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Omnidirectional Aerial Vehicles with Unidirectional Thrusters:
Analysis, Optimal Design, and Motion Control

Marco Tognon1 and Antonio Franchi1

Abstract— This paper presents a theoretical study on omni-
directional aerial vehicles with body-frame fixed unidirectional
thrusters. Omniplus multi-rotor designs are defined as the ones
that allow to exert a total wrench in any direction using positive-
only lift force and drag moment (i.e., positive rotational speed)
for each rotor blade. Algebraic conditions for a design to be
omniplus are derived, a simple necessary condition being the
fact that at least seven propellers have to be used. An energy
optimal design strategy is then defined as the one minimizing
the maximum norm of the input set needed to span a certain
wrench ellipsoid for the adopted input allocation strategy. Two
corresponding major design criteria are then introduced: firstly,
a minimum allocation-matrix condition number aims at an
equal sharing of the effort needed to generate wrenches in any
direction; secondly, imposing a balanced design guarantees an
equal sharing of the extra effort needed to keep the input in
the non-negative orthant. We propose a numerical algorithm to
solve such optimal design problem and a control algorithm to
control any omnidirectional platform. The work is concluded
with informative simulation results in non-ideal conditions.

I. INTRODUCTION

Aerial vehicles have been thoroughly studied and applied
in several fields and for several tasks, from simple remote
sensing to the more challenging physical interaction with the
environment and humans. The latter have been firstly targeted
using unidirectional-thrust vehicles actuated by multiple
collinear rotors and endowed with cables [1], rigid tools [2],
[3] or more complex robotic arms [4]–[6]. These vehicles are
energy efficient but underactuated because of the unidirec-
tionality of the total thrust in the body frame. Therefore i) the
vehicle orientation is coupled with its translational motion,
and ii) the system cannot instantaneously react to forces
with any direction. Recent solutions to these issues consist
in using multidirectional-thrust vehicles that can generate a
force in multiple directions and can control both position and
orientation independently. Examples are the platforms with
tilted unidirectional-thrust rotors (i.e., propellers generating
lift in only one direction), see, e.g., [7] and [8]. However, in
these platforms the set of feasible forces does not span any
direction in R3.

A special case is made by omnidirectional-thrust vehicles,
that can produce a force in any direction in the body frame.
This sub-class of vehicles is the most preferable, especially
for physical interaction, because it can be oriented in any
direction and can compensate/exert any force independently,
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thus allowing applications that are impossible with other
platforms, including safe human interaction, 360� aerial
photography, etc.

In [9] and [10] two omnidirectional-thrust vehicles are
proposed with 6 and 8 tilted bidirectional-thrust rotors,
respectively. Such rotors are able to invert the direction
of the lift force by inverting either the motor rotation or
the propeller angle of attack. However such rotors have
several issues: i) scarceness of reversible Electronic Speed
Controllers (ESC) for brushless motors, ii) lower energetic
efficiency compared to unidirectional rotors, iii) lower con-
trollability of the exerted force at low speeds, and iv) ex-
tra mechanical complexity and increased weight and thus
energy consumption (in case of variable pitch propellers).
A solution to obtain an omnidirectional-thrust vehicle using
instead unidirectional-thrust rotors is to actively tilt the whole
propeller groups [11]–[13]. This also requires extra actuation
and weight, and cannot in general guarantee instantaneous
force exertion because of the non-negligible time the pro-
pellers need to re-orient themselves.

At the best of our knowledge, there are no works thor-
oughly investigating if and how it is instead possible to
obtain omnidirectional-thrust vehicles with fixed (non-tiling)
and uni-directional thrusters, a solution that would overcome
all the problems of the aforementioned solutions. An attempt
can be found in [14], where an ad-hoc optimization for an
hexarotor is performed using an additional thruster whose
position and orientation depend on the other six. The method
cannot be easily extended to generic multirotor platforms,
and the general theoretical problem still remains mostly
open.

Instead, in this work we provide the fundamental def-
initions, properties, and conditions needed to rigorously
address the problem in the general case of n propellers
having any arrangement. For example, it turns out that
an omnidirectional-thrust vehicle needs to have at least 7
fixedly attached unidirectional-thrust rotors. We propose an
algorithm computing the best (fixed) directions of the n� 7
propellers that make the vehicle omnidirectional-thrust and
minimize the range of required control inputs to hover in
any orientation. Finally, we propose a full-pose controller
ensuring the input unidirectionality.

II. MULTIROTOR MODEL

We start by defining an inertial world frame FW =
{OW ,xW ,yW ,zW} where OW is its origin, placed arbitrarily,
and (xW ,yW ,zW ) are the orthogonal unit vectors. We con-
sider zW parallel and opposite to the gravity vector. Then we
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Fig. 1: Schematic representation of a multirotor and its main
quantitites. Only three of the n propellers are shown.

define the body frame FR = {OR,xR,yR,zR} rigidly attached
to the vehicle and centered in OR, the vehicle center of
mass (CoM). Position of OR and orientation of FR w.r.t.
FW are described by the vector pR 2 R3 and the rotation
matrix RR 2 SO(3), respectively. Then we define by the
vector vR 2 R3 the translational velocity of OR expressed
in FW , and by !R 2 R3 the angular velocity of FR w.r.t.
FW and expressed in FR. The generic vehicle is depicted
in Fig. 1.

The vehicle is modeled as a rigid body with mass mR 2
R>0 and moment of inertia about OR, defined w.r.t. FR,
described by the positive definite matrix JR 2 R3⇥3. The
dynamics of the system is computed applying the Newton-
Euler equations, thus obtaining ṗR = vR, ṘR = RR⌦R, and
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where e3 = [0 0 1]>, ⌦R = S(!R) is the skew symmetric
matrix relative to !R, f2R3 and m2R3 are the controllable
total input force and torque expressed in FR, respectively.

Considering a multirotor with n rotors, each of them
produces a lift force and a moment due to the drag force [15].
All together they generate the total force (or thrust) and
moment, f and m, respectively, expressed as:

w =
⇥
f>m>

⇤>
=
⇥
F>1 F>2

⇤> ⇥u1 . . . un
⇤>

= Fu. (1)

The matrixes F2R6⇥n, F1 2R3⇥n, and F2 2R3⇥n are called
the full allocation matrix, the force allocation matrix and the
moment allocation matrix, respectively. The control ui 2 R
is typically equal to wi|wi|, where wi 2R is the i-th propeller
rotational speed. F1 and F2 have the following structure

F1 =
⇥
v1 · · · vn

⇤
, (2)

F2 =
⇥
d1⇥v1 · · · dn⇥vn

⇤
+
⇥
c1k1v1 · · · cnknvn

⇤
, (3)

where i) vi 2 R3 are the coordinates, in FR, of the lift
force generated by the i-th propeller when ui = 1. In this
formulation the aerodynamic coefficient that maps propeller
speed into thrust intensity, typically called lift factor c f , is
c f i = kvik = vi; ii) di is the position of the center of the i-
th propeller in body frame; iii) ci = �1 (ci = 1) if the i-th
propeller angular velocity vector has the same direction of
vi (�vi) when ui > 0, i.e., the propeller spins CCW (CW)

when watched from its top; iv) ki 2 R is the constant ratio
between the i-th propeller lift force and the drag moment,
typically denoted with ct/c f in the literature. In conclusion,
we recall a well known fact.

Fact 1 (translation invariance). F does not change if di is
replaced with di+livi for any i= 1, . . . ,n and l1, . . . ,ln 2R.

III. OMNIPLUS DESIGNS

We introduce now the basic concept of multirotor design.
Let us first define c = [c1 · · ·cn]> and k = [k1 · · ·kn]>.

Definition 1. A multirotor design is a tuple D =
(n,c,k,d1, . . . ,dn,v1, . . . ,vn) , which describes the number of
propellers n, their aerodynamic characteristics, locations and
orientations w.r.t. FR. We call the tuples (v1, . . . ,vn) and
(n,c,k,d1, . . . ,dn) the vectoring part and the etero-vectoring
part of D , respectively.

We denote with 1 the column vector with all ones. Its size
is understood from the context. Given two vectors x and y,
the notations x � y, x > y have to be intended component-
wise.

Definition 2. Given u � 0, a multirotor design D is u-
omniplus (uO+) if the corresponding full allocation matrix
F, satisfies

8 w 2 R6 9 u� u1 s.t. Fu = w. (4)

A design that is uO+ for any u2R�0 is said omniplus (O+).
Considering u � 0 accounts for the possible presence of a
minimum rotational speed constraint for the propellers.

Proposition 1 (Theorem 1 in [16] extended to the R6 case).
The following two conditions are equivalent

8 w 2 R6 9 u� 0 s.t. Fu = w, (5)
rank(F) = 6 and 9 b > 0 s.t. Fb = 0. (6)

Proof. The same as in [16] but replacing 3-dimensional
vectors with 6-dimensional vectors.

Corollary 1. Condition (4) is equivalent to (5) and (6), and
as a consequence, any uO+ design is also O+.

Proof. Sufficiency is trivial. For necessity, consider a u
satisfying (5). Thanks to (6) consider u0 = u + ub/kbk
which satisfies both u0 � u1 and Fu0 = w and therefore
fulfills (4).

Corollary 2. For any design that is O+ it must be n� 7.

Proof. We have that it must be rank(F) = 6 and at the same
time 0 6= b 2 null(F), therefore it must be at least n = 7.

Remark. It is interesting to note that Prop. 1 and Corol. 2
find their counterpart in the literature of frictionless contact
grasping (see [17] and the references therein).

Proposition 2. Let be given an O+ design D . Any design D 0

with the same eterovectoring part of D and a new vectoring
part (av1,av2, . . . ,av0n), where a 6= 0, is also O+.
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Proof. Denote with F and F0 the full allocation matrixes of
D and D 0, respectively. We have that F0 = aF, therefore the
properties (6) are valid also for F0 as long as a 6= 0.

In the following we denote with I j the j-by- j identity
matrix. We also use the following notation v =

⇥
v>1 · · ·v>n

⇤>

and d =
⇥
d>1 · · ·d>n

⇤>
. We can then rewrite (2) and (3) as

F1 =
⇥
I3v1 · · · I3vn

⇤
(7)

F2 =
⇥
(S(d1)+ c1k1I3)v1 · · · (S(dn)+ cnknI3)vn

⇤
. (8)

Proposition 3. A multirotor design is O+ if and only if

rank(F) = 6, (9)

and 9 b = [b1 · · ·bn]> > 0 s.t.


b1I3 · · · bnI3
b1 (S(d1)+ c1k1I3) · · · bn (S(dn)+ cnknI3)

�

| {z }
A(c,k,d1, . . . ,dn,b)

v = 0 (10)

Proof. The condition (9) is the first part of (6). The condi-
tion (10) is obtained from the second part of (6) by using (7)
and (8) and imposing Fb = 0.

IV. ALLOCATION STRATEGIES FOR O+ DESIGNS

In this section we introduce two different input allocation
strategies for O+ designs. The first one, defined as the
solution of Prob. 1, is the optimal one but is hard to be
exploited for an analytically sound optimization of the design
(unless a completely numerical algorithm is used). The
second one, defined as the solution of Prob. 2, is suboptimal,
but is amenable of a clear geometrical interpretation which
can be used for an analytically sound design optimization.

Problem 1. Consider a given O+ design with full allocation
matrix F. Given a desired w2R6, with w 6= 0, find the input
u 2 Rn s.t. Fu = w, u� u1, and kuk is minimized.

The solution to Prob. 1 without the constraint u � u1 is
u⇤ = F†w, where F† is the Moore-Penrose pseudo-inverse of
F. However, for a O+ design it is never u⇤ � 0, a part from
the trivial case w = 0, as stated next.

Proposition 4. Let F be the full allocation matrix of an
O+ design and F† its Moore-Penrose pseudo-inverse. For
any desired wrench w 6= 0, the minimum norm solution of
Fu = w, i.e., u⇤ = F†w, has always at least a negative entry,
hence it is never a solution to Problem 1.

Proof. We have that im(F†) = im(F>) [18] and that 9 b 2
null(F) s.t., b > 0. Since im(F>) is orthogonal to null(F),
we have that b>u⇤ = 0. If w 6= 0 then u⇤ 6= 0, and since
b > 0, u⇤ must have at least a negative entry for b>u⇤ = 0
to hold.

Prop. 4 implies that the solution of Prob. 1 is always of
the form u= u⇤+y with y2 null(F). In particular, exploiting
the fact that u⇤ ? y, the solution structure is u⇤⇤ = u⇤+y⇤,
where

y⇤ = arg min
y�u1�u⇤

Fy=0

kyk, (11)

E⇤
u

E�
u

b

‘shifted’
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†
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†

Fig. 2: Simplified representation, in a reduced space, of Sw being
mapped by F† into E⇤u , in turn projected, according to (13), on the
facets of the shifted non-negative orthant along b producing E�u .
F and F̄ correspond to a non-optimized and a optimized design,
respectively (see Sec. V for the details). Reducing E⇤u (represented
in pink) to a sphere Ē⇤u (represented in blue), by the minimization
of the condition number of F, the maximum norm of the projection
on the shifted positive orthant is also minimized.

which can be efficiently solved with any constrained QP
solver.

To provide a geometrical understanding of the structure of
the solutions of the input allocation problems, let us consider
an ellipsoid that may, e.g., represent the set of desired
attainable wrenches Sw = {w2R6 |w>⌃w 1}⇢R6, where
⌃ 2 R6⇥6 is a positive definite matrix. The ellipsoid Sw is
mapped by F† to the set E⇤u = {u2Rn | u=F†w,8w2 Sw}⇢
Rn – an idealized representation from R2 to R3, and with
⌃ = I is shown in Fig. 2. The set E⇤u is a 6-dimensional
ellipsoid of Rn, contained in the subspace im(F>), whose
shape is defined by the singular value decomposition of F
and ⌃. There is a one to one correspondence between each
w 2 Sw and each u 2 E⇤u . However, according to Prop. 4,
any vector u 2 E⇤u has always at least a negative entry (a
part from u = 0). In order to satisfy the constraint u � u1
one has to project each point u⇤ of E⇤u onto one of the
external facets of the shifted non-negative orthant denoted
from now on with Rn

�u1. The projection must be done by
adding to u⇤ a perpendicular vector that belongs to null(F)
and has minimum norm, i.e., obtaining y⇤ by solving (11).
By doing so for all the points in E⇤u we obtain the set of
solutions of Prob. 1 defined as E⇤⇤u = {u⇤+ y⇤ 2 Rn |u⇤ 2
E⇤u , and y⇤ solves (11)}.

Denote with Rn
++ the positive orthant of Rn and let us

consider the following alternative Problem.

Problem 2. Consider a given O+ design with full allocation
matrix F and let be given a constant vector b 2 null(F)\
Rn
++. For any desired w 2 R6, with w 6= 0, find the input

u = u⇤ + lb 2 Rn, where l > 0, s.t. u � u1, and kuk is
minimized.

Problem 2 represents a restriction of Prob. 1 in the sense
that a solution of Problem 2 satisfies the constraints of
Prob. 1 but is in general sub-optimal, since the solutions are
searched only of the form u = u⇤+lb where b is a fixed

Preprint version, final version at http://ieeexplore.ieee.org/ 3 IEEE Robotics and Automation Letters 2018



vector in null(F)\Rn
++ (which always exists, thanks to (6)),

and l > 0 is a large enough positive scalar that ensures that
each entry of u is not smaller than u. Since it is structurally
u⇤ ? lb, in order to minimize the norm of u⇤+lb, one has
to choose

l = l �(u⇤,b,u) = min
µ |u⇤+µb�u1

µ, (12)

thus obtaining

u� := u⇤+l �b. (13)

By doing so we are projecting the set E⇤u on the facets
of Rn

�u1 following the constant direction defined by b.
We denote this projection with E�u = {u⇤ + l �b |u⇤ 2
E⇤u and l � solves (12)}. The geometric relations between
Sw, E⇤u and E�u are shown in Fig. 2 for an idealized, smaller,
dimensional space.

V. OPTIMAL OMNIPLUS DESIGN

Our concept of optimal design follows the chosen allo-
cation strategy. W.l.o.g., in the following we assume that
all the propellers have a common lift factor, i.e., kvik = v,
8i = 1 . . .n.

Definition 3. A design is optimal if maxu2E kuk is mini-
mized, where E is the set of inputs that the given allocation
strategy maps to Sw (e.g., E = E⇤⇤u for u⇤⇤ or E = E�u for u�).

Even if minimization (11) can be efficiently solved with
any constrained QP solver, there is, at the best of our
knowledge, no analytical form to express y⇤. Furthermore,
y⇤ may in general change (in both norm and direction)
depending on the particular u⇤ 2 E⇤u . This makes hard to
understand how is the shape of E⇤⇤u and, especially, how the
value of maxu2E⇤⇤u kuk are influenced by the changes of the
design parameters. Hence, developing an analytically sound
design optimization around the first allocation policy is left
as future investigation.

The second allocation strategy is instead amenable of a
more clear geometrical interpretation that leads naturally to
the definition of a design optimization problem. First of all
let us assume that the etero-vectoring part of the design is
given and that one has to optimize only the vectoring part.
This is what happens in practice most of the time. Since
u⇤ ? b in (13), in order to make a design optimal according
to Definition 3, it makes sense, first of all, to minimize the
eccentricity of the set E⇤u , i.e., condition number of ⌃

�1F.
Furthermore, in order to optimally project the set E⇤u onto
the facets of Rn

�u1, it is easy to be convinced that the best
choice would be b = 1 in (13) if the design would allow it,
i.e., if F1 = 0. This leads to:

Definition 4. An O+ design is balanced if F1 = 0.

For balanced O+ designs the n propellers equally share the
extra effort needed to actively satisfy the constraint u � u1
in (13). In this way the risk of obtaining too large inputs,
due to unbalanced sharing of the extra effort, is reduced.
All these considerations lead to the following optimization
problem.

Problem 3. Let be given an etero-vectoring part (n �
7,c,k,d1, . . . ,dn). Find a vectoring part (v1, . . . ,vn) that
solves

mincond(⌃�1F) (14)

subject to

v>D1v = v , . . . , v>Dnv = v (15)
rank(F(c,k,d1, . . . ,dn,v)) = 6 (16)

A(c,k,d1, . . . ,dn,1)v = 0, (17)

where Di = diag(Di1, . . . ,Din) is a 3n-by-3n diagonal matrix
in which Di j, for j = 1 . . .n, are a 3-by-3 matrices such that
Di j = 0 for j 6= i and Dii = I3.

A. On the Existence of Solutions

Determining which are the conditions on the etero-
vectoring part that ensure the existence of a solution for
Problem 3, and how to analytically compute a solution v,
are both still open questions which are left as future work.
In the following we shall assume that a solution is computed
in a numerical fashion. We empirically noticed that it is not
practically hard to find numerical solutions for an etero-
vectoring part whose parameters are chosen following the
next common sense rules.

Firstly, the vectors d1, . . . ,dn are chosen coplanar and in
a star-shaped configuration, i.e., selecting any d1 such that
d1⇥ e3 6= 0, and then choosing di = Rz(2p(i� 1)/n)d1 for
i= 2 . . .n, where Rz(q) is the canonical rotation matrix about
the z-axis of an angle q . The coplanar constraint does not
restrict the generality of the results. One could use any
other etero-vectoring part. However, any 3D configuration
of d can be reduced to a planar one. Indeed, once obtained
the vectoring part, one can move the i�th thruster along
the vi direction exploiting Fact.1. This feature might be
also exploited to avoid collisions between propellers and
the main frame. The constraint kdik = kd1k 8i = 2 . . .n is
instead added for mechanical simplicity. Secondly, the vector
c showing a balanced set of �1 and 1 entries, e.g., ci = (�1)i

for i = 1, . . . ,n. Thirdly, it is imposed kvik = v and ki = k
8i = 1 . . .n, since it is common to use the same propellers in
the same multirotor. Based on our experience, the algorithm
described next has always been able to find a solution to
Problem 3 with any etero-vectoring part of the class defined
by the three rules above.

B. Algorithm

A simple but effective method to solve Prob. 3 is provided
in Algorithm 1 and explained in the following.

First of all, randomVectoring(n,v) generates the vi’s, for
i = 1, . . . ,n as vi = vni, where ni 2 S2 = {n 2 R3 | knk= 1}
are sampled randomly with a uniform probability. The result-
ing vectoring part fulfills only (15) among the constraints.
and cannot be used as initial guess for a nonconvex numerical
solver since constraint (17) is not yet satisfied. In order to
find an initial guess that satisfies (17) we use an iterative al-
gorithm which tries to find the solution to minv kAvk2 subject
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Algorithm 1: Optimal Omniplus Design
Input: etero-vectoring part, (n,c,k,d1, . . . ,dn)
Output: design D? = (n,c,k,d1, . . . ,dn,v1, . . . ,vn)
1: D? /0
2: for k = 1 to N do
3: v0 randomVectoring(n,v)
4: for j = 0 to NN �1 do
5: v j+1 v j�A†Av j % Netwon-Raphson
6: v j+1 renormalization(v j+1,v)
7: Dk  locOptimumDesign

⇣
n,c,k,d1, . . . ,dn,v

NN
1 , . . . ,vNN

n

⌘

8: if D? = /0 or 0 < condNumF(Dk)< condNumF(D?) then
9: D? Dk

10: return D?

2 4 6 8 10 12 14
0

1

2

3

4
10 -6

10 0 10 1

8

9

10

Fig. 3: Performances of the algorithm. Left: inner loop error for 10
different initial guesses. Right: cond(F) for 5 trials of the algorithm.

to (15) (lines 4-6). At each step of the iteration, the vectoring
part is updated using Newtwon-Raphson update rule (line 5)
and renormalized (line 6). A number NN of iterations is
executed, which guarantees to obtain an initial guess with
kAvk2 that is practically zero. The obtained initial guess is
provided to optimumDesign

⇣
n,c,k,d1, . . . ,dn,vNN

1 , . . . ,vNN
n

⌘

which applies an interior point (IP) algorithm to solve locally
the full Prob. 3. This approach finds a local minima, and
therefore the whole process is repeated N times from the
random generation step in order to find the best of the several
local minima found by each call of the IP method with
different initial guesses.

To give an idea of the computation factors, in Fig. 3-left
we show the convergence of kAvk to zero in the Newton-
Raphson iterations for a meaningful case. On the right we
instead show the convergence of the condition number of F
at each iteration of the outer loop. For the case in exam, the
Newton-Raphson loop takes less than 15 iterations to con-
verge to a valid initial guess, while the whole optimization
algorithm needs around 40 iterations. The overall algorithm
implemented in Matlab, for NN = 40 and N = 40, takes
a mean time of 15 [s] to run on a standard laptop. The
computation time was not a real problem here since the
algorithm has to be run offline before starting the mechanical
design of the vehicle.

As an example, in Fig. 4 we report one of the designs
found by setting n= 7 and running the previous optimization
algorithm (see Sec. VII for more details). One can notice
that there are some symmetries between rotors orientation.
Indeed, considering motor 2 (the one with no symmetries)
as the “front of the vehicle”, then thrusters (1,3) point
ahead/interior/up, (4,7) point back/interior/up and (5,6) point
back/interior/down. This fact could be exploited in future
works to further reduce the condition number.
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Fig. 4: Optimized omniplus design (cond(F) = 3.59) with 7 pro-
pellers. The red tick lines correspond to the vectors d1, . . . ,d6 arms
all departing from OR. The black one defines d7. The blue spheres
correspond to the positions of the motors. The colored slim lines
indicate the lift force direction of each propeller. The star and the
square symbols indicate CCW and CW propellers, respectively.

VI. CONTROL STRATEGY

Given desired position and orientation trajectories, i.e.,
pd

R(t) and Rd
R(t), respectively, the control strategy of a

platform with an omniplus design is rather straightforward.
In fact, one has to first decide the force and moment vector
wd to be applied to the body to steer the output along the
desired trajectory. One can use a nonlinear model inversion
combined with a Feed Forward plus a PID inner loop:

wd = G�1
R

✓
MR�bRad +KDė+KPe+KI

Z t

0
edt

◆
, (18)

where KD,KP,KI 2 R6⇥6 are positive diagonal definite
matrices, ė = [(vd

R � vR)> (R>R Rd
R!

d
R �!)>]>, e = [(pd

R �
pR)> e>RR

]>, eRR = [1/2(Rd>
R RR�R>R Rd

R)]
^. The [·]^ is the

un-skew operator. The wd is then implemented choosing
u = u�.

VII. NUMERICAL SIMULATIONS

In this section we shall present the simulation results
validating the algorithm to find an optimal ominiplus design
and the proposed controller. We chose to use the minimum
number of propellers, i.e., n = 7. Then we used an etero-
vectoring part where di = 0.4Rz(2p(i� 1)/n)[1 0 0]> and
ki = 0.0192 [m] for i = 1, . . . ,n. Furthermore, considering a
standard motor-propeller with diameter 0.30 [m] available
in the market, we have that v = 9.9 · 10�4 [N/Hz2] and
u= 162 [Hz2]. On the other hand, the maximum control input
is equal to ū= 1302 [Hz2]. Mass and inertia of the vehicle are
mR = 1.3 [Kg] and JR = diag(0.030,0.030,0.030) [Kg ·m2],
respectively.

We finally completed the omniplus design running the
proposed Algorithm 1. Figure 4 shows the design used in
the following simulations for which it has been achieved
cond(F) = 3.59. The optimized vectoring part is equal to:
⇥
v1 · · · vn

⇤
=
h�0.71 0.11 0.41 0.44 0.57 �0.64 �0.17

0.67 0.04 0.85 �0.35 �0.38 �0.58 �0.26
0.11 �0.98 0.31 0.81 �0.72 �0.48 0.94

i
.

In order to fully show the capability of the proposed
design, we ask the vehicle to translate and rotate at the
same time. The translational trajectory is a spline from the
initial position to a desired final one. For the orientation,
we planned a trajectory such that the z-axis of FR circles
many times around the one-radius sphere. In this way we
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Fig. 6: Control inputs required to tracking the desired trajectory in
Fig. 5 by a non-optimized omniplus design with cond(F) = 186.84.

can span a vast variety of orientations. A representation of
this trajectory is shown in Fig. 5 and in the attached video,
where a possible realistic design is also shown. Looking
at the plots one can see that the vehicle is able to track
the desired trajectory requiring propeller rotational speeds
w1, . . . ,w7 that are always in the limits. On the other hand, a
non-optimized platform requires input peaks that go beyond
the propeller limits (see Fig. 6 and the attached technical
report for more details).

We also conducted a thorough simulation campaign to
check the robustness of the proposed method against:
i) noisy measurements, ii) parameters uncertainties, iii) non
ideal motors, iv) control input delay, and v) external distur-
bances. This analysis showed good tracking performance for
standard non-ideal scenarios, and allowed us to understand
its limits. Furthermore, we investigated some interesting
characteristic of the simulated platform as the maximum
feasible forces and torques in every direction, the maximum
and minimum thrust to weight ratio and the energy con-
sumption. Finally, to show that our algorithm can be used
for any number of propellers, we computed and simulated
an optimized design for n = 8. Due to the limited space, we
added all those results in the attached technical report.

VIII. CONCLUSIONS

In this work we formalize the problem of designing
an omnidirectional-thrust vehicle using only body-frame
fixed unidirectional thrusters. We provide the main defini-
tions, concepts and properties of such sought design. We

show the conditions that have to be satisfied to obtain the
omnidirectional-thrust property and propose an algorithm to
generate such design in an optimal way. We also propose
a nonlinear controller to track position and orientation tra-
jectories demonstrating the lowest possible inputs for the
optimized platform.

Based on those fundamental results many other works
could sprout up from the community. An example could be
the mentioned improvement of the optimization algorithm,
perhaps exploiting the noticed symmetries on an optimized
platform, and considering the thrust position as well. The
formal proof that balanced design with mincond(F) mini-
mizes the norm of the input is also left as future work, as
well as the real implementation of such optimized platform.
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Additional Analysis and Simulations for an Omnidirectional-thrust
vehicle with Only Fixed Unidirectional Thrusters

Technical report of:
“Omnidirectional Aerial Vehicles with Unidirectional Thrusters: Theory, Optimal Design, and Control”

IEEE Robotics and Automation Letters

Marco Tognon1 and Antonio Franchi1

Abstract— This document is a technical attachment to [1] as
an extension of the numerical validation part. Here we present
additional simulations in presence of non-ideal conditions as
noise, parameter variations, non-ideal motors, control input
delays and external disturbances. A through validation of
the robustness of the proposed method against the previously
mentioned non-idealities is conducted.

I. HOW TO CITE THIS WORK

This technical report is accompanying our IEEE Robotics
and Automation Letters paper [1]. If you wish to reference
this work, please cite this paper as follows:
@Article{Tognon18ral,
author = {M. Tognon and A. Franchi},
title = {Omnidirectional Aerial Vehicles

with Unidirectional Thrusters:
Theory, Optimal Design,
and Control},

journal = {{IEEE} Robot. Autom. Lett.},
year = {2018},
doi = {10.1109/LRA.2018.2802544},

}

II. ADDITIONAL SIMULATION

In this section we present some additional simulations
performed to validate the proposed method in ideal and non-
ideal conditions.

A. Ideal Conditions

Figure 1 shows more detailed plots of the simulation done
in ideal condition presented in Sec. VII of the paper.

B. Standard Non-ideal Conditions

We simulated the system in non-deal condition consider-
ing:

• Gaussian noise added to the state measurement with
standard deviation equal to spR = 0.01 [m], svR =
0.02 [m/s], sRR = 3 [�] and s!R = 0.1 [rad/s] for the
position, linear velocity, attitude and angular velocity,
respectively. This corresponds to the standard deviation

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
mtognon@laas.fr, antonio.franchi@laas.fr

This work has been funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644271
AEROARMS.
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Fig. 1: Simulations results with the optimized platform with 7
propellers for which cond(F) = 3.59. Evolution of the translational
and rotational outputs and rotor speeds w1, . . . ,w7. The black dashed
line represent the maximum angular velocity of the motors.

of standard pose estimators for aerial vehicles, in order
to simulate real sensors;

• non-ideal motors modeled as a first order system with
time constant equal to 0.08 [s];

• parameters uncertainty for mass and inertia matrix equal
to 5% of the nominal value.

Fig. 2 shows the tracking performance and the inputs of
the closed loop system between 40 [s] and 45 [s]. Outside of
this interval the behavior is the same. One can notice that
the tracking error is relatively small and, most importantly,
the control inputs do not increase with respect to the ideal
case.

C. Noise Robustness

Here we investigate the performances of the proposed
method under increasing noise intensity. In particular, we
performed several simulations in which the standard devia-
tion of the noise varies from 0 to a maximum value of s̄pR =
0.01 [m], s̄vR = 0.02 [m/s], s̄RR = 3 [�] and s̄!R = 0.1 [rad/s],
that corresponds to a very bad sensorial setup. This analysis
shows how the tracking performance would get worse with
the degradation of the sensorial set-up, e.g., moving from

mailto:mtognon@laas.fr
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Fig. 2: Simulations with non-idealities. The plot zooms only on the
time from 40 to 45 [s], the rest looks very similar.

motion capture system-like setup to a very poor gps. Notice
that the chosen maximum standard deviations are higher than
typical values obtained from standard state estimators, even
using on-board sensors as vision or gps.

In order to show the results with an increasing noise, for
each performed simulation we set s? = Dss̄? with Ds 2
[0,1] for each noise.

For every value of Ds , in Fig. 3, we show the mean value
and the standard deviation of the norm of the tracking error
in position and attitude, i.e., ēpR , sepR

, ēRR and seRR
, respec-

tively. Those quantities are computed as in the following:

epR = ||pd
R �pR||2

eRR = ||eRR ||
2

ēpR =
1
T

Z T

0
epR(t)dt

sepR
=

s
1
T

Z T

0
(epR(t)� ēpR)dt

ēRR =
1
T

Z T

0
eRR(t)dt

seRR
=

s
1
T

Z T

0
(eRR(t)� ēRR)dt.

(1)

In Fig. 3 one can see how the tracking error obviously gets
worse with the increasing of the noise intensity. However, for
reasonable level of noise, the mean tracking error is always
limited and sufficiently small.

Furthermore, and more importantly, the platform never
gets unstable even if the measurements are extremely de-
graded.

D. Motor Time Constant Robustness

To test the robustness considering non-ideal motors, we
modeled each of them as a first order system characterized
by a time constant tM 2 R>0. In Fig. 4 we assess the
robustness with respect to it. In particular we plot ēpR , sepR

,
ēRR and seRR

, varying the time constant from the value
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Fig. 3: Tracking performances with respect to noise intensity. The
mean value of the norm of the tracking error with respect to the
noise intensity, is plotted as a solid line. The opaque region shows
the area between plus and minus the standard deviation.

0.02 0.04 0.06 0.08 0.1
=M [s]

0.01
0.02
0.03
0.04
0.05
0.06

[m
]

7epR

0.02 0.04 0.06 0.08 0.1
=M [s]

2
4
6
8
10
12

#10 -5

7eRR

Fig. 4: Tracking performances considering non-ideal motors mod-
eled as first order systems with time constant tM . The mean value
of the norm of the tracking error with respect to the time constant
of the motors is plotted as a solid line; the opaque region shows
the area between plus and minus the standard deviation.

of 0.01 [s] to the one of 0.1 [s]. As expected, the tracking
performance gets worse until the system becomes unstable
for time constants larger than 0.1 [s]. For larger values one
could easily incorporate the motor dynamics in the model,
including the motor speed in the system state and considering
its derivative as the new input. Being the new model fully
controllable, a design similar to the one presented in [1]
would make the job of stabilizing the platform. However,
for a standard brushless motors with the closed-loop speed
controller presented in [2], the time constant is about 0.03 [s].
For this value the corresponding tracking error is sufficiently
good without the need of an extended model.

E. Motor Communication Delay Robustness

In a real platform there will always be a certain delay
in the communication with the motor controller. We have
tested which is the maximum delay value for which we can
obtain a stable behavior. In Fig. 5 we show the tracking
performance with respect to an increasing value of the delay
between the commanded angular velocity for the motor and
the one received as set-point by the motor controller. The
tracking error, although sufficiently small, increases until the
maximum delay of 0.07 [s]; after this value some oscillatory
modes appear. However notice that a delay of 0.07 [s] is
incredibly large with respect to standard control input delays
on aerial platform where the controller is implemented on
an on-board PC. Usually, for those configurations, the delay
value is below 0.002 [s].
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Fig. 6: Tracking performance under an external force acting on the
system from time 2 [s] to time 10 [s]

F. Disturbance Rejection

We investigate here the behavior of the system under exter-
nal disturbances. In particular, in Fig. 6 we show the tracking
performance under an external constant force acting at d7
(the position the 7th propeller) from time 2 [s] to time 10 [s],
generating both translation and orientation disturbances. This
external force defined in world frame is equal to [2 2 2]> [N].

As we can see from Fig. 6 at time 2 [s] the external force is
“activated” and the tracking error increases. However, thanks
to the integral action in the controller, after a transient the
system is able to counterbalance the effects of the disturbance
bringing to zero the tracking error. A similar behavior is
shown when the external force is “de-activated” at time 10 [s].

Notice that the disturbance rejection performance could be
further improved using a disturbance observer. However this
goes beyond the scope of this manuscript.

G. Non-optimized Omniplus Design

To better show the importance of optimizing a design to
reduce the risk of saturation, we computed an omniplus de-
sign without minimizing the condition number. The resulting
platform is shown in Fig. 7 on the top. We then required
the vehicle to follow the same desired trajectory considered
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Fig. 7: Non-optimized omniplus design with cond(F) = 186.84 and
relative control inputs required to tracking the desired trajectory in
Fig. 5 of [1].

for the optimized design. In Fig. 7 one can clearly see that
the trajectory is tracked as for the optimized platform but
the required control inputs are much larger and they go
beyond the maximum value of 130 [Hz]. The simulation does
not consider the saturation in order not to obtain unstable
behaviors and shows the required control inputs for the full
trajectory.

H. Optimal Omniplus Design with 8 Propellers
Finally to show that the proposed algorithm works with

any number of propellers, we computed an optimal omniplus-
plus vehicles with n = 8. Figure 8 shows the obtained design
from different perspectives and the tracking performance
following the usual desired trajectory. One can see that the
tracking and the desired control inputs are comparable to the
one of the optimal omniplus design with 7 thrusters.
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