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Abstract 

The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined 

aqueous solution is studied from evaporation experiments in microfluidic channels in 

conjunction with numerical computations of crystal growth. The study indicates that the stress 

build-up on the pore walls as the result of the crystal growth is a highly transient process taking 

place over a very short period of time (in less than 1s in our experiments).  The analysis makes 

clear that what matters for the stress generation is not the maximum supersaturation at the onset 

of the crystal growth but the supersaturation at the interface between the solution and the crystal 

when the latter is about to be confined between the pore walls. It is shown that the stress 

generation can be characterized with a simple stress diagram involving the pore aspect ratio and 

the Damkhöler number characterizing the competition between the precipitation reaction 

kinetics and the ion transport towards the growing crystal. This opens up the route for a better 

understanding of the damage of porous materials induced by salt crystallization, an important 

issue in earth sciences, reservoir engineering and civil engineering. 
 

PACS numbers: 47.56.+r, 61.05.cp 

 

Salt crystallization in pores causes damage in porous materials, a major issue in relation with 

building durability and cultural heritage conservation [1-4], underground structures [5], road 

[6] and geotechnical engineering [7]. A better understanding of the associated stress is also 

important in relation with geomorphology [8], concrete science [9] or the surface heave 

phenomenon of granular materials [10]. The fact that a growing crystal can generate stress has 

been known for more than a century [11], [12]. The key concept for the analysis of the stress 

generation is the crystallization pressure Pc [13-15]. Corrections to the original expression [14] 

taking account the water activities and the crystal size have been developed, e.g. [16], [17], so 

that the current expression for sufficiently large crystals of sodium chloride (>1µm) reads, 

 

  𝑃𝑐 =
2𝑅𝑇

𝑉𝑚
(ln 𝑆 + ln

𝛾±

𝛾±,0
) ,                        (1) 

 

where R is the ideal gas constant, T is the temperature, Vm is the molar volume of the solid phase 

forming the crystal (Vm = 27.02 cm3/mol for NaCl), γ± the ion mean activity coefficient. Index 

0 refers to the reference state where the crystal is in equilibrium with the solution. The ratio S = 

m/m0 is the supersaturation, where m denotes the molality of the solution (S = 1 when the crystal 

and the solution are in equilibrium). 

However, the mechanisms of stress generation are not yet well understood, e.g.[18].  For 

instance, no damage is observed in the experiments with glass capillary tubes presented in [19-

20] whereas a supersaturation as high as 1.6 is obtained. Application of Eq.(1) for such a 
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supersaturation leads to Pc = 160 MPa, well above the glass wall tensile strength (~ 40 MPa). 

Therefore, it is clear that the mere knowledge of Eq.(1) and the maximum supersaturation 

reached in the pores are not sufficient to predict if damage will occur. A major challenge is thus 

to predict the conditions leading to damage. Here we analyze the stress generation mechanism 

from evaporation experiments performed in glass-polydimethylsiloxane (PDMS) 

microchannels (Fig.1). The main objective is to construct a stress generation diagram for this 

simple geometry. Although considered as less harmful than sodium sulfate, e.g. [3], [4], the 

case of sodium chloride is studied. This salt is very common, simpler that sodium sulfate since 

its crystallization leads to a unique non-hydrated form (referred to as halite) under standard 

conditions and can also lead to major damage [21].  

 

 
 

FIG. 1. (Color online) Schematic of the PDMS and glass microfluidic chip. Crystallization and 

wall deformations are observed in the pore channels.  

 

As sketched in Fig.1, the experimental set-up is composed of a large channel which is used for 

supplying the fluids: salt solution or gaseous nitrogen. Smaller channels of 5×5 µm² square 

cross-section, referred to as pore channels, are positioned perpendicularly to the supply channel. 

Three pore channel lengths are tested: 100 µm, 200 µm and 300 µm. Two sodium chloride 

solution initial molalities are used: 1.89 and 4.25 mol/kg (the solubility is 6.15 mol/kg). This 

allows modifying the total amount of available salt in excess at the onset of crystallization. Salt 

with a purity ensured to be higher than 99.5% is dissolved in deionized water. Details on the 

microfluidic chip fabrication procedure are given in [22]. The crystallization is triggered by 

evaporation of the sodium chloride solution confined in the pore channels. Salt solution is 

provided from the top hole through the supply channel and invades the pore channels. Once the 

device is filled, a dry N2 flux is imposed from the bottom hole to empty the supply channel and 

isolates salt solution in the pore channels. This flux is maintained during all the experiment to 

evaporate the solution. As a result of evaporation, the meniscus recedes into the pore channel, 

the ion concentration increases until the concentration ccr marking the onset of crystallization 

is reached. This leads to the formation of a single crystal, most often within the liquid bulk 

away from the receding meniscus. Then there is a rapid growth of the crystal within the channel. 

The supersaturation when crystal growth starts can be determined from a simple mass balance 

as explained in [22]. The supersaturation averaged over 99 experiments is 1.72, which is 

consistent with the values reported in previous works, [19], [20].     
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The experiments are performed at ambient temperature (22 to 24°C) on an inverted microscopy 

Zeiss Axio observer D1 working in transmission. Two video cameras are used: an Andor Zyla 

SCMos with a large field and a low frame rate (1 fps) to record the evaporation kinetics and the 

wall deformation at the end of the growth, and a high speed Photron Fastcam SA3 camera to 

record the rapid initial period of the crystal growth (1000 fps).  

Movies are exploited thanks to the ImageJ© and Matlab© softwares to analyze the crystal 

growth by tracking the different interfaces (liquid-gas, crystal-liquid, crystal-pore wall).  

Using a microfluidic PDMS device to analyze deformation due to sodium chloride 

crystallization is not a novelty [23]. However, contrary to [23], the size of our channels enables 

us to reproduce the situation of in-pore drying and to isolate sufficiently small volumes so that 

only one nucleation event occurs [24]. As shown in [22] and further illustrated here, our device 

is adapted for tracking precisely the crystal growth and for analyzing the evolution of the ion 

concentration around the crystal during its growth. 

 

 

 
 

FIG. 2. (Color on line) Lateral crystal growth: a) Kinetics of crystal growth; r is the crystal 

lateral half size, W is the initial channel half width; red scale bar represents 10 µm. b) Absolute 

deformation against the initial dissolved salt mass. 

 

As can be seen from Fig.2, a noticeable channel deformation is obtained and the growth is rapid 

(the channel walls are deformed in less than 1s). The maximum pore channel deformations 

(defined as the difference between the crystal half width r and the initial channel half width W) 

range between 0 and 4 µm depending on the initial dissolved salt mass (equal to the pore 
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channel volume times the initial concentration). As depicted in Fig.2b, the higher the initial salt 

mass, the higher the deformation is. 

As reported in Supplemental Material [25], numerical simulations assuming purely elastic 

deformations and a uniform normal stress applied to the channel wall shows that a pressure of 

about 0.5 MPa is sufficient to obtain a deformation about equal to the maximum deformation 

observed in the experiment. 

According to Eq.(1), this corresponds to a supersaturation of only 1.005, much lower than the 

supersaturation at the crystallization onset (S ~1.7). At first glance, this is surprising. Since the 

growth is fast (~1s), the change in the average concentration in the solution during the growth 

is expected to be small (the molecular diffusion of ions in the solution is Ds ~10-9 m2/s; with a 

liquid plug length H of the order of 100 μm, a characteristic time of diffusion is t = H²/Ds = 

10s). However, what matters for the computation of the crystallization pressure from Eq.(1) is 

not the average supersaturation in the plug but the supersaturation at the interface between the 

crystal and the solution. The deformation computation results suggest that the supersaturation 

is in fact quite weak (i.e. slightly greater than 1) in the vicinity of the crystal when the latter is 

about to touch the wall on both opposite sides of the channel. To confirm this crucial point, the 

evolution of the ion concentration within the solution during the crystal growth must be 

analyzed. This is performed from numerical simulations using a model based on the diffusion 

reaction theory (DRT) [26].  First, crystal growth starts only once a stable nucleus appears in 

the metastable solution. Then the DRT distinguishes two steps: the transport of the ions from 

the solution to the crystal surface, followed by a reaction process during which ions fit in the 

crystal lattice. The latter is expressed as 
 

 𝑤𝑐𝑟 =
𝑘𝑅

𝜌𝑐𝑟
(𝑐𝑖 − 𝑐𝑒𝑞) (2) 

 

where wcr is the velocity of the crystal-solution interface; kR (m/s) is the reaction (precipitation) 

coefficient, ci (kg/m3) is the salt mass concentration at the crystal surface, ceq is the mass 

concentration at equilibrium and ρcr  is the crystal density (kg/m3). 

Actually, ci is an unknown decreasing during the growth from the value 𝑐𝑐𝑟 at the crystallization 

onset. The variation of ci results from the competition between the ion transport phenomena 

within the solution and the precipitation reaction. To obtain ci during the crystal growth and in 

particular when the crystal is about to reach the pore wall, the equations governing the ion 

transport within the solution during the crystal growth are solved  

 

 
𝜕𝜌𝑙

𝜕𝑡
+ ∇. 𝜌𝑙𝒗𝒍 = 0 (3) 

 𝜌𝑙 [
𝜕𝒗𝒍

𝜕𝑡
+ 𝒗𝒍∇. 𝒗𝒍] = −∇𝑃𝑙 + 𝜇𝑙∇2𝒗𝒍 (4) 

 
𝜕𝜌𝑙𝜔𝑠

𝜕𝑡
+ ∇. (𝜌𝑙𝜔𝑠𝒗𝒍) = ∇. (𝜌𝑙𝐷𝑠∇𝜔𝑠) (5) 

 

where ωs is the mass fraction of the ions in the solution, ρl  is the solution density, vl is the 

solution velocity, Pl is the pressure in the solution, μl is the solution dynamic viscosity, t is the 

time. As can be seen from Eq.(5), the ion transport is governed by diffusion and convection 

since a velocity field is induced in the solution as a result of the crystal growth. The problem 

expressed by Eq.(3-5) together with the appropriate boundary conditions (given in [22]) is 

solved numerically using the commercial software COMSOL Multiphysics® for the simplified 

axisymmetric situation sketched in Fig. 3a. The supersaturation is everywhere 1.7 in the 

solution when the crystal growth computation starts (t = 0) and the computations are performed 

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjFgdOguuHPAhWBnBoKHT-zDZ4QFggcMAA&url=https%3A%2F%2Fwww.comsol.fr%2F&usg=AFQjCNElmklDNpYipuuA-PJ-Uj7S16In9g&sig2=AAlre_B8dRQi11n3eKKf2Q&bvm=bv.135974163,d.d2s
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for different values of W, H/W and kR around the experimental ones, respectively from 0.5 to 

2.5 µm, 7 to 60 and 10-5 to 10-3 m/s. The growth being fast, the mass loss due to evaporation 

during the growth phase is neglected.  

The initial shape of the crystal is modeled as a sphere for facilitating the numerical 

computations. Numerical tests have shown that the initial shape has little impact on the results.  

 

 

    
FIG. 3. (Color on line) Numerical simulations of crystal growth: a) Sketch of simulated 

problem. b) Supersaturation at the point of crystal surface located the closest to the wall during 

crystal growth for different kR (W=1 µm and H=60 µm).   

 

Fig.3b explains why the stress generated on the wall is much smaller than the naive prediction 

based on the estimate using the supersaturation at the onset of crystallization. During the 

growth, there is a rapid decrease (in a few tens of ms) in the supersaturation at the crystal surface 

as the crystal develops in the solution. This result is highly dependent on the values of the 

reaction coefficient kR. As discussed in [22], the growth rates determined from previous 

experiments in the literature are not representative of the sole reaction kinetics but are mostly 

controlled by the transport of the ions towards the growing crystal. As a result, the crystal 

growth rates reported in the literature are smaller than the intrinsic growth rate kR due to the 

precipitation reaction only. If kR is wrongly confused with the growth rate determined in the 

literature, i.e. kR ~ 10-5 – 10-4 m/s, the stress at the wall is much higher than the stress level 

necessary to cause the observed deformation. This is because the growth is very fast in the 
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period controlled by the reaction. The analysis of our data suggests that kR is at least on the 

order of 2.3×10-3 m/s [22]. 

As shown in Fig.3b, using a value of kR on the order of 10-3 m/s leads to a weak supersaturation 

(i.e. S ~ 1), compatible with the low stress required to obtain the observed deformation of PDMS 

in our experiment [25-§C]. The next step is to understand how the stress generation is related 

to the parameters of the problem, i.e. can we develop a stress generation diagram for our simple 

system?  

To this end, the numerical model is used to determine the value of supersaturation when the 

crystal reaches the wall. The simulation is stopped when the crystal is 5 nm away from the pore 

wall, to be consistent with the presence of a few nanometers trapped liquid films [17], [27] (this 

film is necessary to supply ions to the growing crystal surface and can also transmit the stress 

between the crystal and the wall when it is sufficiently thin [27]). The corresponding 

supersaturation is referred to as the contact supersaturation. The contact crystallization pressure 

can then be evaluated from the contact supersaturation using Eq.(1).  

 

 
FIG. 4. (Color online) “Stress” generation diagram: computed values of contact crystallization 

pressure Pc as a function of Damkhöler number Da, and channel aspect ratio H/W. Colored lines 

are isolines of Pc with values indicated in MPa. The inset shows a 3D representation. 

 

As illustrated in Fig.4, the resulting stress diagram depends on two parameters the aspect ratio 

H/W and the Damkhöler number 𝐷𝑎 = √
𝜌𝑐𝑟𝑘𝑅

Δ𝑐𝐷𝑠
𝑊, where Δ𝑐 = 𝑐𝑐𝑟 − 𝑐𝑒𝑞. First, no stress is 

generated when the crystal cannot reach the pore wall because there is not enough dissolved 

salt in excess in the plug at the crystallization onset, i.e. when 𝐻/𝑊 ≤ 3Δ𝑐/2𝜌𝑐𝑟  ~ 7 [25]. On 

the contrary, the contact crystallization pressure saturates for sufficiently high values of H/W 

because the liquid plug is sufficiently long to behave as an infinite domain. Thus, the salt in 

excess far from the crystal is not consumed in the growth.  Between these two limits, the contact 

supersaturation increases with increasing aspect ratio H/W.  

The Damkhöler number 𝐷𝑎 characterizes the competition between the precipitation reaction 

and the ion transport [26]:  Da=kR/kD where 𝑘𝐷 =  √𝐷𝑠/𝑡  characterizes the average ion mass 

transfer by diffusion toward the growing crystal after a time t. Taking as characteristic time the 

reaction time 𝑡𝑅 = 𝑊/𝑤𝑐𝑟 ∼ 𝑊𝜌𝑐𝑟/𝑘𝑅Δ𝑐 (time for the crystal to reach the wall when the 

reaction is limiting) leads to 𝐷𝑎 = √
𝜌𝑐𝑟𝑘𝑅

Δ𝑐𝐷𝑠
𝑊. Simulation shows that this expression of Da is 

relevant to characterize the crystal growth phenomenon. Simulations made for the same Da but 

different kR and channel width W lead to the same value of S with a relative difference lower 

than 0.1%. Fig. 4 makes clear that Da must be sufficiently small for a significant stress to be 

generated on pore walls. In practice, this means that the pores must be sufficiently small and 

explains why no mechanical damage was observed in the experiments reported in [19], [20]. A 
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simple constraint on Da for stress generation can be expressed as follows. Supersaturation at 

crystal surface can remain high during the growth only if the diffusion rate is faster than the 

precipitation kinetics. The amount of salt needed to form a crystal of radius W can be estimated 

as 𝐿𝐷𝑊2Δ𝑐 ∼ 𝑊3𝜌𝑐𝑟, where LD is the maximum distance over which ions are transported to 

form the crystal. The typical time to diffuse over a length LD is tD~LD²/Ds. whereas the crystal 

reaches the pore wall after the reaction time 𝑡𝑅 when the reaction is the limiting process. Thus, 

a sufficient condition to observe a high contact supersaturation is tD≪tR  or in dimensionless 

form Da²≪1, i.e., 
 

 𝐷𝑎 = √
𝐷𝑠

𝑡𝑅𝑘𝑅
= √

𝜌𝑐𝑟𝑘𝑅

Δ𝑐𝐷𝑠
𝑊 ≪ 1 . (6) 

 

Varying both parameters Da and H/W, the contact supersaturation varies between 1 and 1.33 

for Da > 0.65 and H/W > 7. As depicted in Fig.4, this corresponds to a crystallization pressure 

varying between 0 and 98 MPa using Eq.(1) (to be compared to the tensile strength of 

sedimentary rocks, which is on the order of 1-10 MPa [28]).  

In summary the analysis presented in this letter makes clear that what matters for the stress 

generation is not the maximum saturation at the onset of the crystal growth but the 

supersaturation at the interface between the solution and the crystal when the latter is about to 

be confined between the pore walls. The generation of stresses on the pore walls as the result 

of the growth of a sodium chloride single crystal is actually a highly transient nonequilibrium 

process occurring over a very short period (in less than 1s in our experiments). This is because 

the precipitation reaction is quite fast. As a result, the supersaturation at the crystal interface 

rapidly decreases during its growth. Note also that this process eventually leads to a permanent 

deformation (see the Supplemental Material [25-§E] for more details). This better 

understanding of the stress generation mechanisms enables us to propose a simple stress 

diagram for a single pore involving the pore aspect ratio H/W and the Damkhöler number. It is 

surmised that this opens up the route for diagrams for more complex geometry such as the pore 

space of a porous medium (as briefly discussed in the Supplemental Material [25-§F]). It must 

also be noted that the fact that the crystal growth is quite fast makes challenging to model the 

stress generation process within the framework of the classical continuum approach to porous 

media because this type of approach is typically not well adapted for accounting for rapid events 

at pore scale. 
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