical behaviour of solutions to (4) and their convergence to
the attractor. Simulations capture, for each initial condition,
the unique solution to (4) because of Lemma 1. When fc = 0,
(4) reduces to a linear system with characteristic polynomial
s3 + kvs

2 + kps+ ki = 0, whose roots have negative real part
from Assumption 1. Although our subsequent proofs do not
differentiate anyhow among the possible locations of these
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roots in the complex plane, we present our simulations for
two representative cases, complex conjugate and three distinct
real roots. Specifically, roots {−6.01,−0.19 ± i0.79} and
{−0.8,−0.5,−0.2} are obtained for parameters (kv, kp, ki) =
(6.4, 3, 4) and (kv, kp, ki) = (1.5, 0.66, 0.08), respectively.
fc = 1 m/s2 is common to all simulations.

First, we present the solutions to (4) for different sets of
initial conditions for the complex conjugate and real root cases,
respectively in the left and right top plots of Figure 2. In the
solution represented by a heavier dark violet line, two different
phases are visible: the mass is in motion (called slip phase in
the friction literature), or the mass is at rest (called stick phase)
and the velocity is zero on a nonzero time interval. Whenever
the mass is in a slip phase, the PID control acts in the direction
of getting the mass closer to the position setpoint at zero.
During a stick phase starting at ti, only the error integral
builds up linearly in time as ei(t) = ei(ti) + s(ti)(t − ti)
until the control action u overcomes the Coulomb friction,
that is, |u| = | − kiei − kps| = fc. So, the closer the mass
is to the zero position (smaller s(ti)), the longer it takes the
error to build up and exit a stick phase. Moreover, position
and velocity converge to zero, but the error integral does not
in general: it continues to oscillate and enters asymptotically
the set

[
− fcki ,

fc
ki

]
as the position approaches zero for complex

conjugate roots (top, left); it approaches the equilibria fc
ki

or − fcki for distinct real roots (top, right) because after a
stick phase the position and the velocity converge to zero
exponentially, so that v remains always nonzero.

Second, we present in the left and right center plots of
Figure 2 the phase portraits for the same solutions above.

Third, for the same initial conditions and parameters, we
present the evolution along solutions of the Lyapunov-like
function introduced in (13). In particular, this function is
nonincreasing along solutions, it can be discontinuous (e.g.,
the left, bottom, dark blue curve at t = 0.123 s), and remains
constant during stick.

Remark 3: The above observation that initial positions
closer to A imply longer time for the integral error to build
up and exit a stick phase, entails that A is not locally
exponentially stable. Indeed, consider an initial condition
(ei(0), s(0), v(0)) = (0, εk, 0) with εk ∈

(
0, fckp

)
. Then

|z(0)|2A = ε2k. Using similar reasonings as in Claim 1 and its
proof, we can establish that ei(t) = εkt, s(t) = εk, v(t) = 0

for all t ∈ [0, Tk] :=
[
0, 1

ki

(
fc
εk
− kp

)]
. Then for a sequence

{εk}∞k=1 with εk → 0, |zk(t)|A = |zk(0)|A 6= 0 for all t ≤ Tk
and limk→∞ Tk = +∞. Such a sequence clearly excludes
exponential convergence. y

V. PROOFS

A. Proof of Lemma 2

To the end of proving Lemma 2, we note that model (10)
and function (13) suggest that there are three relevant affine
systems and smooth functions associated to the three cases

in (3c) that are worth considering (and will be used in our
proofs). They correspond to

ξ̇ = f1(ξ) := Aξ − b, ξ(0) = ξ1, (16a)

ξ̇ = f0(ξ) :=
[

0 0 0
1 0 0
0 0 0

]
ξ, ξ(0) = ξ0, (16b)

ξ̇ = f−1(ξ) := Aξ + b, ξ(0) = ξ−1, (16c)

and for ξ = (ξσ, ξφ, ξv) and the definition |ξ|2P := ξTPξ,

V1(ξ) :=

∣∣∣∣[ ξσ
ξφ−fc
ξv

]∣∣∣∣2
P

, V0(ξ) :=
∣∣∣[ ξσ0

0

]∣∣∣2
P
, V−1(ξ) :=

∣∣∣∣[ ξσ
ξφ+fc
ξv

]∣∣∣∣2
P

.

(16d)
Based on the description above, we can state the following

claim relating (16) to solutions of (10) and to V in (13). Its
proof mostly relies on straightforward inspection of the various
cases and is given in Appendix A.

Claim 1: There exists c > 0 such that, for each initial
condition (σ̄, φ̄, v̄), one can select k ∈ {−1, 0, 1} and T > 0
satisfying the following:

1) the unique solution ξ = (ξσ, ξφ, ξv) to the k-th initial
value problem among (16a)-(16c) with initial condition
ξk = (σ̄, φ̄, v̄) coincides in [0, T ] with the unique
solution to (10);

2) the above solution ξ satisfies for all t ∈ [0, T ]

V (ξ(t)) = Vk(ξ(t)), (17a)
d
dtVk(ξ(t)) ≤ −c|ξv(t)|2. (17b)

Additionally, we restate a fact from [12] that is beneficial
to proving Lemma 2. Specifically, we use [12, Theorem 9]
together with the variant in [12, Section 5 (point a.)]. We
also specialize the statement, using the fact that when the
function g is integrable, the standard integral can replace the
upper integral (as noted after [12, Definition 8]). The lower
right Dini derivative D+h of h is defined as D+h(t) :=

lim infε→0+
h(t+ε)−h(t)

ε .
Fact 1: [12] Given t2 > t1 ≥ 0, suppose that h is lower

semicontinuous and that l is locally integrable in [t1, t2]. If
D+h(τ) ≤ l(τ) for all τ ∈ [t1, t2], then

h(t2)− h(t1) ≤
∫ t2

t1

l(τ)dτ.

y
Building on Claim 1 and Fact 1 we can prove Lemma 2.

Proof of Lemma 2. We show first that V is lower semicontin-
uous (lsc). Define the set-valued mapping

G(x) :=
⋃

f∈fc SGN(v)

g(σ, φ, v, f), g(σ, φ, v, f) :=
[

σ
φ−f
v

]T
P
[

σ
φ−f
v

]
,

and consider the additional set-valued mapping (σ, φ, v) ⇒
H(σ, φ, v) := (σ, φ, v, fc SGN(v)). By the very definition of
set-valued mapping, we can write G = g◦H (the composition
of g and H), that is, (σ, φ, v) ⇒ g(σ, φ, v, fc SGN(v)) =
G(x). Then, G is outer semicontinuous (osc) by [17, Propo-
sition 5.52, item (b)] because both g and H are osc and
H is locally bounded. Finally, by the definition of distance
d(u,S) between a point u and a closed set S, we can write
V (x) = d(0, G(x)). Then, V is lsc by [17, Proposition 5.11,
item (a)] because G was proven to be osc.
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We prove now the properties of V item by item.
Item 1). There exists g > 0 such that [ σv ]

T
[
kv
ki
−1

−1 kp

]
[ σv ] ≥

g(σ2 + v2) because the inner matrix is positive definite by
Assumption 1. Moreover, from (13a), min

f∈fc SGN(v)

(
φ− f

)2 ≥
min

f∈[−fc,fc]

(
φ−f

)2
= dzfc(φ)2. Therefore, (12) yields V (x) ≥

c1|x|2A with c1 := min{g, 1}.
Item 2). Equation (14) is a mere application of Fact 1 for

h(·) = V (x(·)) and l(·) = −c(v(·))2 where x = (σ, φ, v) is a
solution to (10) and c is from Claim 1. So, we need to check
that the assumptions of Fact 1 are verified.

We already established above that V is lsc. Solutions x
to (10) are absolutely continuous functions by definition. Then,
because the composition of a lsc and a continuous function is
lsc (see [17, Exercise 1.40]), the Lyapunov-like function (13a)
evaluated along the solutions of (10) is lsc in t. Since solutions
are absolutely continuous, −cv2 is locally integrable.

Finally, it was proven in Claim 1, item 1 that for each
initial condition, the unique solution to (10) coincides with the
solution to one of the three affine systems in (16) (numbered
k) on a finite time interval T . Moreover, from Claim 1, item 2
V coincides in [0, T ] with the function Vk in (17), which is
differentiable, hence V (x(·)) is at least differentiable from
the right at t = 0 and the lower right Dini derivative coincides
with the right derivative. In particular, we established in (17)
that this right derivative is upper bounded by −cv2. �

B. Proof of item 1) of Proposition 1 (global attractivity)

We can now prove the first item of Proposition 1 based on
Lemma 2 and a generalized version for differential inclusions
of the invariance principle in [13, §4.2]. The following fact
comes indeed from specializing the result in [18, Thm. 2.10]
to our case, where the differential inclusion (4) has actually
unique solutions defined for all nonnegative times (as estab-
lished in Lemma 1). We also select G = R3, U = R3 in the
original result of [18].

Fact 2: [18] Let ` : R3 → R≥0 be lower semicontinuous
and such that `(x) ≥ 0, for all x ∈ R3. If x is a complete and
bounded solution to (10) satisfying

∫ +∞
0

`(x(t))dt < +∞,
then x converges to the largest forward invariant subsetM of
Σ := {x ∈ R3 : `(x) = 0}. y

Proof of item 1) of Proposition 1 (global attractivity of A).
The proof exploits Fact 2, where we take `(x) = v2.
From Lemma 2, V (x(t)) ≤ V (x(0)) (item 2) and
c1|x(t)|2A ≤ V (x(t)) (item 1), so that c1|x(t)|2A ≤ V (x(0))
and consequently all solutions to (10) are bounded (their
completeness is established in Lemma 1). Apply (14) from 0
to t, and obtain c

∫ t
0
v2(τ)dτ ≤ V (x(0))−V (x(t)) ≤ V (x(0))

because V (x(t)) ≥ 0 from Lemma 2, item 1. Then we have∫ t
0
v2(τ)dτ ≤ V (x(0))

c , and if t → +∞ we get the required
boundedness of the integral of `(x(·)). Then Fact 2 guarantees
that each solution converges to the largest forward invariant
subset M of Σ = {x : v = 0}. We claim that such a subset
is A. Indeed, M⊂ Σ implies v = 0 in M. Moreover, σ = 0
in M because each solution starting from v = 0 and σ 6= 0
causes a ramp of φ that eventually reaches |φ| > fc and

v

φ

σ

−fc
fc

Fig. 3. R is the (closed) blue region in Lemma 3, R̂ is its complement.

drives v away from zero (therefore out of Σ). Finally, in M
we must have |φ| ≤ fc otherwise v would become nonzero
again. Then the largest forward invariant set M in Σ is A. �

C. Proof of item 2) of Proposition 1 (stability)

The Lyapunov-like function introduced in (13) of the pre-
vious section is not enough to prove stability. Indeed, its
discontinuity on the attractor A prevents us from obtaining
a uniform continuous upper bound depending on the distance
from A. However, a stability bound can be constructed through
an auxiliary function V̂ defined for x := (σ, φ, v) as

V̂ (x) := 1
2k1σ

2 + 1
2k2

(
dzfc(φ)

)2
+ k3|σ||v|+ 1

2k4v
2. (18)

Function V̂ allows establishing bounds in the directions of
discontinuity of V . In particular, we define the two subsets

R := {x ∈ R3 : v(φ− sign(v)fc) ≥ 0}
R̂ := R3\R

represented in Figure 3. The following holds.
Lemma 3: For suitable positive scalars k1, . . . , k4 in (18),

there exist positive scalars c1, c2, ĉ1, ĉ2 such that

c1|x|2A ≤ V (x) ≤ c2|x|2A, ∀x ∈ R, (19a)

ĉ1|x|2A ≤ V̂ (x) ≤ ĉ2|x|2A, ∀x ∈ R̂, (19b)

V̂ ◦(x) := max
v∈∂V̂ (x),f∈F (x)

〈v, f〉 ≤ 0, ∀x ∈ R̂, (19c)

where ∂V̂ (x) denotes the generalized gradient of V̂ at x
(see [8, §1.2]) and F is the set-valued mapping in (10). y
Proof. Note that min

f∈fc SGN(v)

(
φ − f

)2
= dzfc(φ)2 whenever

x ∈ R. Since P in (13b) is positive definite and V (x) =[ σ
dzfc (φ)

v

]T
P
[ σ

dzfc (φ)
v

]
in R, positive c1 and c2 can be chosen

to satisfy (19a), using the definition (12). (The lower bound
in (19a) was already established for all x ∈ R3 in Lemma 2,
item 1.) For positive k1, . . . , k4 and k1k4 > k2

3 , the inner

matrix in V̂ (x) = 1
2

[ |σ|
|dzfc (φ)|
|v|

]T [
k1 0 k3
0 k2 0
k3 0 k4

] [ |σ|
|dzfc (φ)|
|v|

]
is

positive definite and (19b) can be satisfied for the same reason.
To prove (19c), we consider only the set R̂> := R̂∩{x : v >

0} because a parallel reasoning can be followed in R̂∩{x : v <
0}. For x ∈ R̂>, we have v > 0, φ < fc and (10) reduces to
the differential equation

σ̇ = −kiv =: fσ(x)

φ̇ = σ − kpv =: fφ(x)

v̇ = −kvv + φ− fc =: fv(x) ≤ −kv|v| − |dzfc(φ)|.
(20a)
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Consistently, the max in (19c) is to be checked only for the
singleton f = (fσ(x), fφ(x), fv(x)) which F (x) reduces to for
all x ∈ R̂>. Moreover,

d
dφ

(
1
2

(
dzfc(φ)

)2)
= dzfc(φ), ∂ (|σ|) = SGN(σ), (20b)

where ∂ (|σ|) denotes the generalized gradient of σ 7→ |σ|. We
need then to find suitable positive constants k1, . . . , k4 satisfy-
ing k1k4 > k2

3 and such that V̂ ◦(x) is negative semidefinite in
R̂>. Since in R̂>we have v = |v| and dzfc(φ) = −|dzfc(φ)|,
then we get maxζ∈∂|σ|(−kik3|v|2ζ) = kik3|v|2 for all x ∈
R̂>, which gives in turn:

V̂ ◦(x)≤ [kik3|v|2− k4kv|v|2]+[k2σdzfc(φ)− k3|σ||dzfc(φ)|]
+[−k1kiσv− k3kv|v||σ|]+[k2kp|v||dzfc(φ)|−k4|v||dzfc(φ)|].

Since k1, . . . , k4 are positive by assumption, in
each pair in brackets the second term is negative
semidefinite and dominates the first (sign-indefinite or
nonnegative) term as long as k3 > max

{
ki
kv
k1, k2

}
and

k4 > max
{
ki
kv
k3, kpk2,

k23
k1

}
. With this selection, (19b) and

(19c) are simultaneously satisfied. �

Proof of item 2) of Proposition 1 (stability of A). Based on the
constants c1, c2, ĉ1, ĉ2 introduced in Lemma 3, the following
stability bound for each solution x to (10)

|x(t)|A ≤
√

c2ĉ2
c1ĉ1
|x(0)|A, ∀t ≥ 0 (21a)

is proven by splitting the analysis in two cases.
Case (i): x(t) /∈ R, ∀t ≥ 0. Since R ∪ R̂ = R3, x(t) ∈ R̂ for
all t ≥ 0 and from (19c)

V̂ ◦(x(t)) ≤ 0, ∀t ≥ 0⇒ V̂ (x(t)) ≤ V̂ (x(0)), ∀t ≥ 0.

Using bound (19b) we obtain

ĉ1|x(t)|2A ≤ V̂ (x(t)) ≤ V̂ (x(0)) ≤ ĉ2|x(0)|2A, ∀t ≥ 0,

which implies (21a) because 1 ≤
√
c2/c1 from (19a).

Case (ii): ∃t1 ≥ 0 such that x(t1) ∈ R. Consider the
smallest t1 ≥ 0 such that x(t1) ∈ R (the existence of such a
smallest time follows from R being closed). Then, following
the analysis of Case (i) for the (possibly empty) time interval
[0, t1) and using continuity of solutions, we obtain

ĉ1|x(t)|2A ≤ ĉ2|x(0)|2A, ∀t ∈ [0, t1]. (21b)

At t1 we apply (19a) (because x(t1) ∈ R) and (21b) to obtain
V (x(t1)) ≤ c2

(
ĉ2
ĉ1
|x(0)|2A

)
. Finally, by the bounds in items 1

and 2 of Lemma 2,

c1|x(t)|2A ≤ V (x(t)) ≤ V (x(t1)) ≤ c2 ĉ2ĉ1 |x(0)|2A, ∀t ≥ t1.
(21c)

Since
√

c2
c1
≥ 1, (21b) implies c1|x(t)|2A ≤ c2 ĉ2ĉ1 |x(0)|2A, ∀t ∈

[0, t1], which proves (21a) when combined with (21c). �

D. Proof of Proposition 2

The solutions to (8) are a subset of the solutions to
ż = Aδz − fc

[
0
0
1

]
µ, where: Aδ in (5) is Hurwitz from

Assumption 1, and µ is a locally integrable signal satisfying
µ(t) ≤ 1 + |ρv| for all t because, for the constant scalar ρv ,
SGNρv (v(t)) ≤ 1 + |ρv| for all t. From BIBO stability of
exponentially stable linear systems, there exist positive η and
λ such that all solutions satisfy

|z(t)| ≤ ηe−λt|z(0)|+ η(1 + |ρv|). (22)

For the two distances |z|2A := (infy∈A |z − y|)2 = s2 + v2 +(
dzfc/ki(ei)

)2
and |z|2 = s2+v2+e2

i , we have |z|A ≤ |z| and
|z|2 ≤ 2|z|2A + 2

(
fc
ki

)2
(by splitting into the cases |ei| ≥ fc

ki

and |ei| < fc
ki

), which implies |z| ≤
√

2
(
|z|A + fc

ki

)
. These

relationships between |z|A and |z|, and (22), imply that there
exist positive constants κ1, κ2, κ3 such that all solutions satisfy

|z(t)|A ≤ |z(t)| ≤ ηe−λt|z(0)|+ η(1 + |ρv|)
≤ κ1e

−λt|z(0)|A + κ2 + κ3|ρv|, ∀t ≥ 0.
(23)

Using Theorem 1 and the semiglobal practical robustness of
KL asymptotic stability established in [11, Lemma 7.20], one
can transform the δ-ε argument of [11, Lemma 7.20] into a
class K function γ` by following similar steps to [13, Lemma
4.5]. Moreover, using a similar approach to [19, Thm. 2]
relating the size of the initial condition and of the input, we
obtain the following:

|z(0)|A ≤ 1
δ`
, |ρv| ≤ δ` ⇒

|z(t)|A ≤ β`(|z(0)|A, t) + γ`(|ρv|), ∀t ≥ 0, (24)

for some suitable class KL and class K functions β` and
γ`, and for a small enough scalar δ` > 0. Without loss of
generality, consider now using in (24) a small enough δ` such
that (2δ`)

−1 ≥ κ2+κ3δ`. Introduce function T ? : R≥0 → R≥0

with T ?(s) := max{0, λ−1 log(2δ`κ1s)}, which satisfies:

κ1 e
−λT?(s) s+ κ2 + κ3δ` ≤ δ−1

` , ∀s ≥ 0. (25)

We can then conclude the proof by establishing the following
(global) ISS bound from ρv:

|z(t)|A ≤ β(|z(0)|A, t) + γ(|ρv|),∀z(0),∀ρv,∀t ≥ 0, (26)

where functions β and γ of class KL and class K, respectively,
are built starting from the following inequalities:

β(s, t) ≥
{
κ1e
−λts+ κ2 + κ3δ`, if s ≥ 1

δ`
, t ≤ T ?(s)

b(s, t), otherwise

(27a)

(27b)

b(s, t) := max
{
β` (s,max{0, t− T ?(s)}) , κ1e

−λts
}

(27c)

γ(s) ≥
{
κ2 + κ3s, if s ≥ δ`
γ`(s), if s ≤ δ`.

(27d)
(27e)

The effectiveness of selections (27) for establishing the ISS
bound (26) can be verified case by case.
Case 1 (|ρv| ≥ δ`): use (23), (27d), and the bound κ1e

−λts
in (27a)-(27c).
Case 2 (|ρv| ≤ δ` and |z(0)|A ≤ δ−1

` ): use (24), (27e), and
the bound β` (s,max{0, t− T ?(s)}) in (27b)-(27c).
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Case 3 (|ρv| ≤ δ` and |z(0)|A ≥ δ−1
` ): for t ≤ T ?(|z(0)|A)

use (27a) and nonnegativity of γ, whereas for t ≥ T ?(|z(0)|A)
use |z(T ?(|z(0)|A))|A ≤ δ`

−1 (from (23) and (25)) and the
semigroup property of solutions to fall again into Case 2.

VI. CONCLUSIONS AND FUTURE WORK

In this work we characterized the properties of a differential
inclusion model of the feedback interconnection of a sliding
mass with a PID controller under Coulomb friction. We
proved global asymptotic stability of the largest set of closed-
loop equilibria using a novel Lyapunov-like function enjoying
several useful properties. Due to regularity of the differential
inclusion model, global asymptotic stability is intrinsically
robust. Additionally, taking as input the size of the inflation of
a perturbed model, the dynamics is input-to-state stable, and
this perturbation includes the well-known Stribeck effect. As
future work we will consider extensions to three-dimensional
objects where the friction forces are described by a cone.
Moreover, we will propose compensation schemes relying on
our Lyapunov-like function to recover exponential stability for
Coulomb friction, and will address further the case of static
friction force larger than the Coulomb one.
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APPENDIX A
PROOF OF CLAIM 1

Proof of Claim 1. For each possible initial condition (σ̄, φ̄, v̄),
items 1) and 2) are satisfied by choosing the suitable k as in
the table below (∨, ∧ are respectively the logical OR, AND).

Initial condition k

(v̄ > 0) ∨ (v̄ = 0 ∧ φ̄ > fc) ∨ (v̄ = 0 ∧ φ̄ = fc ∧ σ̄ > 0) 1

(v̄ = 0 ∧ φ̄ = fc ∧ σ̄ = 0) ∨ (v̄ = 0 ∧ φ̄ = fc ∧ σ̄ < 0)

∨ (v̄ = 0 ∧ |φ̄| < fc) ∨ (v̄ = 0 ∧ φ̄ = −fc ∧ σ̄ > 0)

∨ (v̄ = 0 ∧ φ̄ = −fc ∧ σ̄ = 0)

0

(v̄ = 0 ∧ φ̄ = −fc ∧ σ̄ < 0) ∨ (v̄ = 0 ∧ φ̄ < −fc) ∨ (v̄ < 0) −1

The proof of item 1) consists in showing that for each
possible initial condition, the k in the table is such that the
solution ξ = (ξσ, ξφ, ξv) to the affine system ξ̇ = fk(ξ)
among (16a)-(16c) is also solution to (10) on the interval
[0, T ]. To verify (17a), we evaluate V and Vk along ξ.

We address only the case v̄ = 0 ∧ φ̄ > fc because all
other cases rely on similar reasonings. The third state equation
of (16a) reads ξ̇v = ξφ−kvξv−fc with ξv(0) = 0, ξφ(0) > fc,
so that ξ̇v(0) > 0. Then there exists T > 0 such that ξv(t) > 0
for all t ∈ (0, T ]. Substitute the solution ξ to (16a) into (10).
Because −fc SGN(ξv(t)) = {−fc} for all t ∈ (0, T ], (10)
becomes ξ̇(t) = Aξ(t) − b, holding true for all t ∈ (0, T ]
since ξ arises from (16a) (k = 1). Then the solution ξ is also
a solution to (10) for t ∈ [0, T ] because they have the same
initial conditions and ξ̇(t) ∈ F (ξ(t)). For the same case, we
prove V (ξ(t)) = V1(ξ(t)) for all t ∈ [0, T ]: at t = 0, ξφ(0) >
fc and the minimizer in (13a) is f = fc; for t ∈ (0, T ],
ξv(t) > 0 and f = fc is the only possible selection in (13a).

To verify (17b), for each initial condition and the corre-
sponding k, select c = 2(kvkp − ki) > 0 (by Assumption 1).

For k = 1, d
dtV1(ξ(t)) = d

dt

([
ξσ

ξφ−fc
ξv

]T
P

[
ξσ

ξφ−fc
ξv

])
=

(Aξ − b)TP

[
ξσ

ξφ−fc
ξv

]
+

[
ξσ

ξφ−fc
ξv

]T
P (Aξ − b) = −cξv(t)2,

which satisfies (17b) in [0, T ]. Parallel computations
hold for k = −1. For k = 0, V0(ξ(t)) = kv

ki
ξ2
σ so that

d
dtV0(ξ(t)) = 2kvki ξσ ξ̇σ = 0 ≤ 0 = −cξv(t)2 in [0, T ]. �


