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Towards Aerial Physical Locomotion: the Contact-Fly-Contact Problem

Quentin Delamare1, Paolo Robuffo Giordano1, and Antonio Franchi2

Abstract— In this paper we consider the problem of letting
an aerial robot exploiting its contact with the environment in
order to enhance its motion possibilities, in a way reminiscent of
legged robots exploiting contact forces for locomotion purposes.
As a representative and initial case study, we consider a
quadrotor equipped with a 1-DOF arm able to hook at some
pivot points, and needing to perform a maneuver from an
initial hooked configuration to a final hooked configuration
while passing though a free-flight phase between the two anchor
points. To this end, we propose a dynamical modeling able
to capture the various phases (hooked, free-flying) together
with an optimization framework for generating optimal motion
plans compatible with actuation constraints. Simulation results
illustrate the effectiveness of the approach and the promising
potential in terms of more advanced maneuvers.

I. INTRODUCITON

The field of aerial robotics is being explored actively
thanks to the huge technological developments of the last
decades. Formulating specific control laws for Unmanned
Aerial Vehicles (UAVs), such as multi-rotors, has been a
challenging goal because of their typical underactuation and
complex aerodynamics. Several methods have been proposed
over the last decades for solving the pose regulation and
trajectory tracking problem, which now allow to successfully
handle the motion control of UAVs in many different condi-
tions. However these control approaches are mainly intended
for sensing and mapping applications in open space.

In recent years, the field of aerial physical interaction has
also gained an increasing popularity, fostered, among others,
by application-oriented large-scale projects, like AiRobots,
ARCAS, AeroArms, and AeroWorks. In this kind of sce-
narios the UAVs are expected to apply a controlled wrench
on their environment or on an object while flying. Examples
range from tool operation [1], [2] to tethered flight [3], [4],
and from surface inspection [5], [6] to aerial manipulation
with articulated arms [7]–[9]. Differently from typical aerial
surveillance/monitoring tasks, which can be performed by
remaining far enough from the environment, in the aerial
physical interaction domain the aerial robots are forced to
move close to the environment, including the parts with
which no interaction is required. Additionally, there are many
cases even in the contact-free aerial domain in which the
UAVs need to operate in the vicinity of obstacles, such as in
close-view monitoring of complex areas, in search and rescue
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missions of disaster areas, when flying through forests, or in
cluttered urban environments.

In both cases (the contact-free and the contact-enabled
ones), the surrounding environment has generally been con-
sidered as an undesired constraint for the vehicle’s motion:
the need of free/fast motion and of safely performing physi-
cal interaction has most often been perceived as antagonistic
w.r.t. the presence of other undesired physical objects. This
is demonstrated by the fact that, when it comes to trajec-
tory generation and control, physical objects are typically
considered as regions to be either avoided via complex and
potentially dangerous maneuvers [10], or to be exploited
during ‘resting phases’, i.e., in absence of motion like in
perching [11] and landing [12]. On the other hand, by
taking a completely different perspective, the legged robot
community has always considered motion to be intimately
related to contact: the first cannot exist without the latter.
Legged robots take advantage of the possible contacts with
the environment instead of avoiding them, since contact
forces are necessary for performing locomotion [13], [14].

Inspired by the use of contacts in legged robots, in this
paper we propose the idea of a paradigm shift for the aerial
community, that is, to exploit physical contact with the
environment for the purpose of ‘locomotion’ during flight. In
other words we believe that the presence of obstacles should
be regarded also by aerial robots as a source of possible
contact points and, thus, as an opportunity rather than as a
disadvantage. Indeed by leveraging the possibility to exploit
contacts with the environment, a full range of advantages
could become available to aerial robots: 1) the platform could
exploit the contact forces saving thrust w.r.t. a full-flight
modality. The reduced thrust can be exploited, e.g., 2) to
save energy, or to use the extra margin available in order
3) to increase the range of possible maneuvers, achieving an
unprecedented agility, as done by athletes with parkour, 4) to
significantly increase the set of reachable points in a cluttered
environment, 5) to augment the safety, and in general 6) to
increase the robustness versus disturbances and unpredicted
events. Or, simply, one could 7) exploit the reduced actuation
needs for adopting smaller and cheaper motors, or 8) to use
the same motors and increase the payload.

The locomotion problem on the ground at normal speeds
represents still nowadays a difficult and not completely
solved problem, as it has been shown in the DARPA Robotics
Challenge. In the case of aerial physical locomotion the robot
needs to fly, to cope with possibly high impacts, to take
into consideration the tighter limits and larger uncertainty of
aerodynamic actuators, and to cope with its underactuation.
The goal of this paper is, therefore, to propose a first step



towards the solution of this complex problem: in particular in
this work we tackle a first basic, yet significative, problem
of performing contact-fly-contact maneuvers in an optimal
way. The chosen problem has a dual role: it will be used
as building block in future developments for implementing
more complex maneuvers, and it will also be useful in
understanding the main bottlenecks and critical points of the
new proposed direction of ‘aerial locomotion’.

Specifically, we propose to study the case of a planar
quadrotor equipped with an onboard 1-DOF arm: the quadro-
tor needs to execute a maneuver from an initial configuration
in contact with the environment (the arm ‘hooks’ a first
pivot point) to a final configuration with another contact
(the arm hooks a second pivot point), by passing through
an intermediate ‘free-flying’ phase. To this end, we propose
a dynamical model for the quadrotor/arm system in both
phases (hooked and free-flying) that also considers the effects
of possible impacts with the environment when performing a
hooking during flight. Then, an optimization algorithm able
to generate optimal trajectories linking two given initial and
final configurations (while coping with actuation constraints)
is proposed: (classical) optimality vs. execution time is con-
sidered, as well as concurrent optimality vs. the sensitivity
of the state evolution against parametric uncertainties (for
generating intrinsically robust motion plans). Subsequently,
two tracking controllers for the hooked and free-flight phases
are presented, and several simulation results validate the
overall approach and illustrate the main features. The pro-
posed combination of quadrotor/arm is hereafter denoted as
MonkeyRotor because of its resemblance with a monkey
exploiting its arms for attaching to a branch and jumping
from one branch to the next one.

The paper is structured as follows. In Sect. II we introduce
the dynamical modeling of the MonkeyRotor in its different
phases and Sect. III presents the adopted trajectory planning
strategy for solving the sought hook-fly-hook maneuver.
Then, in Sect. IV we design the control laws able to track
the generated optimal trajectories in both phases (hooked
and free-flight), and simulation results are then illustrated in
Sect. V. Finally, Sect. VI concludes the paper and discusses
possible future works.

II. DYNAMICAL MODELING

The MonkeyRotor consists of a quadrotor UAV equipped
with an actuated 1-DOF arm meant to grasp a pivot point
(e.g., a branch) in the environment with its end-effector.
In this section we illustrate the dynamical model of the
MonkeyRotor during each phase (hooked and free-flight) by
borrowing from our previous works [4], [9] which have con-
sidered similar scenarios (in particular, [9] has considered a
quadrotor with actuated arm but only in free-flight, while [4]
has considered the hooked case but with a passive arm). As
already done in many previous works on similar subjects,
see, e.g., [4], [9], [15]–[17], we restrict the analysis to the
vertical plane.

LB

p1

d1

L1

ut

ur

τ
fl

fr

θB
θ1

pE

xW

zW

OW

OB

zB
xB

Fig. 1: Geometry of the MonkeyRotor, a flying robot with an
actuated arm.

A. Definitions

With reference to Fig. 1, let FW be an inertial world
frame with axes {xW , zW } and origin OW , and FB a body
frame attached to the quadrotor with axes {xB , zB}: the
axis zB represents the body-frame thrust direction, and the
origin OB is placed at the quadrotor center of mass (CoM).
The configuration of the quadrotor can be specified by the
position of OB in FW , denoted as pB = [xB zB ]T ∈ R2,
and the orientation of FB w.r.t. FW here parametrized by the
angle θB from zW to zB . The arm is assumed to have length
L1 and to have its joint mounted at pB (the quadrotor CoM),
around which it can rotate by an angle θ1 (the angle from
zB to the arm direction). The CoM of the arm, denoted as
p1, is placed at a distance d1 from OB . The configuration of
the whole MonkeyRotor (quadrotor + arm) is then denoted
as q = [pT

B θT ]T ∈ R4 where we let θ = [θB θ1]T .
The quadrotor is equipped with two propellers generating

two thrust vectors flzB and frzB : the forces produced by the
propellers result in a total thrust vector utzB = (fr + fl)zB
and torque ur = LB

2 (fr − fl), with LB being the distance
between the two propellers. The arm is also assumed actuated
by a torque τ acting at OB . These three inputs for the whole
MonkeyRotor are then denoted as u = [ut ur τ ]T ∈ R3.
For convenience, we also define the alternative input vector
uf = [fr fl τ ] = Ku where

K =

 1/2 1/LB 0
1/2 −1/LB 0
0 0 1

 . (1)

Indeed, while the MonkeyRotor dynamics are more naturally
expressed in terms of the input vector u, the physical
actuation constraints (min/max joint torque and propeller
thrusts) affect the input uf . This distinction will be important
in the next developments. We finally let mB , JB , m1, J1 be
the mass and inertia of the quadrotor and arm, respectively.

We now describe the dynamical model of the MonkeyRo-
tor in the two considered phases of hooked and free-flight.

B. Hooked phase

Let
pE = pB + L1

[
− sin(θ1 + θB)
cos(θ1 + θB)

]
(2)
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represent the position of the arm end-effector in FW and
p∗E ∈ R2 the (fixed) position of the hook in FW . Fol-
lowing [4], the hook constraint pE(q) = p∗E restricts the
MonkeyRotor motion to a circle centered at p∗E . In this
constrained case the MonkeyRotor configuration is fully
determined by the configuration variables θ: by applying
standard techniques (Euler-Lagrange procedure), one can
then obtain the following (reduced) dynamical model gov-
erning the behavior of the states (θ, θ̇)

Mh(θ)θ̈ + gh(θ) = Gh(θ)u (3)

where

Mh(θ) =

[
JB 0
0 J1 +mBL

2
1 +m1(L1 − d1)2

]
, (4)

Gh(θ) =

[
0 1 −1

L1 sin(θ1) 0 1

]
, (5)

and gh(θ) = [0 (mBL1 + m1(L1 − d1))g sin(θB + θ1)]>.
Since matrix Gh(θ) is always full rank, the constrained
MonkeyRotor is overactuated, with two controlled variables
θ for the three control inputs u. We note that in [4] the joint
arm was considered passive (τ = 0) thus resulting in a fully-
actuated system with a singularity for θ1 = 0 as opposed
to the case under consideration (which is singularity-free).
Sect. IV-A will elaborate more about the possible use of the
MonkeyRotor overactuation.

The behavior of the remaining MonkeyRotor states
(pB , ṗB) can then be algebraically expressed as a function
of θ and θ̇ by exploiting the hook constraint pE(q) = p∗E
as

pB = p∗E − L1

[
− sin(θ1 + θB)
cos(θ1 + θB)

]
(6)

and
ṗB = L1(θ̇1 + θ̇B)

[
cos(θ1 + θB)
sin(θ1 + θB)

]
. (7)

C. Free-flying phase

The free-flying dynamical model of the MonkeyRotor is
a particular case of the system presented in [9]. In particular
one has

Mf (q)q̈ + cf (q, q̇) + gf (q) = Gfu, (8)

where the expression of the various terms can be found in [9].
We note that, as opposed to the hooked scenario, the Mon-

keyRotor is underactuated during free-flight (three inputs u
for four configuration variables q). However, as discussed
in [9], it is possible to find a flat output or linearizing
output [18] which allows for full dynamic linearization of
the system dynamics. More details about this point are given
in Sect. IV-B.

D. Impact Model

Let th be the time at which the MonkeyRotor switches
from a free-flight phase to a hooked phase because the end-
effector has reached the pivot location p∗E and performed a
successful hook. If ṗE(t−h ) 6= 0 (the end-effector velocity is
non-zero just before hooking), a sudden impact will occur

jn

p1

peq
pB

p∗E

ṗE(t−h )αωeq

veq(t−h )

Fig. 2: Notations for the collision model. The large and ‘instan-
taneous’ reaction force at E is synthetized in the impulse vector
jn.

affecting the evolution of the MonkeyRotor state (q, q̇). The
goal of this section is to propose a simple impact model
based on impulse theory (see, e.g., [19]) able to capture
the instantaneous change from q̇(t−h ) to q̇(t+h ) because
of a possible collision between the end-effector and the
hook1. Availability of this impact model will then allow the
trajectory planning algorithm discussed in the next section
to be ‘aware’ of the effects of a possible collision and,
thus, generate more realistic motion plans that can also take
advantage of the (controlled) collision between end-effector
and pivot (e.g., for quickly reducing the system kinetic
energy).

Recalling that q̇ = [ṗT
B θ̇

T
]T , we first consider the

effects on θ̇ = [θ̇B θ̇1]T . First of all, we remark that
the choice of placing the joint base at the quadrotor CoM
(a property also known as protocentricity [8]) implies that
the rotational dynamics of the quadrotor base is completely
decoupled from the dynamics of the collision. Therefore
one has θ̇B(t+h ) = θ̇B(t−h ). Concerning θ̇1(t+h ), we can
proceed as follows: for the sake of impact modeling, one
can assimilate the MonkeyRotor to an equivalent body with
mass meq = mB+m1, CoM peq =

mBpB +m1p1

meq
, inertia

Jeq = J1 + m1‖p1 − peq‖2 + mB‖pB − peq‖2, and with
an equivalent linear velocity veq = ṗeq and angular velocity
ωeq = θ̇B+θ̇1. Let now j = jn be the momentum exchanged
by the end-effector and the pivot during the collision, with
n (the direction of j) taken as n = −ṗE(t−h )/‖ṗE(t−h )‖,
see Fig. 2 (therefore, the direction n is determined by the
MonkeyRotor state at t−h ).

The change in the linear and angular velocities veq and
ωeq before and after the collision can be modeled as

veq(t+h ) = veq(t−h ) +
j

meq
(9)

ωeq(t+h ) = ωeq(t−h ) +
j

Jeq
‖p∗E − peq‖ sinα (10)

where p∗E is the location of the pivot point (where the
collision occurs) and α is the angle between vectors p∗E −
peq(t−h ) and n. By combining (9–10) with the kinematics

1As customary, we assume continuity of q, i.e., q(t−h ) = q(t+h ), in
presence of an instantaneous impact [19].
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Fig. 3: Optimization scheme, where x0 is the initial state, xr the
transition state where the system passes from its hooked dynamics
to its free flying one, xh the reciprocal one and xf the final state.

relationships{
veq(t+h ) = ṗ1(t+h ) + S(ω(t+h )) · (p1 − peq)

ṗE(t+h ) = ṗ1(t+h ) + S(ω(t+h )) · (p1 − pE)
(11)

where S(a) =

[
0 a
−a 0

]
∈ R2×2, and by using the fact

that ṗE(t+h ) = 0 (the end-effector velocity is zero after the
impact), one can solve for j = ‖j‖ as

j =
‖ṗE(t−h )‖meq

1 +
‖peq(t−h )− p∗E‖2meq

Jeq
sinα

. (12)

Note that j can be expressed in terms of only known quanti-
ties, in particular the MonkeyRotor state (q(t−h ), q̇(t−h )) just
before the collision. By now plugging (12) in (10) yields the
value of ωeq(t+h ) = θ̇B(t+h ) + θ̇1(t+h ), which in turn deter-
mines θ̇1(t+h ) since, as explained before, θ̇B(t+h ) is known.
Having obtained θ̇B(t+h ) and θ̇1(t+h ), the relationship (7)
finally allows determining the remaining ṗB(t+h ) and, thus,
the whole vector q̇(t+h ) as sought.

III. TRAJECTORY PLANNING

In this Section we discuss a trajectory planning strategy
meant to generate feasible trajectories for letting the Mon-
keyRotor passing from a hooked configuration to another
hooked configuration. Figure 3 depicts the considered sce-
nario: let x = [qT q̇T ]T ∈ Rn, n = 8, represent the
MonkeyRotor state, and assume two initial and final states
x0, xf are given corresponding to the MonkeyRotor hovering
stationary while hooked to the initial and final pivot point.
Let also

uf ≤ uf ≤ ūf (13)

represent the actuation constraints on the MonkeyRotor in-
put uf = Ku (see (1)). The goal is to find an optimal
(w.r.t. a cost of interest) and feasible trajectory for the pair
(x(t), u(t)) over a time interval t = [t0, tf ] able to bring the
MonkeyRotor from x(t0) = x0 to x(tf ) = xf while coping
with the actuation constraints. Depending on the conditions
(initial/final states, actuation constraints), one can expect the
optimal trajectory to involve an initial ‘swinging’ (attached
to the first pivot point) until the hook is released (state xr in
Fig. 3), followed by a free-flying phase, and subsequently a
possible final ‘swinging’ when re-hooking with the next pivot
point (state xh in Fig. 3). Indeed these swinging maneuvers
can be exploited for efficiently building up/losing energy,

thus fully exploiting the possibility to actively exchange
forces with the environment (as in a locomotion task) in
addition to the available thrust/torque inputs.

The complexity of this optimization problem, also due to
the change in the MonkeyRotor dynamics when switching
from a hooked phase to a free-flying phase, does not allow
for an analytical solution (i.e., finding the complete optimal
trajectory over t = [t0, tf ]). Therefore, a numerical opti-
mization method needs to be employed: among the many
possible strategies, we now discuss the adopted (possibly
sub-optimal) one which we found amenable to a numerical
resolution.

A. Optimization procedure

In order to simplify the optimization problem, we split it
in two loops: the inner loop looks for an optimal trajectory
given a candidate release state xr. The outer loop then tries
to optimize the candidate xr.

1) Inner loop: given a candidate release state xr and
a cost function J1(x) (to be specified later on), this first
optimization problem

J∗1 (xr) = min
u(t), t∈[t0, tr]

J1(x)

subject to ẋ = fh(x) + Gh(x)u

x(t0) = x0

x(tr) = xr

uf ≤ Ku ≤ ūf

returns the optimal trajectory w.r.t. the cost J1(x) for joining
x(t0) = x0 with x(tr) = xr at some release time tr >
t0 to be determined by the optimization algorithm. Here,
ẋ = fh(x) + Gh(x)u is a shorthand for the MonkeyRotor
constrained dynamics (3)–(6–7). Note also that the optimal
cost J∗1 (xr) is a function of the release state xr.

Subsequently, this second optimization problem

J∗2 (xr) = min
u(t), t∈[tr, th]

J2(x)

subject to ẋ = ff (x) + Gf (x)u

x(tr) = xr

pE(th) = p∗E

‖ṗE(th)‖ ≤ vmax

uf ≤ Ku ≤ ūf

finds an optimal trajectory for bringing the (now free-flying)
MonkeyRotor from x(tr) = xr to a hooked state with
the second pivot point represented by the hook constraint
pE(th) = p∗E , where th > tr (the hooking time) is to be
determined by the optimization. Here, similarly to before,
the notation ẋ = ff (x) + Gf (x)u is a shorthand for the
free-flying MonkeyRotor dynamics (8).

Note that the expected constraint ṗE(th) = 0 (null end-
effector velocity when hooking) is here replaced by the
milder ‖ṗE(th)‖ ≤ vmax, with vmax > 0 being a small pos-
itive threshold. Indeed, we empirically found that accepting
a nonzero (but small) ‖ṗE(th)‖ facilitates the optimization
procedure since the optimal trajectory is allowed to ‘exploit’
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a hard (but controlled) impact with the pivot for quickly
reducing the system energy without spending control effort,
in a way, again, reminiscent of how humans/animals exploit
contact when moving (we note that the effects of a possible
nonzero ‖ṗE(th)‖ are taken into account by the impact
modeling discussed in Sect. II-D). Finally, note that the
optimal cost J∗2 (xr) and the whole optimal state evolution
x∗(t), t ∈ [tr, th], are again a function of the release state
xr. We will then denote with xh(th; xr) the final hook state
reached at th as a function of the release state xr.

Finally, this third optimization problem

J∗3 (xr) = min
u(t), t∈[th, tf ]

J3(x)

subject to ẋ = fh(x) + Gh(x)u

x(th) = Γ(xh(t−h ; xr))

x(tf ) = xf

uf ≤ Ku ≤ ūf

finds an optimal trajectory for bringing the (now hooked)
MonkeyRotor from x(th) to the final state x(tf ) = xf ,
where tf > th is to be determined by the optimization
algorithm. Here Γ(xh(t−h ; xr)) is a shorthand for the reset
action performed by the collision model of Sect. II-D because
of the (possibly) nonzero ṗE(th). Finally, the optimal cost
J∗3 (xr) is, again, a function of the release state xr.

These three optimization problems are solved by exploit-
ing the direct transcription method, in particular the Matlab
implementation of the Drake libraries [20], on second order
spline trajectories for x and u. Other possible approaches
could include the use of the flatness property for the Monkey-
Rotor in order to avoid numerical integration of the system
dynamics, or a direct collocation method.

2) Outer loop: the outer loop attempts to determine the
optimal release state x∗r by solving the following minimiza-
tion problem

x∗r = arg min
xr

(J∗1 (xr) + J∗2 (xr) + J∗3 (xr)).

In this case, we opted for a simple grid search algorithm for
finding the optimal x∗r . Indeed xr can be parameterized by
the pair (θ, θ̇) (four variables) since it must be compatible
with the hook constraints (6–7), thus considerably reducing
the search space.

B. Cost function

Reasonable choices for the cost functions J1(x), J2(x)
and J3(x) could be the execution time or control ef-
fort/energy for generating minimum-time or minimum-
effort/energy trajectories from x0 to xf . Motivated by the
recent [21], in this work we however choose to also consider
optimality of the state sensitivity w.r.t. variations in the sys-
tem parameters (e.g., mass, inertia, CoM location, propeller
characteristics, and so on). Indeed, one can expect some
unavoidable level of uncertainty in the various parameters
of the MonkeyRotor dynamical and actuation model, and
it is then interesting (and useful) to generate an optimal
state trajectory x∗(t) which, by construction, results most

insensitive to parametric variations (therefore, its tracking
will be facilitated when a parameter is poorly known as
explained in [21]).

We here recap, for the reader convenience, the essential
machinery for computing the sought state sensitivity. Let then
π = [JB J1 mB m1 LB d1] ∈ Rp, p = 6, be the vector of
parameters of interest in our case, and define

Π =
∂x

∂π
∈ Rn×p (14)

as the state sensitivity matrix w.r.t. the parameters π. Al-
though Π does not admit, in general, a closed-form expres-
sion, one can find an expression for its dynamics as

Π̇ =
∂f

∂x
Π +

∂f

∂π
, Π(t0) = 0, (15)

where f in our context stands for the hooked or free-
flying dynamics depending on the particular phase. It is
then possible to numerically integrate (15) over the interval
[t0, tf ] for obtaining the behavior of Π(t).

By exploiting availability of Π, we then choose, as a
representative case, to minimize a weighted sum of the
total execution time tf − t0 and of a norm of the state
sensitivity at the hook time Π(th), with the aim of gen-
erating near minimum-time trajectories that are also most
insensitive to uncertainties in the MonkeyRotor parameters
when approaching the second hook. This is formally obtained
by letting

J1 = tr − t0, J2 = th− tr + γ‖Π(th)‖w, J3 = tf − th.
(16)

The gain γ > 0 is meant to tune the relative weight between
the two optimization objectives, and the matrix norm is
defined as

‖Π‖w =
∑
i,j

wijΠ
2
ij (17)

for a set of non-negative weight w = [. . . wij . . .] whose
purpose is to select (and give relative importance to) the
desired entries in matrix Π.

IV. FLIGHT CONTROL

A. Hooked phase

The goal of the control in the hooked phase is to let the
MonkeyRotor configuration θ track the reference optimal
trajectory θ∗(t) generated by the planning algorithm. This
can be accomplished by implementing a static feedback
linearization of the MonkeyRotor constrained dynamics (3)

u = G†h(θ)(Mh(θ)ν + gh(θ)) + λnh (18)

where the † operator indicates the usual MoorePenrose
pseudoinverse, λ ∈ R is a scalar gain and

nh =

 1
−L1 sin(θ1)
L1 sin(θ1)

 (19)

is a vector spanning the one-dimensional null-space of ma-
trix Gh (due to the MonkeyRotor overactuation during the
hooked phase).
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By plugging (18) into (3), one then obtains the linearized
dynamics θ̈ = ν which can be stabilized along the reference
trajectory θ∗(t) by choosing

ν = θ̈
∗

+ kd(θ̇
∗
− θ̇) + kp(θ∗ − θ) (20)

where kd > 0 and kp > 0 are suitable gains.
As well-known, setting λ = 0 in (18) yields the minimum-

norm solution for vector u. However, the null-space term
λnh can be exploited for accomplishing a secondary objec-
tive besides the tracking of θ∗(t). In our case, we chose to
exploit this term for coping, as much as possible, with the
actuation constraints (13). This is obtained as follows: by
rewriting (18)–(20) as u = u∗ + λnh, we seek the optimal
value λ∗ solving this (linear) minimization problem

λ∗ = arg min |λ|
s.t. uf ≤ Ku∗ + λKnh ≤ ūf .

(21)

If a solution exists, then by setting λ = λ∗ in (18) will
guarantee fulfilment of the tracking task and, at the same
time, of the actuation constraints with the smallest possible
norm for the control input u. In case (21) does not admit
a solution, no control action can meet the constraints while
realizing the tracking task. In this case vector uf is simply
saturated2.

B. Free-flying phase

As explained in Sect. II-C, during free-flight the Mon-
keyRotor is underactuated but one can still achieve full dy-
namical linearization of its dynamics by acting on a suitable
flat/linearizing output. In short, this is obtained as follows:
let θ1B = θ1 + θB , define y(q) = [pT

B θ1B ]T ∈ R3 as the
flat/linearizing output and let y∗(t) be the corresponding ref-
erence optimal trajectory generated by the trajectory planner
of Sect. III. Let also ū = [üt ur τ̈ ]T be the new (extended)
input vector, where two integrators have been placed on both
the ut and τ original inputs. The new (extended) state (in-
cluding the dynamic extensions of the original inputs) is then
denoted as x̄ = [pT

B ṗT
B θT θ̇

T
ut u̇t τ τ̇ ]T ∈ R12. With

these settings, one can show (see [9]) that differentiating the
flat output y four times yields

....
y = f̄(x̄) + Ā(x̄)ū (22)

where Ā(x̄) is a square nonsingular matrix as long as
ut 6= 0. System (22) can then be inverted by choosing
ū = Ā(x̄)−1(ν̄ − f̄(x̄)). Tracking of the optimal trajectory
y∗(t) is then obtained by choosing, as usual,

ν̄ =
....
y ∗+k1(

...
y∗−

...
y)+k2(ÿ∗−ÿ)+k3(ẏ∗−ẏ)+k4(y∗−y)

(23)
where k1, k2, k3, k4 > 0 are suitable gains.

2We note that this case is quite unlikely to occur in practice since the
optimal trajectory θ∗(t) is already compliant “by construction” with the
actuation constraint. Any additional control authority needed to recover
possible perturbations/disturbances during flight can then be typically ac-
commodated by exploiting the null-space term λ∗nh.

(a)

(b)

(c)

(d)

Fig. 4: Time-optimal trajectories of the MonkeyRotor CoM pB(t)
for the cases of a total thrust/weight ratio of (a) 60%, (b) 70%, (c)
90% and (d) 150%. Note how, depending on the case, a swinging
maneuver is produced for either building up energy before flight
and/or for quickly losing energy after flight.

Hook-hook d1 L1 LB mB m1 JB J1
distance (m) (m) (m) (m) (kg) (kg) (kg m2) (kg m2)

2.5 0.3 0.75 0.5 1.3 0.2 0.33 0.027

TABLE I: Values of the parameters used for the MonkeyRotor
model.

V. RESULTS

In this section we present a number of simulation results
meant to validate the proposed modeling, planning and
control strategy for the MonkeyRotor. The first subsection is
dedicated to the results of the trajectory planning algorithm,
and the second one to the control tracking performance when
also considering parameter uncertainty. The video attached
to the paper illustrates some of these results.

A. Trajectory planning

We implemented the trajectory planning framework de-
scribed in Sect. III with the values reported in Table I. We
first report the results of only minimizing w.r.t. the execution
time (by setting γ = 0 in (16)), and then we consider the
concurrent minimization of the state sensitivity norm (by
setting γ = 1).

1) Minimization w.r.t. execution time: in order to better
appreciate the effects of the actuation constraints on the
trajectory generation, we considered a total thrust limited
to 60%, 70%, 90% and 150% of the total weight (while
keeping the same constraints on the other inputs) for testing
the MonkeyRotor behavior in different regimes (from low
to high control effort modes) and ultimately assessing how
the environment interaction can be exploited for performing
the desired maneuver. The resulting trajectories are reported
in Fig. 4. In all cases, the MonkeyRotor starts at rest
while hooked at the left pivot, and ends at rest hooked
at the right pivot. One can note how, in the ‘low’ control
effort modes (cases (a)–(c) with thrust less than weight),
an initial swing allows for building up the energy needed
for reaching the second hook. In particular, in cases (a)
and (b) the low thrust/weight ratio causes the trajectory to
look approximately ballistic during the free-flying part. On
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(a)

(b)

(c)

(d)

Fig. 5: MonkeyRotor trajectories when minimizing for time and
state sensitivity at th. The considered sensitivities are (a) x and z
w.r.t. mB and m1, (b) pE w.r.t. π, (c) q w.r.t. π, (d) q w.r.t. d1.
These sensitivity minimized trajectories are less direct and therefore
slower as compared to the time-optimal cases of Fig. 4, but they
are also less sensitive to variations in the considered parameters.

States and
parameters (x, z) vs. (mB , m1) pE vs. π q vs. π q vs. d1

Only
time-optimal 0.1902 0.1615 0.0376 0.2128

Time- and
sensitivity-optimal 0.0827 0.1083 0.0163 0.1157

TABLE II: Comparison of the norm of the state difference at
th between a time-optimal trajectory, and a time- and sensitivity-
optimal trajectory. As expected, when perturbing the parameters, the
perturbed state deviates less from the nominal state when executing
a time- and sensitivity-optimal trajectory.

the other hand, when more thrust is available (cases (c)
and even more (d)), the free-flying phase is much more
“direct”: however, the breaking phase at the second hook is
nevertheless performed by exploiting hook constraint, either
thanks to the allowed collision with the second hook in case
(c), or by performing a final swing in case (d) (where the
thrust exceeds the total weight).

We believe that the representative cases reported in Fig. 4
constitute a good validation of the MonkeyRotor concept,
in particular of its switching dynamics which is cleverly
leveraged by the trajectory optimization algorithm.

2) Minimization w.r.t. execution time and state sensitiv-
ity: focusing on the state sensitivity minimization, several
trajectories have been generated while considering the sen-
sitivity of different sets of states and parameters by suitably
activating/deactivating the coefficients Πij via the weighting
matrix W in (17). The thrust limit was always fixed at
70% of the total weight as in the case of Fig. 4(b). The
resulting trajectories (and combinations of states/parameters)
are reported in the four case studies of Fig. 5. We can notice
that the trajectories, although close in shape, present some
variations in their characteristics. In particular, the shape of
the flying phase is more parabolic in the cases (a) and (b)
while a bit flattened in the other cases. Furthermore, the
re-hooking state xh systematically comes later (i.e., θ1B is
closer to 0) than in the corresponding time-optimal trajectory
of Fig. 4.

In order to verify the effectiveness of having also opti-

Fig. 6: Behavior of the MonkeyRotor states, inputs and end-effector
norm velocity while tracking an optimal trajectory.

mized w.r.t. the state sensitivity, we performed the following
test: we simulated the evolution of the MonkeyRotor states
when applying the optimal (open-loop) input u∗(t) in the
nominal non-perturbed case and in the perturbed case (by
increasing each considered parameter by 10%), and then
evaluated the difference in the selected states at th when
executing a trajectory only optimized w.r.t. time and when
executing a trajectory also optimized w.r.t. the state sensitiv-
ity at th. Table II reports the results: one can note how the
norm of the difference between nominal and perturbed states
at th is always lower in the case of a trajectory also optimized
w.r.t. the state sensitivity, thus indicating that (open-loop)
execution of this trajectory results intrinsically more robust
w.r.t. parametric variations (as expected).

B. Trajectory tracking

We now illustrate the performance of the control laws
described in Sect. IV in tracking the reference optimal
trajectories generated by the planning algorithm. To this end,
we implemented the (switching) MonkeyRotor dynamics and
the control laws in Simulink, and employed, for the sake of
visualization, the V-REP3 simulation environment.

As a representative case study, Fig. 6 reports the tracking
performance for a time-optimal trajectory obtained for a
thrust limit of 70% of the weight, and with random pertur-
bations to the parameters of ±5% their nominal values. It is
worth noting how, despite the parametric variations, the con-
trol inputs always remain within their bounds (represented
by dashed horizontal lines), and how the norm of the end-
effector velocity ‖ṗE‖ falls below the threshold vmax at
th as planned. The performance in tracking the reference
optimal state (dashed lines) is also quite satisfactory.

3http://www.coppeliarobotics.com/

Preprint version, final version at http://ieeexplore.ieee.org/ 7 IEEE Robotics and Automation Letters 2018

http://www.coppeliarobotics.com/


(a)

(b)

(c)

(d)

Fig. 7: Performance of the proposed planning/control framework
under parametric variations (Figs. (a–c)) and external disturbances
(Fig. (d)): in each figure the top plot reports the mean (solid line)
and max (dashed line) values of the tracking error norm during the
trajectory execution, and the bottom plot reports the value of the
re-hooking error ‖pE(th)−p∗

E‖. The parameters mB , m1 and L1

are varied from 90% to 110% of their nominal value, while the
external perturbation (wind gust) has amplitude ranging from 0 N
to 20 N.

As an additional validation, we also ran a statistical
analysis of the overall tracking error (averaged over the
whole trajectory) and end-effector re-hooking error at th
on the trajectory of Fig. 5-(b) (whose state sensitivity is
optimized against all the considered parameters π) when
varying some parameters of interest from 90% to 110%
of their nominal value. Figure 7 reports the results of this
analysis: in Figs. 7(a–c) we consider the variation of mB ,
L1 and m1, while Fig. 7(d) considers the presence of an
external disturbance, a wind gust of varying amplitude with
duration 0.2 s and applied during the free-flying case along
the negative xW axis. One can note how the performance
(especially in terms of the re-hooking error) remains quite
satisfactory despite the parameter variations and/or external
disturbance, thus showing that the proposed combination of
the state sensitivity minimization (planning stage) and the
closed-loop tracking controller control are able to yield a
successful MonkeyRotor maneuver also in more realistic
conditions4.

4We note that the re-hooking error remains almost constant except when
changing the length of the arm, which is expected since the parameter L1

does not affect the free-flying dynamics and thus is not taken into account
in the sensitivity minimization.

VI. CONCLUSIONS

In this work we have introduced the concept of aerial
physical locomotion by considering the MonkeyRotor system
— a quadrotor UAV equipped with a 1-DOF arm able to
hook at some pivot points and to exploit these contacts
for enhancing its maneuvering possibilities. To this end, a
suitable dynamical model for both the hooked and free-
flying phases has been presented, together with an optimiza-
tion framework for generating optimal motion plans under
constrained actuation. Two control laws for the two hooked
and free-flying phases have also been proposed, and the
whole concept has been successfully validated in a number
of simulations.

In the future we plan to build a physical prototype of
the MonkeyRotor for assessing the proposed framework
in real conditions. We are also considering the possibility
of executing more complex maneuvers (e.g., jumping to
multiple branches in sequence), as well as the use of online
replanning strategies for continuously refining the initial
optimal trajectory during motion.
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