
HAL Id: hal-01704127
https://laas.hal.science/hal-01704127

Submitted on 8 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control-Aware Motion Planning for Task-Constrained
Aerial Manipulation

Marco Tognon, Elisabetta Cataldi, Hermes Amadeus A Tello Chavez,
Gianluca Antonelli, Juan Cortés, Antonio Franchi

To cite this version:
Marco Tognon, Elisabetta Cataldi, Hermes Amadeus A Tello Chavez, Gianluca Antonelli, Juan Cortés,
et al.. Control-Aware Motion Planning for Task-Constrained Aerial Manipulation. IEEE Robotics and
Automation Letters, 2018, 3 (3), pp.2478-2484. �10.1109/LRA.2018.2803206�. �hal-01704127�

https://laas.hal.science/hal-01704127
https://hal.archives-ouvertes.fr

Preprint version, final version at http://ieeexplore.ieee.org/ IEEE Robotics and Automation Letters 2018

Control-Aware Motion Planning for
Task-Constrained Aerial Manipulation

M. Tognon1, E. Cataldi2, H. A. Tello Chavez1, G. Antonelli2, J. Cortés1, A. Franchi1

Abstract— This paper presents a new method to address
the problem of task-constrained motion planning for aerial
manipulators. We propose a control-aware planner based on
the paradigm of tight coupling between planning and control.
Such paradigm is especially useful in aerial manipulation, where
the separation between planning and control is not advisable.
The proposed sampling based motion planner uses a controller
composed of a second-order inverse kinematics algorithm and
a dynamic tracker, as a local planner, thus allowing a more
natural consideration of the closed-loop system dynamics. For
task constrained motions, this method lets to i) sample directly
in the reduced and more relevant task space, ii) predict the
behavior of the controller avoiding motions that bring to
singularities or large tracking errors, and iii) guarantee the
correct execution of the maneuver. The method is tested in
simulation for a multidirectional-thrust vehicle endowed with a
two-DoF manipulator. The proposed approach is very general,
and could be applied to ground and underwater robotic systems
to perform manipulation or inspection tasks.

I. INTRODUCTION

The interest in Unmanned Aerial Vehicles (UAVs) has
increased exponentially in the last decade. This comes from
their large applicability in diverse real-world scenarios. A
very recent and promising application field is aerial manipu-
lation. In this case, UAVs are not simply used as remote
sensors in a free-flight configuration. Instead, the robot
needs to physically interact with the environment, exchang-
ing forces. An interesting application is the inspection by
contact of industrial installations. In this context, taking
measurements requires physical contact between the sensor
and the inspected part. For example, in the context of the
EU project Aeroarms, one of the goals is to develop an
aerial manipulator able to take ultrasonic measurements of a
metallic pipe to detect flaws [1].

Compared to ground manipulation, physical interaction
using aerial vehicles endowed with rigid tools or robotic
arms is a much more challenging problem, mainly due to
the use of a floating base. The aerial platform, usually
thrusted by one or several propellers, cannot instantaneously
react to interaction forces between the robotic arm and the
environment. In addition, aerodynamic effects and model
uncertainties yield to inaccurate positioning, thus increasing
the challenging nature of the problem. Several works in

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
mtognon@laas.fr, htelloch@laas.fr, jcortes@laas.fr

antonio.franchi@laas.fr

2University of Cassino and Southern Lazio, 03043 Cassino, Italy,
gianluca.antonelli@unicas.it, e.cataldi@unicas.it

This work has been funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644271
AEROARMS.

FR
xR

yR
zR

FW xW

yWzW FE

xE

yE

zE

pR

qJ1
qJ2

fR1

fRifRn

⌧J1⌧J2

Fig. 1: Schematic representation of an aerial manipulator inspecting
a pipe (green surface) by physical contact. The aerial vehicle is an
hexarotor with tilted propellers, endowed with a two-link arm.

the literature presented various types of dynamic controllers
for aerial manipulators to stabilize the system and track a
desired trajectory of the degrees of freedom. They range from
completely decoupled approaches [2], [3], to model-based
approaches [1], [4] and to more recent differential-flatness-
based method [5].

Some relevant applications impose motion constraints de-
rived from the task. For example, one could require the
end-effector to follow a given trajectory or to move while
keeping contact with a surface that has to be inspected.
Figure 1 shows an example where an aerial manipulator has
to inspect the surface of a pipe. To accomplish this type
of task, one of the possible methods is based on inverse
kinematics control [6]. If the system is over-actuated with
respect to (w.r.t.) the desired task, one can also exploit the
redundancy to locally optimize some behaviors (e.g., obstacle
avoidance, minimum energy consumption, etc.), using null-
space-based behavioral control (NSB) [7]. However, due to
the local nature of those approaches, the system can get
trapped in some local minima. This problem often implies
the failure of the sought task.

Techniques using (global) task-constrained motion plan-
ning methods have been proposed in order to overcome
limitations of purely reactive (control-based) methods. Many
works on task-constrained motion planning, as [8]–[10], use
a projection strategy to sample configurations that respect the
task constraints. However they consider the system at a pure
kinematic level, i.e., they assume that the robot can track
any velocity reference, even if discontinuous. By doing so,
they cannot guarantee that the robot will accurately execute
the planned trajectory. This is an important issue for aerial
manipulators that can be easily destabilized by large tracking
errors when dynamic effects are not properly considered.

A dynamic model of the system can be considered at
the planning level using kinodynamic motion planning ap-

mailto:mtognon@laas.fr
mailto:htelloch@laas.fr
mailto:jcortes@laas.fr
mailto:antonio.franchi@laas.fr
mailto:gianluca.antonelli@unicas.it
mailto:e.cataldi@unicas.it

proaches, as in [11]. However, this significantly increases
the complexity of the problem, which is in practice tractable
only for simple systems. Aerial manipulators are in general
characterized by a high number of degrees of freedom, and
thus, the dimension of the state space is too high for the
application of current, general purpose, kinodynamic motion
planners.

Interesting methods have been proposed to circumvent the
complexity of kinodynamic approaches for task-constrained
motion planing problems [12], [13]. However, even if the
planned trajectory is feasible w.r.t. the dynamics of the
system, one cannot guarantee that a given controller will be
able to accurately track it during execution. This strongly
depends on the employed controller. For example, robots
controlled kinematically might show big tracking errors for
certain motions. In those cases, when the available controller
does not allow to precisely track the planned motion, the
separation between planning and control is not suitable. This
is the case for many robotic fields, as aerial manipulation or
humanoid robotics, where the complexity of the system does
not always allow to obtain very precise controllers.

In this paper, we propose an approach to reinforce the con-
nection between motion planning and control in the context
of aerial manipulation. The underlying idea is conceptually
very simple. It consists in using the controller as a local
method to connect neighboring states within a (global) mo-
tion planning algorithm. More precisely, our method is based
on a sampling-based motion planning algorithm that uses
the controller as local planner. The computed trajectories are
guaranteed to satisfy task constraints, in addition to other
geometric, kinematic and dynamic constraints. Assuming an
accurate model and an appropriate control method, the use
of the controller inside the planner guarantees the feasibility
of the trajectory for the real system and also allows to better
predict the behavior of the closed loop system as singularities
or big tracking errors.

Another advantage of the proposed approach is that the use
of control methods that directly treat the redundancy of the
system allows the planner to search for a solution directly in
the reduced and more relevant task space. Planning directly
at the task level permits a more straightforward formulation
of task-constrained motion planning problems, and in general
reduces the dimensionality of the search space. This idea has
been often exploited in related works (see, e.g., [13]). Finally,
by properly defining the task one can choose a good trade-off
between the dimension of the search space and the delegation
of the redundant degrees of freedom to the local controller.
It should be noted here that, although the proposed method
has been firstly conceived for aerial manipulators, it can be
applied to other types of system thanks to the generality of
the paradigm.

The paper is organized as follow: we model the considered
robotic system in Sec. II. The planning problem and the
control-aware planning paradigm are described in Sec. III
and Sec. IV, respectively. The proposed control strategy and
planning algorithm are explained in details in Sec. V and
Sec. VI, respectively. In Sec. VII we show the numerical

results. Conclusions and future development are finally dis-
cussed in Sec. VIII.

II. MODEL
This section presents the mathematical model of an aerial

vehicle equipped with a manipulator. Figure 1 shows an
instance of the generic robotic system under study. We define
an inertial frame FW = {OW ,xW ,yW ,zW}, with origin OW
and unit axes (xW ,yW ,zW). The vector zW is assumed to be
directed in the opposite direction of the gravity vector.

A body-fixed frame FR = {OR,xR,yR,zR} is attached to
the aerial vehicle, in which the origin OR coincides with the
Center of Mass (CoM) of the vehicle (without arm). The
position and orientation of the vehicle w.r.t. FW are given
by the vector pR 2 R3 and the rotation matrix RR 2 SO(3),
respectively. We denote by qR =(pR,RR)2CR =R3⇥SO(3)
the full configuration of the sole aerial vehicle. Its velocity
can be defined as vR = [ṗ

>
R !

>
R]
> 2 VR ⇢ R6, where ṗR =

dpR/dt and !R 2R3 is the angular velocity of FR w.r.t. FW
and expressed in FR. The aerial vehicle is a multidirectional-
thrust platform, with nR 2 N�6 thrusters rigidly attached to
the vehicle body. We define the vector fR = [f1 . . . fnR]

> 2
RnR where fi 2 R�0 for i = 1, . . . ,nR is the force intensity
produced by each rotor.

The vehicle is endowed with a robotic arm consisting of
n 2 N�0 links. In order to describe its configuration, we
rigidly attach to each link a frame FJi = {OJi,xJi,yJi,zJi}
with i = 1, . . . ,n, using the standard Denavit-Hartenberg
convention [14]. In particular, zJi is the axis of actuation of
the i-th joint, either rotational or prismatic; qJi 2 R denotes
the rotation angle about zJi or the translation along zJi. The
configuration of the arm is then given by the vector qA =

[qJ1 . . .qJn]
> 2 CA ⇢ Rn. The velocity of the arm is defined

as vA = q̇A 2VA⇢Rn. We assume that each joint is driven by
a motor applying a generalized torque tJi 2R along the joint
axis zJi, for i= 1, . . . ,n. We define by ⌧A = [tJ1 . . .tJn]

> 2Rn

the vector containing all the motor torques.
We finally denote by q = (qR,qA) 2 C = CR ⇥CA the

full configuration of the aerial robotic system, and by v =

[v

>
R v

>
A]
> 2 V = VR ⇥ VA the corresponding velocity. Its

acceleration is finally given by v̇ = [v̇

>
R v̇

>
A]
> 2A = AR⇥

AA. Using Newton-Euler method, we can write the aerial
manipulator dynamics in the following form:

M(q)v̇ = c(q,v)+g(q)+G(q)u, (1)

where M(q) 2 R(6+n)⇥(6+n) is the positive-definite inertia
matrix, c(q,v) 2 R(6+n) is the vector collecting the cen-
trifugal and Coriolis forces, g(q) 2 R(6+n) represents the
gravitational term, G(q)2R(6+n)⇥(nR+n) is the input matrix,
and u = [f

>
R ⌧

>
A]

> 2 R(nR+n) is the vector containing all
the inputs of the aerial manipulator. The robot state is
defined as x = (q,v, v̇) 2X = C ⇥V ⇥A , collecting the
configuration, the velocity and the acceleration of the robotic
system, whilst X , is defined as the robot extended1 state
space, shortly called state space in the following.

1In fact, strictly speaking, the robot state space is only C ⇥V .

Preprint version, final version at http://ieeexplore.ieee.org/ 2 IEEE Robotics and Automation Letters 2018

The end-effector of the arm is characterized by an attached
frame denoted as FE = {OE ,xE ,yE ,zE}. Its configuration is
given by qE = (pE ,RE) 2 CE = R3⇥SO(3), with pE 2 R3

and W
RE 2 SO(3) representing the corresponding position

and orientation w.r.t. FW , respectively. The linear and an-
gular velocities of the end-effector w.r.t. FW are described
by the vector vE = [ṗ

>
E !

>
E]
> 2 VE ⇢ R6. The end-effector

pose, velocity and acceleration can be computed from the
full state of the aerial manipulator x, by using the forward
kinematics fE(·) and its time derivatives, :

qE = fE(q), vE = JE(q)v,

v̇E = JE(q)v̇+ J̇E(q,v)v
(2)

where JE(q) 2 R6⇥(6+n) is the Jacobian matrix. We call
xE = (qE ,vE , v̇E) 2XE = CE ⇥VE ⇥AE , the end-effector
state.

III. PROBLEM FORMULATION
In many applications related to manipulation, we want the

end-effector of a robot to track a certain trajectory or, in the
case of inspection by contact, to reach a series of points on
a surface of interest while being in contact with the surface.
In those cases, we are not interested on the full system
motion, but rather in the correct execution of the sought task.
The redundancy, if any, can be exploited to optimize other
criteria.

Let us define a task characterized by a m-dimensional
vector y belonging to the subset Cy = {y 2 Rm | f c

y(y) =

0} ✓ Rm, defined by the function f

c
y : Rm ! Rm0 with

0 < m0 m. The task y is linked to the robot configuration
by the kinematic map fy : C ! Rm, such that

y = fy(q). (3)

Notice that a task is feasible if dim(Cy) dim(C). Then, let
us call Cobs ⇢C the set of configurations for which the robot
is in collision with some obstacles. Consequently, Cfree =

C \Cobs is the free space. In this manuscript we address the
following task-constrained motion planning problem:

Problem 1. Consider the robot whose dynamic model is
described by (1) with a certain initial state, x

0. Consider
also a certain task y 2 Cy , which is related to the robot
configuration variables by (3). Given a desired final task
value y

? 2 Cy , the problem is to find a collision-free
trajectory q(t) 2 Cfree, which is feasible w.r.t. the robot
dynamics, and such that task constraints are satisfied, i.e.,
y(T) = fy(q(T)) = y

?, and y(t) = fy(q(t)) 2 Cy for all
t 2 [0,T] and T 2 R>0.

IV. ALGORITHM OVERVIEW
The proposed control-aware motion planner combines a

control method, used as local planner, and a sampling-based
algorithm to compute the global trajectory (global planner).

The approach is based on the following reformulation of
the problem. Given a certain desired task trajectory, yd

(t),
we define the vector x

d
y = [y

d>
ẏ

d>
ÿ

d>
]

> 2Xy = Cy ⇥
Vy⇥Ay , called task state, where Vy and Ay are the space of

C
y

C

q

i+1

q

i

y

i

y

i+1

q(t)

y

d(t)

�(q,v,xd
y

)

C
obs

Fig. 2: Schematic representation of the control-aware planning
paradigm. To each trajectory in the task space corresponds a motion
of the robot, by-product of the used local controller.

the velocities and accelerations of the task, respectively. The
space Xy will be called task state space in the following.
Then, we assume that a controller

u= G(q,v,xd
y), (4)

is applied to the system (1), such that the task error ey =

y

d
(t)�y(t) asymptotically converges to zero. If the system

is redundant w.r.t. the task, the controller optimizes the
remaining degrees of freedom according to given criteria (see
Sec. V-B for the details). Inside the proposed motion plan-
ning algorithm, the controller G(q,v,xd

y) will serve as local
planner, also called steering method, to connect states. This
will be further explained in Sec. VI. The task-constrained
motion planning problem can be then reformulated as:

Problem 2. Find a desired task trajectory y

d
(t) that, used as

reference for the controller (4), will generate a robot motion
that solves Problem 1.

The sampling-based algorithm can then search for a solu-
tion to Problem 2 directly in Xy (also called search space),
delegating to the controller the generation of the full robot
configuration. For a planned (local) trajectory in the task
space y

d
(t) for t 2 [0 . . .T], the corresponding motion of

the full robot q(t) is obtained simulating the closed loop
system. The validity (i.e., collision freeness, input feasibility,
etc.) of the states generated by the controller is checked
by the global planner. Indeed, the controller might not have
an obstacle avoidance feature or the capability to check for
other constraints of the system. Figure 2 shows a schematic
representation of the approach.

Once the planner finds a solution, the planned trajectory
in the task space y

d
(t) can be given as reference to the

controller for execution. Since the closed loop system has
already been simulated inside the planner, even in the case
of tracking errors, the real behavior of the system will be
very close to the planned one. Thus, the execution of the
trajectory will be in general more consistent and reliable.

Trade-off between delegation and exploration

In our approach, the management of redundant degrees of
freedom (w.r.t. the task) is delegated to the controller. It is
clear that a high level of delegation implies a small dimension
of the search space, and thus a lower complexity. However,
it also forces the global planner to look for a solution only

Preprint version, final version at http://ieeexplore.ieee.org/ 3 IEEE Robotics and Automation Letters 2018

in the search space, i.e., the space of DoFs of the robot
that are ‘non-redundant’ w.r.t. to the task at hand. In other
words this approach reduces the ‘exploration authority’ of the
global planner for the sake of a reduced complexity. This
is an important issue for the (probabilistic) completeness
of the planner, which may fail to find exiting solutions in
some cases. To circumvent this problem, one can consider
additional ‘tasks’ that increase the dimension of the search
space, increasing the chances to find a solution. In particular
consider that a task y

0 2Cy
0 and the relative task space Xy

0

has been defined. Let us assume that the planner, searching
in Xy

0 for a solution, after a certain time, it is still not able to
find a trajectory y

d 0
(t) solution of Problem 2. To increase the

chances of finding a solution we can then enlarge the search
space defining an additional task y

00 2 Cy
00 and the relative

task space Xy
00, such that dim(Cy

0
) < dim(Cy

0 ⇥Cy
00
)

dim(C). We can then consider Xy = Xy
0 ⇥Xy

00 as a new
task space for the planner, in which it will search for a
solution y

d
(t) = [y

d 0
(t)> y

d 00
(t)>]>. One has only to modify

the second-order inverse kinematics controller to follow the
new extended task y. Doing so, we remove constraints to
the planner, adding them to the controller.

The addition of new tasks to increase the dimension
of the search space can be done incrementally. When the
planner struggles on finding a solution inside Xy , a new
task involving one or a small number of DoFs is added until
a solution is found, if this exists. In the worst case, we will
reach dim(Xy) = dim(X), thus preserving the probabilistic
completeness of the sampling-based planner, which comes
at the cost of increasing complexity. Nevertheless, this worst
scenario will rarely happen in practical applications.

We have to highlight that the need of increasing the
dimension of Xy strongly depends on the local controller.
For example, if the controller already includes a local ob-
stacle avoidance capability, the planner will probably find
a solution more easily, without the need of extending Xy .
Note also that, using a more sophisticated implementation
of the planner, the extension of Xy could be done only
temporary. If the planner gets blocked in a region of the
space, the dimension of Xy can be locally increased only in
this area. Afterwards, the search space can be reduced back
to the original dimension.

V. CONTROL STRATEGY

The proposed control strategy is based on the separation
between the kinematic and the dynamic loops, yielding the
approach known in the literature as kinematic control. This
approach is particularly suited to handle redundant systems
and thus to assign multiple control objectives beyond the sole
arm’s end-effector, e.g., obstacle avoidance or mechanical
joint limits, etc. Assigning a relative priority leads to what
is known as task-priority inverse kinematics, which has
been successfully implemented for aerial manipulation [6].
Such methods apply null-space-based behavioral control [7].
Figure 3 shows a schematic representation of the proposed
control strategy.

�IK(q,v,xd
y)

q

y

d

q

d
C

q

�DY (q,v,xd
)

u

�(q,v,xd
y)

q

Aerial

Manipulator

q

d
C

Inverse Kinematics

Dynamic control

Fig. 3: Block diagram describing the control strategy.

We can decompose the controller (4) in the following way:

x

d
= GIK(q,v,x

d
y), u= GDY (q,v,x

d
), (5)

where x

d
= [q

d>
v

d>
v̇

d>
]

>, GDY (q,v,xd
) and

GIK(q,v,xd
y) are the dynamic and inverse kinematics

controller, respectively. Due to the inner-outer loop nature
of the proposed control strategy, the performance of the
inverse kinematics controller to minimize the task error
(outer loop) will improve when the dynamic controller
(inner loop) is able to let the robot accurately follow the
reference trajectory.

A. Dynamic controller

One of the positive features of using the control architec-
ture presented above is that the inverse kinematics and the
dynamic controllers are independent one of each other. A
simple approach for the dynamic controller is obtained by
considering the vehicle and the arm as two separate subsys-
tems, i.e., without physical interaction [2], [3]. This control
strategy obviously suffers for demanding trajectories, when
the interaction terms become significant. More advanced
non linear controllers consider the full system dynamics
providing better performance [1], [4], [15]. However, since
they strongly depend on the dynamic model, they are in
general not very robust to model uncertainties. A recent
technique is instead based on the flatness of the system to
develop a controller that considers the full system dynamics
but is still robust to modeling errors [5].

For the system considered in this work, we imple-
mented a standard feedback linearization technique. This
is possible because the considered vehicle is fully ac-
tuated, i.e., considering (1), G(q) is full rank. There-
fore, we designed the controller as GDY (q,v,xd

) =

G(q)

�1
(M(q)v̇

?�c(q,v)�g(q)) where v̇

? is the desired
acceleration that brings the tracking error to zero, i.e., v̇?

=

v̇

d
+K

DY
D (v

d�v)+K

DY
P (q

d�q).

B. Inverse kinematics controller

Inverse kinematics techniques can be implemented by
resorting to the first or second order derivatives. In this case,
in order to achieve smooth trajectories, the latter have been
taken into account. Let us consider the task y 2 Cy defined
in (3) and differentiate it twice

ẏ =

∂fy

∂q
v = J(q)v, ÿ = J(q)v̇+ J̇(q,v)v, (6)

where J(q) is the Jacobian of the task w.r.t. q. The trajectory
for the robot configuration, qd

(t), that steers y(t) along to

Preprint version, final version at http://ieeexplore.ieee.org/ 4 IEEE Robotics and Automation Letters 2018

X
y

x

j

x

i

x

d
y

i
x

d
y

j

q(t)

x

d
y

(t)

X

n

i

n

j

T
n

0 Ei,j

Simulation of the

closed loop system

X
y

x

end

x

0

x

d
y

0
x

?
y

q(t)

x

d
y

(t)

X

n

?

T
n

0

Fig. 4: Representation of the steering method (top) and of the
extraction of solution trajectory (bottom). The images on the left
represent the planning tree. On the right, we illustrate how one edge
of the tree (top) and a solution trajectory (bottom) are mapped from
the task space to the robot state space using the local controller.

y

d
(t), can be computed integrating v̇

d , which is calculated
by the following expression:

v̇

d
= J

† �
ÿ

r� J̇v

�
, ÿ

r
= ÿ

d
+KDėy +KPey, (7)

where KD 2 Rm⇥m and KP 2 Rm⇥m are positive defined
matrices, and J

† is the Moore-Penrose pseudo-inverse of
the Jacobian matrix.

For the robotic system under study, Cy has a lower
dimension w.r.t. C , i.e., the system is redundant. Therefore,
a multi priority approach can be used such as, e.g. [16]. As
anticipated, the tasks are handled in a flexible way, i.e., by
adding/removing tasks based on the need to find a solution
to Problem 2.

VI. SAMPLING BASED GLOBAL PLANNER

For the sake of clarity, we will consider here only the
case in which the search space is equal to the task space.
Treating the general case would involve the addition of new
variables to increase the dimension of the search space, and
the corresponding modification in the controller to consider
the associated ‘tasks’ as explained in Sec. V-B.

Algorithm 1 shows the pseudo-code of the proposed
control-aware planner. In this work, we have applied the
Rapidly-Exploring Random Trees (RRT) algorithm [11] for
the exploration of the task space. However, as it will be
explained in Section VIII, other algorithms could be used.
The algorithm samples states in the task space with a
uniform distribution and extends the exploration tree using
the controller until a leaf reaches the desired goal.

Although the RRT algorithm operates in the task space,
each vertex of the exploration tree, T , denoted by the
symbol ni, contains the desired task state x

d
y

i := x

d
y(ti) and

the corresponding robot state x

i := x(ti) at a certain time
ti 2 R>0. The edge, Ei, j, from vertex n

i to n

j contains the
desired task trajectory x

d
y(t) from value x

d
y

i to x

d
y

j, and the
outcome of the simulated closed loop system, namely q(t)
for t 2 [ti, t j]. The latter is needed to check the feasibility of
the local motion. Fig. 4 illustrates the several stages of the
planning process.

Algorithm 1: Control-Aware Motion Planner
Input:
1: task y 2 Cy , in terms of functions f

c
y(y) and fy(q)

2: initial robot state, x0 2X
3: desired final task value y

? 2 Cy

Output: task trajectory x

d
y(t) for t 2 [0,T]

Main:
1: x

0
y forwardKinematics(x

0
)

2: n

0 initVertex(x

0
y ,x

0
)

3: T initTree(n

0
)

4: while not stopCondition(T ,y?
) do

5: x

d
y

rand sampleRandomTask(Xy)

6: n

near nearestNeighbor(T ,xd
y

rand
)

7: n

next extend(n

near,xd
y

rand
)

8: if notEmpty(nnext
) then

9: addNode(T ,nnext
)

10: y

d
(t) getTaskTrajectory(T)

11: return x

d
y(t)

Starting from a given initial robot state x

0, the tree is ini-
tialized computing the initial task state x

0
y corresponding to

x

0. This is done using forward kinematics, i.e., equations (3)
and (7). The initial vertex n

0
= (x

0,x0
y) is then added to the

tree. The methods used at each iteration of the RRT algorithm
are discussed in the following sub-sections. Once the planner
finds a solution, the desired task trajectory is returned. The
latter will be then used as reference for the controller, for
execution with the real robot.

A. Steering method

The function extend(n

i,x j
y) in Algorithm 1 is divided

into three main phases:
1) First, a trajectory for the desired task x

d
y(t) is computed

such that xd
y(ti) = x

d
y

i and x

d
y(t j) = x

d
y

j for a certain
t j > ti. To this purpose, any trajectory generator can be
applied. However, with the aim to produce short trajec-
tories, we use the minimum-time trajectory generator
presented in [17]. This method ensures the generation
of a continuous and derivable trajectory (up to the
4th order) respecting the constraint xd

y(t) 2Xy for all
t 2 [ti, t j].

2) The closed loop system, i.e., (1) together with (5), is
simulated starting from the robot state x

i and using
x

d
y(t), computed at the previous step, as reference for

the controller. The numerical simulation provides the
motion of the robot, i.e., x(t), while tracking x

d
y(t) for

t 2 [ti, t j].
3) If x(t)2X and q(t)2Cfree for all t 2 [ti, t j], the motion

can be considered as ‘valid’. Afterwards the node n

j
=

(x

d
y

j,x(t j)) and the edge Ei, j are added to the tree.

B. Metric in the task state space

In kinodynamic planning, the metric has a crucial role
to obtain good results. However, computing the distance be-
tween two states can be computationally very expensive [11].
In fact, one should try to extend every node in the tree
toward the sampled state and add to the tree only the edge
characterized by the feasible trajectory with minimum time.

Preprint version, final version at http://ieeexplore.ieee.org/ 5 IEEE Robotics and Automation Letters 2018

This will drastically increase the computational cost. Instead,
we use the approximate quasi-metric presented in [17]. This
method allows to compute in closed-form an approximation
of the time associated with the local path that would be
obtained by the steering method trying to extend a vertex. It
has been shown that it is a good approximation that allows
to substantially reduce the computing time for the global
planner.

VII. RESULTS
For the evaluation of the planner, we considered the

aerial manipulator shown in Fig. 1: an hexarotor with
tilted propellers (presented in [1]) endowed with a planar
2-link robotic arm (presented in [5]). A sensor for surface
inspection is installed at the end-effector. The popularity
of multidirectional-thrust vehicles w.r.t. unidirectional-thrust
platform is increasing thanks to their proven superiority for
aerial manipulation [1]. Indeed, they allow to independently
control position and orientation, and to instantaneously react
to interaction forces and external disturbances.

The vehicle is characterized by a mass, mR = 1.2 [kg], and
an inertia tensor w.r.t. FR, JR = diag(0.02,0.02,0.025) [kg ·
m2

]. The lengths of the first and second links of the arm are
0.3 [m] and 0.25 [m], respectively. Their masses are 0.145 [kg]
and 0.123 [kg], respectively. The arm is attached at 0.05 [m]

below the CoM of the aerial vehicle, along the z-axis. We
tested the method in simulation using two scenarios:
a) A challenging cluttered environment with several obsta-

cles. One of them is a concave obstacle made of three
walls in a U-shaped configuration. This type of obstacle
can be a trap for classical local controllers. The surface
being inspected is the flat ground.

b) An application-oriented scenario. The task consists in the
inspection by contact of a cylindrical pipe in an industrial
site. The surface of interest is the outer part of the pipe.

In both cases, the task consists in safely bringing the end-
effector of the robot, endowed with the inspection sensor, to
a desired point on the surface of interest, keeping the contact
while moving. In Scenario b) the task includes the orientation
of the end-effector as well. Indeed, the last link has to be
perpendicular to the surface to properly gather the data.

Once defined the task, the robot is controlled as defined
in Sec. V, i.e., using a second order inverse kinematics
controller plus a dynamic controller based on dynamics
inversion.

Figure 5 shows the planned trajectories for the two consid-
ered scenarios. One can notice how the search tree grows in
the task space until the planner finds a task trajectory, yd

(t),
solving Problem 2. Videos showing the robot following the
trajectories are in the multimedia attachment.

We compared the proposed method against a purely-
reactive (optimization-based) method based on a local con-
troller using a simplified version of Scenario a) involving
the U-shaped obstacle only. In particular, we used the NSB
method including an obstacle avoidance feature based on
virtual potential fields. As expected, using only the local con-
troller, the robot gets trapped between obstacles and does not

Start
Start

Goal Goal

Fig. 5: Images of the motions provided by the control-aware planner
for the Scenario a) (left) and Scenario b) (right). The desired task
trajectory is represented by a red line, ending in the goal task
position. The yellow dots are the vertexes of the tree, while the
green lines are the edges. The images (from the top to the bottom)
show intermediate snap-shoots along the solution trajectories.

Planning
time

Rejected
nodes

Accepted
nodes

Trajectory
time

Path
length

[s] # # [s] [m]

a) Average 47.26 58.75 62.15 97.34 9.6
s 6.61 18.5 2.25 8.14 0.71

b) Average 21.92 28.5 22.5 35.6 3.7
s 5.3615 11 0.8 4.08 0.5

Steering
method

Collision
checking

Neighbor
search

Selection of
the best path

% of total time 63.78 1.54 28.94 5.72

TABLE I: Performance of the planner out of 20 runs for the two
scenarios. s stands for the standard deviation.

reach the goal. Additional details about this experiment are
included in a technical report in the multimedia attachment.

The planner has been implemented in ROS using Moveit!2

and the OMPL library3. To quantify the performance of the
planner, we run the method 20 times for each scenario. Tab. I
reports the average and the standard deviation of the most
meaningful variables. It also shows the repartition of the total
planning time between the four major operations. One can
observe that the majority of the time is taken by the steering
method, which has to simulate the system. Note however that
we have used a preliminary implementation, which could be
substantially improved to reduce computing time.

VIII. CONCLUSIONS

We have presented a task-constrained motion planner for
aerial manipulation based on the paradigm of combining
sampling based motion planning methods together with
local controllers. The motivation comes from the fact that,

2
http://moveit.ros.org/

3
http://ompl.kavrakilab.org/

Preprint version, final version at http://ieeexplore.ieee.org/ 6 IEEE Robotics and Automation Letters 2018

http://moveit.ros.org/
http://ompl.kavrakilab.org/

although trajectories generated by planning methods may
have good theoretical properties, in practice, control methods
applied for motion execution may have difficulties to track
them. This is particularly true for complex robot systems
such as aerial manipulators. Therefore, we propose to apply
control methods already at the trajectory planning stage.
More precisely, we considered a second-order inverse kine-
matics controller together with a dynamic controller. The use
of this controller inside a RRT-based planner has a threefold
advantage: i) generating motions that are feasible for the real
closed loop system; ii) planning directly in the reduced and
more relevant task space; iii) considering control singularities
and tracking errors already at the planning level.

In this work, we have applied a basic RRT algorithm
as global planner. However, the proposed paradigm can be
extended to other planners. Note however that the use of the
controller as a local planner imposes some restrictions at this
level, since planning algorithms requiring the solution of a
two-point boundary value problem (BVP) to connect sampled
states involving the full system cannot be directly applied in
this context. This is for instance the case of RRT* [18], which
is an asymptotically-optimal variant of RRT. An interesting
alternative for optimal trajectory planning would be the SST*
algorithm [19], which does to rely on a BVP solver. Other
technical improvements of the algorithm can be investigated,
e.g., biased sampling to favor particular regions of the search
space, post-processing to shorten the trajectory, or real-time
implementation to take into account dynamic environments
or incremental map building, etc.

As natural future work, we aim to test the proposed
approach on a real aerial manipulator. Finally, we should
mention that the general ideas proposed in this paper could
be applied to other areas in robotics in addition to aerial
manipulation.

REFERENCES

[1] M. Ryll, G. Muscio, F. Pierri, E. Cataldi, G. Antonelli, F. Caccav-
ale, and A. Franchi, “6D physical interaction with a fully actuated
aerial robot,” in 2017 IEEE Int. Conf. on Robotics and Automation,
Singapore, May 2017, pp. 5190–5195.

[2] F. Ruggiero, M. A. Trujillo, R. Cano, H. Ascorbe, A. Viguria, C. Perz,
V. Lippiello, A. Ollero, and B. Siciliano, “A multilayer control for
multirotor uavs equipped with a servo robot arm,” in 2015 IEEE Int.
Conf. on Robotics and Automation, Seattle, WA, May 2015, pp. 4014–
4020.

[3] K. Kondak, K. Krieger, A. Albu-Schäffer, M. Schwarzbach, M. La-
iacker, I. Maza, A. Rodriguez-Castano, and A. Ollero, “Closed-loop
behavior of an autonomous helicopter equipped with a robotic arm for
aerial manipulation tasks,” International Journal of Advanced Robotic
Systems, vol. 10, pp. 1–9, 2013.

[4] H. Yang and D. J. Lee, “Dynamics and control of quadrotor with
robotic manipulator,” in 2014 IEEE Int. Conf. on Robotics and
Automation, Hong Kong, China, May 2014, pp. 5544–5549.

[5] M. Tognon, B. Yüksel, G. Buondonno, and A. Franchi, “Dynamic
decentralized control for protocentric aerial manipulators,” in 2017
IEEE Int. Conf. on Robotics and Automation, Singapore, May 2017,
pp. 6375–6380.

[6] K. Baizid, G. Giglio, F. Pierri, M. Trujillo, G. Antonelli, F. Caccavale,
A. Viguria, S. Chiaverini, and A. Ollero, “Behavioral control of
unmanned aerial vehicle manipulator systems,” Autonomous Robots,
vol. 35, no. 8, pp. 1–18, 2016.

[7] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The entrap-
ment/escorting mission: An experimental study using a multirobot
system,” IEEE Robotics & Automation Magazine, vol. 15, no. 1, pp.
22–29, 2008.

[8] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” in 2009 IEEE Int. Conf. on
Robotics and Automation, Kobe, Japan, May 2009, pp. 625–632.

[9] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions,” The
International Journal of Robotics Research, vol. 30, no. 12, pp. 1435–
1460, 2011.

[10] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Trans. on Robotics, vol. 26, no. 3, pp. 576–584,
2010.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[12] M. Cefalo and G. Oriolo, “Task-constrained motion planning for
underactuated robots,” in 2015 IEEE Int. Conf. on Robotics and
Automation, Seattle, WA, May 2015, pp. 2965–2970.

[13] A. Shkolnik and R. Tedrake, “High-dimensional underactuated motion
planning via task space control,” in 2008 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Nice, France, Sep. 2008, pp. 3762–
3768.

[14] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer, 2009.

[15] B. Yüksel, G. Buondonno, and A. Franchi, “Differential flatness
and control of protocentric aerial manipulators with any number of
arms and mixed rigid-/elastic-joints,” in 2016 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Daejeon, South Korea, Oct. 2016, pp.
561–566.

[16] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Dynamic
multi-priority control in redundant robotic systems,” Robotica, vol. 31,
no. 7, p. 11551167, 2013.

[17] A. Boeuf, J. Cortés, R. Alami, and T. Siméon, “Enhancing
sampling-based kinodynamic motion planning for quadrotors,” in 2015
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Hamburg,
Germany, Sep. 2015, pp. 2447–2452.

[18] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[19] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

Preprint version, final version at http://ieeexplore.ieee.org/ 7 IEEE Robotics and Automation Letters 2018

Additional Analysis and Simulations for the Control-Aware Planner

Technical report of:
“Control-Aware Motion Planning for Task-Constrained Aerial Manipulation”

IEEE Robotics and Automation Letters, Special Issue on Aerial Manipulation

M. Tognon1, E. Cataldi2, H. A. Tello Chavez1, G. Antonelli2, J. Cortés1, A. Franchi1

Abstract— This document is a technical attachment to [1] as
an extension of the validation part. Here we present additional
plots, simulations, and analysis of the proposed method. The
parameter of the simulated system are the one reported in [1].

I. HOW TO CITE THIS WORK

This technical report is accompanying our IEEE Robotics
and Automation Letters paper [1]. If you wish to reference
this work, please cite this paper as follows:

@Ar t i c l e {Tognon18ra l ,
a u t h o r = {M. Tognon and E . C a t a l d i and

H. A. T e l l o Chavez and G. A n t o n e l l i and
J . Cor t \ ’ e s and A. F r a n c h i } ,

t i t l e = {C o n t r o l�Aware Motion P l a n n i n g f o r
Task�C o n s t r a i n e d A e r i a l M a n i p u l a t i o n } ,

j o u r n a l = {{ IEEE} Robot . Autom . L e t t . ,
S p e c i a l I s s u e on A e r i a l M a n i p u l a t i o n } ,

y e a r = {2018} ,
d o i = {1 0 . 1 1 0 9 /LRA. 2 0 1 8 . 2 8 0 3 2 0 6} ,

}

II. COMPARISON WITH ONLY LOCAL CONTROL
STRATEGY

We compared the proposed method against a purely-
reactive (optimization-based) method based on a local con-
troller using a simplified version of Scenario a) involving the
U-shaped obstacle.

Figure 1a shows the results obtained using only the local
controller to achieve the goal task. For this, we have used the
NSB method including an obstacle avoidance feature based
on virtual potential fields. As expected, the robot gets trapped
between the walls and does not reach the goal.

On the contrary, the proposed control-aware-planner is
able to find a proper solution to Problem 2 of [1], providing a
good task trajectory, xd

y(t), that brings the end-effector to the
desired goal avoiding the obstacles. The growth of the tree,
the final desired task trajectory, and the relative execution is
shown in Fig. 1b.

III. ADDITIONAL SIMULATION RESULTS

In the following we present more detailed plots of the
trajectory planed and executed by the robot in the two
scenarios considered in Sec. VII of the paper. In particular,
Fig. 2a and Fig. 2b show the tracking of the end-effector
trajectory and the evolution of the configuration of the robot
for scenario a) and b), respectively.

REFERENCES

[1] M. Tognon, E. Cataldi, H. Tello Chavez, G. Antonelli, J. Cortés, and
A. Franchi, “Control-aware motion planning for task-constrained aerial
manipulation,” IEEE Robotics and Automation Letters, Special Issue on

Aerial Manipulation, 2018.

Preprint version, final version at http://ieeexplore.ieee.org/ 1 IEEE Robotics and Automation Letters 2018

Start

Goal

(a) Only local controller with an obstacle avoidance feature.

Start
Goal

(b) Solution fond by the control-aware planner.

Fig. 1: Images of environment and of the motions provided by the local controller alone (a) and by the proposed control-aware planner
(b). In both cases, the desired task trajectory is represented by a red line, ending in the goal task position. In Fig. (b), the yellow dots are
the vertexes of the tree, while the green lines are the edges.

Preprint version, final version at http://ieeexplore.ieee.org/ 2 IEEE Robotics and Automation Letters 2018

(a) Scenario a).

0

2

4

6

1

2

3

4

5

0 3 6 9 12 15 18 21 24 27 30 33 36
-80

-60

-40

-20

0 3 6 9 12 15 18 21 24 27 30 33 36

60

80

100

120

(b) Scenario b).

Fig. 2: End-effector tracking and configurations variables corre-
sponding to the motion found by the planner for the two scenarios
considered in Sec. VII of the paper. (x

E

,y
E

,z
E

) and (x
r

,y
r

,z
r

) are
the coordinates of the position of the end-effector and of the aerial
vehicle, respectively. (q

J1,qJ1) are the joint angles of the arm. The
line with circles corresponds to the desired end-effector trajectory
provided by the planner.

Preprint version, final version at http://ieeexplore.ieee.org/ 3 IEEE Robotics and Automation Letters 2018

	INTRODUCTION
	MODEL
	PROBLEM FORMULATION
	ALGORITHM OVERVIEW
	CONTROL STRATEGY
	Dynamic controller
	Inverse kinematics controller

	SAMPLING BASED GLOBAL PLANNER
	Steering method
	Metric in the task state space

	RESULTS
	CONCLUSIONS
	References

